
GNU COBOL Programmer’s Guide
For Version 2.1 [23NOV2013]

Gary L. Cutler (cutlergl@gmail.com).

mailto:cutlergl@gmail.com


This manual documents GNU COBOL 2.1, 23NOV2013 build.

GNU-COBOL Copyright 2002-2007 Keisuke Nishida

Copyright 2007-2012 Roger While

Copyright 2013-2013 Ron Norman (RWCS for GNU COBOL)

Document Copyright 2009-2014 Gary L. Cutler

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License [FDL], Version 1.3 or any
later version published by the Free Software Foundation; with Invariant Section
”Introduction”, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled ”GNU Free Documentation License”.



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide i

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Additional Reference Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Introducing COBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1. Why YOU Should Learn COBOL . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2. Programmer Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. So What is GNU COBOL? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1. Language Reserved Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2. User-Defined Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3. Case Insensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.4. Readability of Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.5. Divisions Organize Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.6. Copybooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.7. Structured Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.8. Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.9. Table Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.10. Sorting and Merging Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.11. String Manipulation Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.12. Screen Formatting Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.12.1. A Sample Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.12.2. Color Palette and Video Attributes . . . . . . . . . . . . . . . . . . 20

1.3.13. Report Writer Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.14. Data Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.15. Syntax Diagram Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.16. Format of Program Source Lines . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.17. Program Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.18. Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.19. Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3.19.1. Numeric Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3.19.2. Alphanumeric Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3.19.3. Figurative Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.20. Punctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.3.21. LENGTH OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.3.22. Interfacing to Other Environments . . . . . . . . . . . . . . . . . . . . . . . 37

2. CDF - Compiler Directing Facility . . . . . . . . . . . 39
2.1. COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2. REPLACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3. >>DEFINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4. >>IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5. >>SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6. >>SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7. >>TURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 June 2014 Contents



ii GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

3. IDENTIFICATION DIVISION . . . . . . . . . . . . . . . 53

4. ENVIRONMENT DIVISION . . . . . . . . . . . . . . . . . 55
4.1. CONFIGURATION SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1. SOURCE-COMPUTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2. OBJECT-COMPUTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.3. REPOSITORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.4. SPECIAL-NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.4.1. Alphabet-Name-Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.4.2. Class-Definition-Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.4.3. Switch-Definition-Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.4.4. Symbolic-Characters-Clause . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2. INPUT-OUTPUT SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1. SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1.1. ORGANIZATION SEQUENTIAL . . . . . . . . . . . . . . . . . . . . 78
4.2.1.2. ORGANIZATION LINE SEQUENTIAL . . . . . . . . . . . . . . 80
4.2.1.3. ORGANIZATION RELATIVE . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.1.4. ORGANIZATION INDEXED . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.2. MULTIPLE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.3. SAME RECORD AREA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5. DATA DIVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1. Data Definition Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2. FILE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1. File/Sort-Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.2. FILE-SECTION-Data-Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3. WORKING-STORAGE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4. LOCAL-STORAGE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5. LINKAGE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6. REPORT SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6.1. Report Group Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.6.2. REPORT SECTION Data Items . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7. SCREEN SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.8. Special Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.8.1. 01-Level Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.8.2. 66-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.8.3. 77-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.8.4. 78-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.8.5. 88-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.9. Data Description Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.9.1. ANY LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.9.2. AUTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.9.3. AUTO-SKIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.9.4. AUTOTERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.9.5. BACKGROUND-COLOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.9.6. BASED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Contents 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide iii

5.9.7. BEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.9.8. BELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.9.9. BLANK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.9.10. BLANK WHEN ZERO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.9.11. BLINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.9.12. COLUMN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.9.13. CONSTANT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.9.14. EMPTY-CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.9.15. ERASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.9.16. EXTERNAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.9.17. FALSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.9.18. FOREGROUND-COLOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.9.19. FROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.9.20. FULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.9.21. GLOBAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.9.22. GROUP INDICATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.9.23. HIGHLIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.9.24. JUSTIFIED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.9.25. LEFTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.9.26. LENGTH-CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.9.27. LINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.9.28. LOWLIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.9.29. NEXT GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.9.30. NO-ECHO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.9.31. OCCURS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.9.32. OVERLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.9.33. PICTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.9.34. PRESENT WHEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.9.35. PROMPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.9.36. REDEFINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.9.37. RENAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.9.38. REQUIRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.9.39. REVERSE-VIDEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.9.40. SECURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.9.41. SIGN IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.9.42. SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.9.43. SUM OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.9.44. SYNCRONIZED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.9.45. TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.9.46. TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5.9.47. UNDERLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.9.48. USAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.9.49. USING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.9.50. VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

3 June 2014 Contents



iv GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6. PROCEDURE DIVISION . . . . . . . . . . . . . . . . . . . 201
6.1. PROCEDURE DIVISION USING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.2. PROCEDURE DIVISION CHAINING . . . . . . . . . . . . . . . . . . . . . . . . 204
6.3. PROCEDURE DIVISION RETURNING . . . . . . . . . . . . . . . . . . . . . 206
6.4. PROCEDURE DIVISION Sections and Paragraphs . . . . . . . . . . . 207
6.5. DECLARATIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.6. Table References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.7. Qualification of Data Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.8. Reference Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.9. Arithmetic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.10. Conditional Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.10.1. Condition Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.10.2. Class Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
6.10.3. Sign Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.10.4. Switch-Status Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.10.5. Relation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.10.6. Combined Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.10.7. Negated Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6.11. Use of Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.12. Use of VERB/END-VERB Constructs . . . . . . . . . . . . . . . . . . . . . . . 229
6.13. Concurrent Access to Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

6.13.1. File Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.13.2. Record Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.14. Common Clauses on Executable Statements . . . . . . . . . . . . . . . . . 235
6.14.1. AT END + NOT AT END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.14.2. CORRESPONDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.14.3. INVALID KEY + NOT INVALID KEY . . . . . . . . . . . . . . . . 238
6.14.4. ON EXCEPTION + NOT ON EXCEPTION . . . . . . . . . . . 238
6.14.5. ON OVERFLOW + NOT ON OVERFLOW . . . . . . . . . . . . 239
6.14.6. ON SIZE ERROR + NOT ON SIZE ERROR . . . . . . . . . . . 239
6.14.7. ROUNDED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

6.15. Special Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
6.16. Intrinsic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6.16.1. ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.16.2. ACOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.16.3. ANNUITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
6.16.4. ASIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
6.16.5. ATAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
6.16.6. BYTE-LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
6.16.7. CHAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
6.16.8. COMBINED-DATETIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
6.16.9. CONCATENATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
6.16.10. COS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
6.16.11. CURRENCY-SYMBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.16.12. CURRENT-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.16.13. DATE-OF-INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
6.16.14. DATE-TO-YYYYMMDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Contents 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide v

6.16.15. DAY-OF-INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
6.16.16. DAY-TO-YYYYDDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
6.16.17. E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
6.16.18. EXCEPTION-FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
6.16.19. EXCEPTION-LOCATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
6.16.20. EXCEPTION-STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6.16.21. EXCEPTION-STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
6.16.22. EXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
6.16.23. EXP10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
6.16.24. FACTORIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
6.16.25. FRACTION-PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
6.16.26. HIGHEST-ALGEBRAIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
6.16.27. INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
6.16.28. INTEGER-OF-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
6.16.29. INTEGER-OF-DAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
6.16.30. INTEGER-PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
6.16.31. LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
6.16.32. LENGTH-AN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
6.16.33. LOCALE-COMPARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
6.16.34. LOCALE-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
6.16.35. LOCALE-TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
6.16.36. LOCALE-TIME-FROM-SECONDS . . . . . . . . . . . . . . . . . . . . 282
6.16.37. LOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
6.16.38. LOG10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
6.16.39. LOWER-CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
6.16.40. LOWEST-ALGEBRAIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
6.16.41. MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
6.16.42. MEAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
6.16.43. MEDIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
6.16.44. MIDRANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
6.16.45. MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
6.16.46. MOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
6.16.47. MODULE-CALLER-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
6.16.48. MODULE-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
6.16.49. MODULE-FORMATTED-DATE . . . . . . . . . . . . . . . . . . . . . . 295
6.16.50. MODULE-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
6.16.55. MODULE-PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
6.16.52. MODULE-SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
6.16.53. MODULE-TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
6.16.54. MONETARY-DECIMAL-POINT . . . . . . . . . . . . . . . . . . . . . . 300
6.16.55. MONETARY-THOUSANDS-SEPARATOR . . . . . . . . . . . . 301
6.16.56. NUMERIC-DECIMAL-POINT . . . . . . . . . . . . . . . . . . . . . . . . 302
6.16.57. NUMERIC-THOUSANDS-SEPARATOR . . . . . . . . . . . . . . 303
6.16.58. NUMVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
6.16.59. NUMVAL-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
6.16.60. NUMVAL-F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
6.16.61. ORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
6.16.62. ORD-MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

3 June 2014 Contents



vi GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.63. ORD-MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
6.16.64. PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
6.16.65. PRESENT-VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
6.16.66. RANDOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
6.16.67. RANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
6.16.68. REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
6.16.69. REVERSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
6.16.70. SECONDS-FROM-FORMATTED-TIME . . . . . . . . . . . . . . 317
6.16.71. SECONDS-PAST-MIDNIGHT . . . . . . . . . . . . . . . . . . . . . . . . . 318
6.16.72. SIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
6.16.73. SIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
6.16.74. SQRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
6.16.75. STANDARD-DEVIATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
6.16.76. STORED-CHAR-LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
6.16.77. SUBSTITUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
6.16.78. SUBSTITUTE-CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
6.16.79. SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
6.16.80. TAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
6.16.81. TEST-DATE-YYYYMMDD . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
6.16.82. TEST-DAY-YYYYDDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
6.16.83. TEST-NUMVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
6.16.84. TEST-NUMVAL-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
6.16.85. TEST-NUMVAL-F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
6.16.86. TRIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
6.16.87. UPPER-CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
6.16.88. VARIANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
6.16.89. WHEN-COMPILED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
6.16.90. YEAR-TO-YYYY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

6.17. GNU COBOL Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
6.17.1. ACCEPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

6.17.1.1. ACCEPT FROM CONSOLE . . . . . . . . . . . . . . . . . . . . . . 338
6.17.1.2. ACCEPT FROM COMMAND-LINE . . . . . . . . . . . . . . . 339
6.17.1.3. ACCEPT FROM ENVIRONMENT . . . . . . . . . . . . . . . . 341
6.17.1.4. ACCEPT screen-data-item . . . . . . . . . . . . . . . . . . . . . . . . . 342
6.17.1.5. ACCEPT FROM DATE/TIME . . . . . . . . . . . . . . . . . . . . 347
6.17.1.6. ACCEPT FROM Screen-Info . . . . . . . . . . . . . . . . . . . . . . 348
6.17.1.7. ACCEPT FROM Runtime-Info . . . . . . . . . . . . . . . . . . . . 349

6.17.2. ADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
6.17.2.1. ADD TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
6.17.2.2. ADD GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
6.17.2.3. ADD CORRESPONDING . . . . . . . . . . . . . . . . . . . . . . . . . 354

6.17.3. ALLOCATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
6.17.4. ALTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
6.17.5. CALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
6.17.6. CANCEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
6.17.7. CLOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
6.17.8. COMMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
6.17.9. COMPUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Contents 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide vii

6.17.10. CONTINUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
6.17.11. DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
6.17.12. DISPLAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

6.17.12.1. DISPLAY UPON device . . . . . . . . . . . . . . . . . . . . . . . . . . 370
6.17.12.2. DISPLAY UPON COMMAND-LINE . . . . . . . . . . . . . 372
6.17.12.3. DISPLAY UPON ENVIRONMENT-NAME . . . . . . . 373
6.17.12.4. DISPLAY screen-data-item . . . . . . . . . . . . . . . . . . . . . . . 374

6.17.13. DIVIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
6.17.13.1. DIVIDE INTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
6.17.13.2. DIVIDE INTO GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . 378
6.17.13.3. DIVIDE BY GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

6.17.14. ENTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
6.17.15. EVALUATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
6.17.16. EXIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
6.17.17. FREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
6.17.18. GENERATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
6.17.19. GOBACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
6.17.20. GO TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

6.17.20.1. Simple GO TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
6.17.20.2. GO TO DEPENDING ON . . . . . . . . . . . . . . . . . . . . . . . . 395

6.17.21. IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
6.17.22. INITIALIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
6.17.23. INITIATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
6.17.24. INSPECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
6.17.25. MERGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
6.17.26. MOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

6.17.26.1. Simple MOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
6.17.26.2. MOVE CORRESPONDING . . . . . . . . . . . . . . . . . . . . . . 415

6.17.27. MULTIPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
6.17.27.1. MULTIPLY BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
6.17.27.2. MULTIPLY GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

6.17.28. OPEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
6.17.29. PERFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

6.17.29.1. Procedural PERFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
6.17.29.2. Inline PERFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
6.17.29.3. VARYING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

6.17.30. READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
6.17.30.1. Sequential READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
6.17.30.2. Random READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

6.17.31. READY TRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
6.17.32. RELEASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
6.17.33. RESET TRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
6.17.34. RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
6.17.35. REWRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
6.17.36. ROLLBACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
6.17.37. SEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
6.17.38. SEARCH ALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
6.17.39. SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

3 June 2014 Contents



viii GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.39.1. SET ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
6.17.39.2. SET Program-Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
6.17.39.3. SET ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
6.17.39.4. SET Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
6.17.39.5. SET UP/DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
6.17.39.6. SET Condition Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
6.17.39.7. SET Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
6.17.39.8. SET ATTRIBUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

6.17.40. SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
6.17.40.1. File-Based SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
6.17.40.2. Table SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

6.17.41. START . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
6.17.42. STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
6.17.43. STRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
6.17.44. SUBTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

6.17.44.1. SUBTRACT FROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
6.17.44.2. SUBTRACT GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
6.17.44.3. SUBTRACT CORRESPONDING . . . . . . . . . . . . . . . . 469

6.17.45. SUPPRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
6.17.46. TERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
6.17.47. TRANSFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
6.17.48. UNLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
6.17.49. UNSTRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
6.17.50. WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

7. Report Writer Usage Notes . . . . . . . . . . . . . . . . . . 483
7.1. RWCS Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
7.2. The Anatomy of a Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
7.3. The Anatomy of a Report Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
7.4. How RWCS Builds Report Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
7.5. Control Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
7.6. An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

7.6.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
7.6.2. Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
7.6.3. Generated Report Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

7.7. Control Hierarchy (Revisited) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
7.8. Turning PHYSICAL Page Formatting Into LOGICAL Formatting

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

Contents 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide ix

8. Interfacing With The OS . . . . . . . . . . . . . . . . . . . . . 509
8.1. Compiling Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

8.1.1. cobc - The GNU COBOL Compiler . . . . . . . . . . . . . . . . . . . . . . 509
8.1.2. Compilation Time Environment Variables . . . . . . . . . . . . . . . . 514
8.1.3. Locating Copybooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
8.1.4. Compiler Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

8.2. Running Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
8.2.1. Direct Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
8.2.2. Executing Dynamically-Loadable Libraries . . . . . . . . . . . . . . . 520

8.2.2.1. cobcrun - Command-line Execution . . . . . . . . . . . . . . . . . 520
8.2.2.2. Dynamically Loaded Subprograms . . . . . . . . . . . . . . . . . . 521

8.2.3. Run Time Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . 522
8.2.4. Program Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

8.3. Built-In System Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
8.3.1. C$CALLEDBY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
8.3.2. C$CHDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
8.3.3. C$COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
8.3.4. C$DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
8.3.5. C$FILEINFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
8.3.6. C$GETPID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
8.3.7. C$JUSTIFY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
8.3.8. C$MAKEDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
8.3.9. C$NARG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
8.3.10. C$PARAMSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
8.3.11. C$PRINTABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
8.3.12. C$SLEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
8.3.13. C$TOLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
8.3.14. C$TOUPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
8.3.15. CBL AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
8.3.16. CBL CHANGE DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
8.3.17. CBL CHECK FILE EXIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
8.3.18. CBL CLOSE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
8.3.19. CBL COPY FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
8.3.20. CBL CREATE DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
8.3.21. CBL CREATE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
8.3.22. CBL DELETE DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
8.3.23. CBL DELETE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
8.3.24. CBL EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
8.3.25. CBL ERROR PROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
8.3.26. CBL EXIT PROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
8.3.27. CBL FLUSH FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
8.3.28. CBL GET CSR POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
8.3.29. CBL GET CURRENT DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
8.3.30. CBL GET SCR SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
8.3.31. CBL IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
8.3.32. CBL NIMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
8.3.33. CBL NOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

3 June 2014 Contents



x GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

8.3.34. CBL NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
8.3.35. CBL OC NANOSLEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
8.3.36. CBL OPEN FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
8.3.37. CBL OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
8.3.38. CBL READ FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
8.3.39. CBL RENAME FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
8.3.40. CBL TOLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
8.3.41. CBL TOUPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
8.3.42. CBL WRITE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
8.3.43. CBL XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
8.3.44. SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
8.3.45. X"91" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
8.3.46. X"E4" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
8.3.47. X"E5" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
8.3.48. X"F4" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
8.3.49. X"F5" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

8.4. Binary Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

9. Sub-Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
9.1. Subprogram Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
9.2. Independent vs Contained vs Nested Subprograms . . . . . . . . . . . . 557
9.3. Alternate Entry Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
9.4. Dynamic vs Static Subprograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
9.5. Subprogram Execution Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

9.5.1. Subroutine Execution Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
9.5.2. User-Defined Function Execution Flow . . . . . . . . . . . . . . . . . . . 563

9.6. Sharing Data Between Calling and Called Programs . . . . . . . . . . . 565
9.5.1. Subprogram Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

9.6.1.1. Calling Program Considerations . . . . . . . . . . . . . . . . . . . . . 565
9.6.1.2. Called Program Considerations . . . . . . . . . . . . . . . . . . . . . . 566

9.6.2. GLOBAL Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
9.6.3. EXTERNAL Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

9.7. Recursive Subprograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
9.8. Combining GNU COBOL and C Programs . . . . . . . . . . . . . . . . . . . . 571

9.9.1. GNU COBOL Run-Time Library Requirements . . . . . . . . . . 571
9.9.2. String Allocation Differences Between GNU COBOL and C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
9.9.3. Matching C Data Types with GNU COBOL USAGEs . . . . 573
9.9.4. GNU COBOL Main Programs CALLing C Subprograms . . 574
9.9.5. C Main Programs Calling GNU COBOL Subprograms . . . 575

Contents 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide xi

10. Programming Style Suggestions . . . . . . . . . . . . 579
10.1. Marking Changes in Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
10.2. Data Item Coding and Naming Conventions . . . . . . . . . . . . . . . . . 579
10.3. Table Subscripting versus Table Indexing . . . . . . . . . . . . . . . . . . . . 582
10.4. Copybook Naming Conventions and Usage . . . . . . . . . . . . . . . . . . . 584
10.5. PROCEDURE DIVISION Sections Versus Paragraphs . . . . . . . 585
10.6. COMPUTE Versus ADD-SUBTRACT-MULTIPLY-DIVIDE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

Appendix A - Glossary of Terms . . . . . . . . . . . . . . . 589

Appendix B - Reserved Word List . . . . . . . . . . . . . 599

Appendix C - GNU Free Documentation License
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

Appendix D - Summary of Document Changes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615

3 June 2014 Contents





GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 1

1. Introduction

This document describes the syntax, semantics and usage of the COBOL programming lan-
guage as implemented by the current version of GNU COBOL, formerly known as Open-
COBOL.

The principal developers of GNU COBOL are Keisuke Nishida and Roger While. They may
be contacted through the GNU COBOL website – sourceforge.net/projects/open-cobol.

This document was intended to serve as a full-function reference and user’s guide suitable
for both those readers learning COBOL for the first time as well as those already familiar
with some dialect of the COBOL language.

1.1. Additional Reference Sources

For those wishing to learn COBOL for the first time, I can strongly recommend the following
resources.

If you like to hold a book in your hands, I strongly recommend "Murach’s Structured
COBOL", by Mike Murach, Anne Prince and Raul Menendez (2000) - ISBN 9781890774059.
Mike Murach and his various writing partners have been writing outstanding COBOL text-
books for decades, and this text is no exception. It’s an excellent book for those familiar
with the concepts of programming in other languages, but unfamiliar with COBOL.

Would you prefer a web-based tutorial? Try the University of Limerick (Ireland) COBOL
web site - ‘http://www.csis.ul.ie/cobol/’.

1.2. Introducing COBOL

If you already know a programming language, and that language isn’t COBOL, chances
are that language is Java, C or C++. You will find COBOL a much different programming
language than those; sometimes those differences are a good thing and sometimes they
aren’t. The thing to remember about COBOL is this — it was designed to solve business
problems.

COBOL, first introduced to the programming public in 1959, was the very first programming
language to become standardized (in 1960). This meant that a standard-compliant COBOL
program written on computer "A" made by company "B" would be able to be compiled and
executed on computer "X" made by company "Y" with very few, if any, changes. This may
not seem like such a big deal today, but it was a radical departure from all programming
languages that came before it and even many that came after it.

The name COBOL actually says it all — COBOL is an acronym that stands for "(CO)mmon
(B)usiness (O)riented (L)anguage". Note the fact that the word "common" comes before
all others. The word "business" is a close second. Therein lies the key to COBOL’s success.

3 June 2014 Chapter 1 - Introduction



2 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

1.2.1. Why YOU Should Learn COBOL

Despite statements from industry "insiders", the COBOL programming language is not
dead, even though newer and so-called "modern" languages like Java, C#, .NET, Ruby on
Rails and so on appear to have become the languages of choice in the Information Technology
world. These languages have become popular because they address the following desired
requirements for "modern" programming:

1. They conform to the principles of Object-Oriented Programming (OOP). This is desired
for one major reason — it facilitates "code reusability", thus improving the productivity
of programmers by allowing them to re-use previously written (and debugged) code in
new applications. For one reason or another, COBOL is perceived as being weak in
this regard. It isn’t (especially today), as we’ll see in the next section, but perception
is important.

2. Those languages aren’t limited to mainframe computers, as COBOL is perceived to be.
Some, like .NET and Ruby, aren’t even available on mainframes. The "modern" pro-
gramming languages were designed and intended for use on the full variety of computer
platforms, from shirt-pocket computers (i.e. smartphones) up to the most massive of
supercomputers.

There are several excellent commercially available COBOL implementations available
for non-mainframe systems (Micro Focus COBOL, AccuCOBOL, NetCOBOL and Elas-
tic COBOL, just to name a few), including Windows and UNIX/Linux systems. These
aren’t cheap, however.

3. Universities love the "Modern" languages. In the U.S., 73% of colleges lack even one
COBOL course on their curricula. COBOL, it appears, is no longer "cool" enough for
students to fill a classroom.

Just because COBOL doesn’t traditionally support objects, classes, and the like doesn’t
mean that its "procedural" approach to computing isn’t valuable — after all, it runs 70%
of the worlds business transactions, and does so:

• Using programs that, for the most part, are much more self-documenting than would
be the case with any other programming language.

• Effortlessly providing arithmetic accuracy to 31 digits, with performance approaching
that of well-written assembly-language programs. Don’t think this isn’t critically im-
portant to banks, investment houses and any business interested in tracking revenues,
expenses and profits (duh - like ALL of them).

• Integrating well with non-COBOL infrastructures such as XML, SOA, MQ, almost
any DBMS, Transaction Processing platforms, Queue-Management facilities and other
programming languages.

• By running on almost as many different computing platforms as Java can. You can’t run
COBOL programs in your smartphone, but desktops, workstations, midframes/servers,
mainframes and supercomputers are all fair game.

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 3

Today’s IT managers and business leaders are faced with a challenging dilemma — how do
you maintain the enourmous COBOL codebase that is still running their businesses when
academia has all but abandoned the language they need their people to use to keep the
wheels rolling? The problem is compounded by the fact that those programmers that are
skilled in COBOL are retiring and taking their knowledge with them. In some markets, this
appears to be having an inflationary effect on the cost of resources (COBOL programmers)
whose supply is becoming smaller and smaller. The pressure to update applications to make
use of more up-to-date graphical user interfaces is also perceived as a reason to abandon
COBOL in favor of GUI-friendly languages such as Java.

Businesses are addressing the COBOL challenge in different ways:

1. By undertaking so-called "modernization projects", where existing applications are
either rewritten in "modern" languages or replaced outright with purchased packages.
Most of these businesses are using such activities as an excuse to abandon "expensive"
mainframes in favor of (presumably) less-expensive "open systems" (midframe/server)
solutions.

Many times these businesses are finding the cost of the system/networking engineering,
operational management and monitoring and risk management (i.e. disaster recovery)
infrastructures necessary to support truly mission-critical applications to be so high
that the "less-expensive" solution really isn’t; in these cases the mainframe may remain
the best option, thus leaving COBOL in play and businesses seeking another solution
for at least part of their application base.

2. Training their own COBOL programmers. Since colleges, universities and technical
schools have lost interest in doing so, many businesses have undertaken the task of
"growing their own" new crop of COBOL programmers. Fear of being pidgeon-holed
into a niche technology is a factor inhibiting many of today’s programmers from will-
ingly volunteering for such training.

3. By moving the user-interface onto the desktop; such efforts involve running modern-
language front-end clients on user desktops (or laptops or smartphones, etc.) with
COBOL programs provideing server functionality on mainframe or midframe platforms,
providing all the database and file "heavy lifting" on the back-end. Solutions like this
provide users with the user-interfaces they want/need while still leveraging COBOL’s
strengths on (possibly) downsized legacy mainframe or midframe systems.

It’s probably a true that an IT professional can no longer afford to allow COBOL to be
the only wrench in their toolbox, but with a massive codebase still in production now and
for the foreseeable future, adding COBOL to a multi-lingual curriculum vitae (CV) and/or
resume (yes — they ARE different) is not a bad thing at all. Knowing COBOL as well as
the language du-jour will make you the smartest person in the room when the discussion of
migrating the current "legacy" environment to a "modern" implementation comes around.

You’ll find COBOL an easy language to learn and a FAR EASIER language to master than
many of the "modern" languages.

3 June 2014 Chapter 1 - Introduction



4 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

The whole reason you’re reading this is that you’ve discovered GNU COBOL — another
implementation of COBOL in addition to those mentioned earlier. The distinguishing
characteristic of GNU COBOL versus those others is that GNU COBOL is open-source
and therefore FREE. It is community-enhanced and community-supported. Later in this
document (see [So What is GNU COBOL?], page 5), you’ll begin to learn more about this
COBOL implementation’s capabilities.

1.2.2. Programmer Productivity

Throughout the history of computer programming, the search for new ways to improve of
the productivity of programmers has been a major consideration. Other than hobbyists,
programming is an activity performed for money, and businesses abhor spending anything
more than is absolutely necessary; even government agencies try to spend as little money
on projects as is absolutely necessary.

The amount of programming necessary to accomplish a given task — including rework
needed by any errors found during testing (testing is sometimes jokingly defined as: "that
time during which an application is actually in production, allowing users to discover the
problems") is the measure of programmer productivity. Anything that reduces that effort
will therefore reduce the time spent in such activities therefore reducing the expense of same.
When the expense of programming is reduced, programmer productivity is increased.

Sometimes the quest for improved programmer productivity (and therefore reduced pro-
gramming expense) has taken the form of introducing new features in programming lan-
guages, or even new languages altogether. Sometimes it has resulted in new ways of using
the existing languages.

While many technological and procedural developments have made evolutionary improve-
ments to programmer productivity, each of the following three events has been responsible
for revolutionary improvements:

• The development of so-called "higher-level" programming languages that enable a pro-
grammer to specify in a single statement of the language an action that would have
required many more separate statements in a prior programming language. The stan-
dardization of such languages, making them usable on a wide variety of computers and
operating systems, was a key aspect of this development. COBOL was a pioneering de-
velopment in this area, being a direct descendant of the very first higher-level language
(FLOW-MATIC, developed by US Naval Lieutenant Grace Hopper) and the first to
become standardized.

• The establishment of programming techniques that make programs easier to read and
therefore easier to understand. Not only do such techniques reduce the amount of
rework necessary simply to make a program work as designed, but they also reduce the
amount of time a programmer needs to study an existing program in order how to best
adapt it to changing business requirements. The foremost development in this area was
structured programming. Introduced in the late 1970s, this approach to programming
spawned new programming languages (PASCAL, ALGOL, PL/1 and so forth) designed
around it. With the ANSI85 standard, COBOL embraced the principles espoused

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 5

by structured programming mavens as well as any of the languages designed strictly
around it.

• The establishment of programming techniques AND the introduction of programming
language capabilities to facilitate the reusability of program code. Anything that sup-
ports code reusability can have a profound impact to the amount of time it takes to
develop new applications or to make significant changes to existing ones. In recent
years, object-oriented programming (OOP) has been the industry "poster child" for
code reusability. By enabling program logic and the data structures that logic manip-
ulates to be encapsulated into easily stored and retrieved (and therefore "reusable")
modules called classes, the object-oriented languages such as Java, C++ and C# have
become the favorites of academia. Since students are being trained in these languages
and only these, by and large, it’s no surprise that — today — object-oriented program-
ming languages are the darlings of the industry.

The reality is, however, that good programmers have been practicing code reusability
for more than a half-century. Up until recently, COBOL programmers have had some
of the best code reusability tools available — they’ve been doing it with copybooks
and subprograms rather than classes, methods and attributes but the net results have
been similar. With the COBOL2002 standard and proposed COBOL20xx standard,
the COBOL programming language has become just as "object-oriented" as the "mod-
ern" languages, while preserving the ability to support, modify, compile and execute
"legacy" COBOL programs as well.

While GNU COBOL supports few of the OOP programming constructs defined by the
COBOL2002 and COBOL20xx standards, it supports every aspect of the ANSI85 standard
and therefore fully meets the needs of points #1 and #2, above. With it’s supported
feature set (see [So What is GNU COBOL?], page 5), it provides significant programmer
productivity capabilities.

1.3. So What is GNU COBOL?

GNU COBOL is an open source COBOL compiler and runtime environment, written using
the C programming language. GNU COBOL is typically distributed in source-code form,
and must then be built for your computer’s operating system using the system’s C compiler
and loader. While originally developed for the UNIX and Linux operating systems, GNU
COBOL has also been successfully built for OSX computers or Windows computers utilizing
the UNIX-emulation features of such tools as Cygwin and MinGW.

The MinGW approach is a personal favorite with the author of this manual because it creates
a GNU COBOL compiler and runtime library that require only a single MinGW DLL to be
available for the GNU COBOL compiler, runtime library and user programs. That DLL is
freely distributable under the terms of the GNU General Public License. A MinGW build
of GNU COBOL fits easily on and runs from a 128MB flash drive with no need to install
any software onto the Windows computer that will be using it. Some functionality of the
language, dealing with the sharing of files between concurrently executing GNU COBOL
programs and record locking on certain types of files, is sacrificed however as the underlying

3 June 2014 Chapter 1 - Introduction



6 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

operating system routines needed to implement them aren’t available to Windows and aren’t
provided by MinGW.

GNU COBOL has also been built as a truly native Windows application utilizing Mi-
crosoft’s freely-downloadable Visual Studio Express package to provide the C compiler and
linker/loader. This approach does not lend itself well to a "portable" distribution.

The GNU COBOL compiler generates C code from your COBOL programs; that C code is
then automatically compiled and linked using your system’s C compiler (typically, but not
limited to, "gcc").

GNU COBOL fully supports much of the ANSI85 standard for COBOL (the only ma-
jor exclusion is the Communications Module) and also supports some of the components
of the COBOL2002 standard, such as the "SCREEN SECTION" (see [SCREEN SECTION],
page 115), table-based "SORT" (see [Table SORT], page 457) and user-defined functions.

1.3.1. Language Reserved Words

COBOL programs consist of a sequence of words and symbols. Words, which consist of
sequences of letters (upper- and/or lower-case), digits, dashes ("-") and/or underscores
(" ") may have a pre-defined, specific, meaning to the compiler or may be invented by the
programmer for his/her purposes.

The GNU COBOL language specification defines over 700 ’Reserved Words’ — words to
which the compiler assigns a special meaning.

Programmers may use a reserved word as part of a word they are creating themselves, but
may not create their own word as an exact duplicate (without regard to case) of a COBOL
reserved word.

See [Appendix B - Reserved Word List], page 599, for a complete list of GNU COBOL
reserved words.

1.3.2. User-Defined Words

When you write GNU COBOL programs, you’ll need to create a variety of words to represent
various aspects of the program, the program’s data and the external environment in which
the program will run. This will include internal names by which data files will be referenced,
data item names and names of executable logic procedures.

User-defined words may be composed from the characters "A" through "Z" (upper- and/or
lower-case), "0" through "9", dash ("-") and underscore (" "). User-defined words may
neither start nor end with hyphen or underscore characters.

Other programming language provide the programmer with a similar capability of creat-
ing their own words (names) for parts of a program; COBOL is somewhat unusual when
compared to other languages in that user-defined words may start with a digit.

With the exception of logic procedure names, which may consist entirely of nothing but
digits, user-defined words must contain at least one letter.

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 7

1.3.3. Case Insensitivity

All COBOL implementations allow the use of both upper and lowercase letters in program
coding. GNU COBOL is completely insensitive to the case used when writing reserved
words or user-defined names. Thus, "AAAAA", "aaaaa", "Aaaaa" and "AaAaA" are all the
same word as far as GNU COBOL is concerned.

The only time the case used does matter is within quoted character strings, where character
values will be exactly as coded.

By convention throughout this document, COBOL reserved words will be shown entirely
in UPPERCASE while those words that were created by a programmer will be represented
by tokens in mixed or lower case.

This isn’t a bad practice to use in actual programs, as it leads to programs where it is much
easier to distinguish reserved words from user-defined ones!

1.3.4. Readability of Programs

The most vociferous critics of COBOL frequently focus on the wordiness of the language,
often citing the case of a so-called "Hello World" program as the "proof" that COBOL is
so much more tedious to program in than more "modern" languages. This tedium is cited
as such a significant impact to programmer productivity that, in their opinions, COBOL
can’t go away quickly enough.

Here are two different "Hello World" applications — one written in Java and the second in
GNU COBOL. First, the Java version:

Class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World!");

}

}

And here is the same program, written in GNU COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. HelloWorld.

PROCEDURE DIVISION.

DISPLAY "Hello World!".

Both of the above programs could have been written on a single line, if desired, and both
languages allow a programmer to use (or not use) indentation as they see fit to improve
program readability. Sounds like a tie so far.

Let’s look at how much more "wordy" COBOL is than Java. Count the characters in the
two programs. The Java program has 95 (not counting carriage returns and any indenta-
tion). The COBOL program has 89 (again, not counting carriage returns and indentation)!
Technically, it could have been only 65 because the "IDENTIFICATION DIVISION." header

3 June 2014 Chapter 1 - Introduction



8 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

is actually optional. Clearly, "Hello World" doesn’t look any more concise in Java than it
does in COBOL.

Let’s look at a different problem. Surely a program that asks a user to input a positive
integer, generates the sum of all positive integers from 1 to that number and then prints
the result will be MUCH shorter and MUCH easier to understand when coded in Java than
in COBOL, right?

You can be the judge. First, the Java version:

import java.util.Scanner;

public class sumofintegers {

public static void main(String[] arg) {

System.out.println("Enter a positive integer");

Scanner scan=new Scanner(System.in);

int n=scan.nextInt();

int sum=0;

for (int i=1;i<=n;i++) {

sum+=i;

}

System.out.println("The sum is "+sum);

}

}

And now for the COBOL version:

IDENTIFICATION DIVISION.

PROGRAM-ID. SumOfIntegers.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 n BINARY-LONG.

01 i BINARY-LONG.

01 sum BINARY-LONG VALUE 0.

PROCEDURE DIVISION.

DISPLAY "Enter a positive integer"

ACCEPT n

PERFORM VARYING i FROM 1 BY 1 UNTIL i > n

ADD i TO sum

END-PERFORM

DISPLAY "The sum is " sum.

My familiarity with COBOL may be prejudicing my opinion, but it doesn’t appear to me
that the Java code is any simpler than the COBOL code. In case you’re interested in
character counts, the Java code comes in at 278 (not counting indentation characters). The
COBOL code is 298 (274 without the "IDENTIFICATION DIVISION." header).

Despite what you’ve seen here, the more complex the programming logic being implemented,
the more concise the Java code will appear to be, even compared to 2002-standard COBOL.

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 9

That conciseness comes with a price though — program code readability. Java (or C or C++
or C#) programs are generally intelligible only to trained programmers. COBOL programs
can, however, be quite understandable by non-programmers. This is actually a side-effect
of the "wordiness" of the language, where COBOL statements use natural English words to
describe their actions. This inherent readability has come in handy many times throughout
my career when I’ve had to learn obscure business (or legal) processes by reading the
COBOL program code that supports them.

The "modern" languages, like Java, also have their own "boilerplate" infrastructure
overhead that must be coded in order to write the logic that is necessary in the program.
Take for example the "public static void main(String[] arg)" and "import

java.util.Scanner;" statements. The critics tend to forget about this when they
criticize COBOL for it’s structural "overhead".

When it first was developed, COBOL’s easily-readable syntax made it profoundly different
from anything that had been seen before. For the first time, it was possible to specify logic in
a manner that was — at least to some extent — comprehensible even to non-programmers.
Take for example, the following code written in FORTRAN — a language developed only
a year before COBOL:

EXT = PRICE * IQTY

INVTOT = INVTOT + EXT

With its original limitation on the length of variable names (one- to six-character names
comprised of a letter followed by up to five letters and/or digits), it’s implicit rule that
variable were automatically created as real (floating-point) unless their name started with
a letter in the range I-N, and its use of algebraic notation to express actions being taken,
FORTRAN wasn’t a particularly readable language, even for programmers. Compare this
with the equivalent COBOL code:

MULTIPLY price BY quantity GIVING extended-amount

ADD extended-amount TO invoice-total

Clearly, even a non-programmer could at least conceptually understand what was going on!
Over time, languages like FORTRAN evolved more robust variable names, and COBOL
introduced a more formula-based syntactical capability for arithmetic operations, but FOR-
TRAN was never as readable as COBOL.

Because of its inherent readability, I would MUCH rather be handed an assignment to make
significant changes to a COBOL program about which I know nothing than to be asked to
do the same with a C, C++, C# or Java program.

Those that argue that it is too boring / wasteful / time-consuming / insulting (pick one) to
have to code a COBOL program "from scratch" are clearly ignorant of the following facts:

• Many systems have program-development tools available to ease the task of coding
programs; those tools that concentrate on COBOL are capable of providing templates
for much of the "overhead" verbiage of any program. . .

3 June 2014 Chapter 1 - Introduction



10 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

• Good programmers have — for decades — maintained their own skeleton "template"
programs for a variety of program types; simply load a template into a text editor and
you’ve got a good start to the program. . .

• Legend has it that there’s actually only been ONE program ever written in COBOL, and
all programs ever "written" thereafter were simply derivatives of that one. Although
this is clearly intended as a (probably) bad joke, it is nevertheless close to the very
simple truth that many programers"reuse" existing COBOL programs when creating
new ones. There’s certainly nothing preventing this from happening with programs
written in other languages, but it does seem to happen more in COBOL shops. It’s
ironic that "code reusability" is one of the arguments used to justify the existence of
the "modern" languages.

1.3.5. Divisions Organize Programs

COBOL programs are structured into four major areas of coding, each with its own purpose.
These four areas are known as divisions.

Each division may consist of a variety of sections and each section consists of one or more
paragraphs. A paragraph consists of sentences, each of which consists of one or more
statements.

This hierarchical structure of program components standardizes the composition of all
COBOL programs. Much of this manual describes the various divisions, sections, para-
graphs and statements that may comprise any COBOL program.

1.3.6. Copybooks

A ’Copybook ’ is a segment of program code that may be utilized by multiple programs simply
by having those programs use the "COPY" statement (see [COPY], page 40) to import that
code. This code may define files, data structures or procedural code.

Today’s current programming languages have a statement (usually, this statement is named
"import", "include" or "#include") that performs this same function. What makes the
COBOL copybook feature different than the "include" facility in newer languages, however,
is the fact that the "COPY" statement can edit the imported source code as it is being copied.
This capability makes copybook libraries extremely valuable to making code reusable.

1.3.7. Structured Data

A contiguous area of storage within the memory space of a program that may be refer-
enced, by name, in a COBOL program is referred to as a ’Data Item’. Other programming
languages use the term variable, property or attribute to describe the same thing.

COBOL introduced the concept of structured data. The principle of structured data in
COBOL is based on the idea of being able to group related and contiguously-allocated
data items together into a single aggregate data item, called a ’Group Item’. For example,
a 35-character ’Employee-Name’ group item might consist of a 20-character ’Last-Name’
followed by a 14-character ’First-Name’ and a 1-character ’Middle-Initial’.

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 11

A data item that isn’t itself formed from other data items is referred to in COBOL as an
’Elementary Item’. In the previous example, ’Last-Name’, ’First-Name’ and ’Middle-Initial’
are all elementary items.

1.3.8. Files

One of COBOLs strengths is the wide variety of data files it is capable of accessing. GNU
COBOL programs, like those created with other COBOL implementations, need to have the
structure of any files they will be reading and/or writing described to them. The highest-
level characteristic of a file’s structure is defined by specifying the organization of the file,
as follows:

"ORGANIZATION LINE SEQUENTIAL"

These are files with the simplest of all internal structures. Their contents are
structured simply as a series of identically- or differently-sized data records,
each terminated by a special end-of-record delimiter character. An ASCII line-
feed character (hexadecimal 0A) is the end-of-record delimiter character used by
any UNIX or pseudo-UNIX (MinGW, Cygwin, OSX) GNU COBOL build. A
truly native Windows build would use a carriage-return, line-feed (hexadecimal
0D0A) sequence.

Records must be read from or written to these files in a purely sequential
manner. The only way to read (or write) record number 100 would be to have
read (or written) records number 1 thru 99 first.

When the file is written to by a GNU COBOL program, the delimiter sequence
will be automatically appended to each data record as it is written to the file. A
"WRITE" (see [WRITE], page 479) to this type of file will be done as if a "BEFORE
ADVANCING 1 LINE" clause were specified on the "WRITE", if no "ADVANCING"

clause is coded.

When the file is read, the GNU COBOL runtime system will strip the trailing
delimiter sequence from each record. The data will be padded (on the right)
with spaces if the data just read is shorter than the area described for data
records in the program. If the data is too long, it will be truncated and the
excess will be lost.

These files should not be defined to contain any exact binary data fields because
the contents of those fields could inadvertently have the end-of-record sequence
as part of their values — this would confuse the runtime system when reading
the file, and it would interpret that value as an actual end-of-record sequence.

"LINE ADVANCING"

These are files with an internal structure similar to that of a line sequential file.
These files are defined (without an explicit "ORGANIZATION" specification) using
the "LINE ADVANCING" clause on their "SELECT" statement (see [SELECT],
page 73).

3 June 2014 Chapter 1 - Introduction



12 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

When this kind of file is written to by a GNU COBOL program, an end-of-
record delimiter sequence will be automatically added to each data record as it
is written to the file. A "WRITE" to this type of file will be done as if an "AFTER

ADVANCING 1 LINE" clause were specified on the "WRITE", if no "ADVANCING"

clause is coded.

Like line sequential files, these files should not be defined to contain any exact
binary data fields because the contents of those fields could inadvertently have
the end-of-record sequence as part of their values — this would confuse the
runtime system when reading the file, and it would interpret that value as an
actual end-of-record sequence.

"ORGANIZATION SEQUENTIAL"

These files also have a simple internal structure. Their contents are structured
simply as an arbitrarily-long sequence of data characters. This sequence of
characters will be treated as a series of fixed-length records simply by logically
splitting the sequence of characters up into fixed-length segments, each as long
as the maximum record size defined in the program. There are no special end-
of-record delimiter characters in the file and when the file is written to by a
GNU COBOL program, no delimiter sequence is appended to the data.

Records in this type of file are all the same physical length, except possibly
for the very last record in the file, which may be shorter than the others. If
variable-length logical records are defined to the program, the space occupied
by each physical record in the file will occupy the space described by the longest
record description in the program.

So, if a file contains 1275 characters of data, and a program defines the struc-
ture of that file as containing 100-character records, then the file contents will
consist of twelve (12) 100-character records with a final record containing only
75 characters.

It would appear that it should be possible to locate and process any record in
the file directly simply by calculating its starting character position based upon
the program-defined record size. Even so, however, records must be still be
read or written to these files in a purely sequential manner. The only way to
read (or write) record number 100 would be to have read (or written) records
number 1 thru 99 first.

When the file is read, the data is transferred into the program exactly as it
exists in the file. In the event that a short record is read as the very last record,
that record will be padded (to the right) with spaces.

Care must be taken that programs reading such a file describe records whose
length is exactly the same as that used by the program that created the file.
For example, the following shows the contents of a "SEQUENTIAL" file created
by a program that wrote five 6-character records to it. The "A", "B", . . .
values reflect the records that were written to the file:

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 13

‘AAAAAABBBBBBCCCCCCDDDDDDEEEEEE’

Now, assume that another program reads this file, but describes 10-character
records rather than 6. Here are the records that program will read:

‘AAAAAABBBB’
‘BBCCCCCCDD’
‘DDDDEEEEEE’

There may be times where this is exactly what you were looking for. More often
than not, however, this is not desirable behavior. Suggestion: use a copybook to
describe the record layouts of any file; this guarantees that multiple programs
accessing that file will "see" the same record sizes and layouts by coding a
"COPY" statement (see [COPY], page 40) to import the record layout(s) rather
than hand-coding them.

These files can contain exact binary data fields. This is possible because —
since there is no character sequence that constitutes an end-of-record delimiter
— the contents of record fields are irrelevant to the reading process.

"ORGANIZATION RELATIVE"

The contents of these files consist of a series of fixed-length data records prefixed
with a four-byte record header. The record header contains the length of the
data, in bytes. The byte-count does not include the four-byte record header.

Records in this type of file are all the same physical length. If variable-length
logical records are defined to the program, the space occupied by each physical
record in the file will occupy the maximum possible space, and the logical
record length field will contaoin the number of bytes of data in the record that
are actually in use.

This file organization was defined to accommodate either sequential or random
processing. With a "RELATIVE" file, it is possible to read or write record 100
directly, without having to have first read or written records 1-99. The GNU
COBOL runtime system uses the program-defined maximum record size to
calculate a relative byte position in the file where the record header and data
begin, and then transfers the necessary data to or from the program.

When the file is written by a GNU COBOL program, no delimiter sequence is
appended to the data, but a record-length field is added to the beginning of
each physical record.

When the file is read, the data is transferred into the program exactly as it
exists in the file.

Care must be taken that programs reading such a file describe records whose
length is exactly the same as that used by the programs that created the file.
It won’t end well if the GNU COBOL runtime library interprets a four-byte

3 June 2014 Chapter 1 - Introduction



14 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

ASCII character string as a record length when it transfers data from the file
into the program!

Suggestion: use a copybook to describe the record layouts of any file; this
guarantees that multiple programs accessing that file will "see" the same record
sizes and layouts by coding a "COPY" statement (see [COPY], page 40) to import
the record layout(s) rather than hand-coding them.

These files can contain exact binary data fields. The contents of record fields
are irrelevant to the reading process as there is no end-of-record delimiter.

"ORGANIZATION INDEXED"

This is the most advanced file structure available to GNU COBOL programs.
It’s not possible to describe the physical structure of such files because that
structure will vary depending upon which advanced file-management facility
was included into the GNU COBOL build you will be using (Berkeley Database
[BDB], VBISAM, etc.). We will — instead — discuss the logical structure of
the file.

There will be multiple structures stored for an "INDEXED" file. The first will
be a data component, which may be thought of as being similar to the internal
structure of a relative file. Data records may not, however, be directly accessed
by their record number as would be the case with a relative file, nor may they
be processed sequentially by their physical sequence in the file.

The remaining structures will be one or more index components. An index
component is a data structure that (somehow) enables the contents of a field,
called a primary key, within each data record (a customer number, an employee
number, a product code, a name, etc.) to be converted to a record number
so that the data record for any given primary key value can be directly read,
written and/or deleted. Additionally, the index data structure is defined in such
a manner as to allow the file to be processed sequentially, record-by-record, in
ascending sequence of the primary key field values. Whether this index structure
exists as a binary-searchable tree structure (btree), an elaborate hash structure
or something else is pretty much irrelevant to the programmer — the behavior
of the structure will be as it was just described. The actual mechanism used
will depend upon the advanced file-management package was included into your
GNU COBOL implementation when it was built.

The runtime system will not allow two records to be written to an indexed file
with the same primary key value.

The capability exists for an additional field to be defined as what is known as
an alternate key. Alternate key fields behave just like primary keys, allowing
both direct and sequential access to record data based upon the alternate key
field values, with one exception. That exception is the fact that alternate keys
may be allowed to have duplicate values, depending upon how the alternate key
field is described to the GNU COBOL compiler.

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 15

There may be any number of alternate keys, but each key field comes with
a disk space penalty as well as an execution time penalty. As the number of
alternate key fields increases, it will take longer and longer to write and/or
modify records in the file.

These files can contain exact binary data fields. The contents of record fields
are irrelevant to the reading process as there is no end-of-record delimiter.

All files are initially described to a GNU COBOL program using a "SELECT" statement (see
[SELECT], page 73). In addition to defining a name by which the file will be referenced
within the program, the "SELECT" statement will specify the name and path by which the
file will be known to the operating system along with its organization, locking and sharing
attributes.

A file description in the "FILE SECTION" (see [FILE SECTION], page 93) will define the
structure of records within the file, including whether or not variable-length records are
possible and — if so — what the minimum and maximum length might be. In addition,
the file description entry can specify file I/O block sizes.

1.3.9. Table Handling

Other programming languages have arrays, COBOL has tables. They’re basically the same
thing. There are two special statements that exist in the COBOL language — "SEARCH"

(see [SEARCH], page 440) and "SEARCH ALL" (see [SEARCH ALL], page 442) — that make
finding data in a table easy.

The first can search a table sequentially, stopping only when either a table entry matching
one of any number of search conditions is found, or when all table entries have been checked
against the search criteria and none matched any of those criteria.

The second can perform an extremely fast search against a table sorted by and searched
against a key field contained in each table entry. The algorithm used for such a search is
a binary search (also known as a half-interval search). This algorithm ensures that only
a small number of entries in the table need to be checked in order to find a desired entry
or to determine that the desired entry doesn’t exist in the table. The larger the table,
the more effective this search becomes. For example, a binary search of a table containing
32,768 entries will be able to locate a particular entry or determine the entry doesn’t exist
by looking at no more than fifteen (15) entries! The algorithm is explained in detail in the
documentation of the "SEARCH ALL" statement (see [SEARCH ALL], page 442).

Finally, COBOL has the ability to perform in-place sorts of the data that is found in a
table.

1.3.10. Sorting and Merging Data

The COBOL language includes a powerful "SORT" statement (see [SORT], page 453) that
can sort large amounts of data according to arbitrarily complex key structures. This data
may originate from within the program or may be contained in one or more external files.

3 June 2014 Chapter 1 - Introduction



16 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

The sorted data may be written automatically to one or more output files or may be
processed, record-by-record in the sorted sequence.

A companion statement — "MERGE" (see [MERGE], page 411) — can combine the contents
of multiple files together, provided those files are all pre-sorted in a similar manner according
to the same key structure. The resulting output will consist of the contents of all of the
input files, merged together and sequenced according to the common key structure(s). The
output generated by a "MERGE" statement may be written automatically to one or more
output files or may be processed internally by the program.

A special form of the "SORT" statement also exists just to sort the data that resides in a
table. This is particularly useful if you wish to use "SEARCH ALL" against the table.

1.3.11. String Manipulation Features

There have been programming languages designed specifically for the processing of text
strings, and there have been programming languages designed for the sole purpose of per-
forming high-powered numerical computations. Most programming languages fall some-
where in the middle.

COBOL is no exception, although it does include some very powerful string manipulation
capabilities; GNU COBOL actually has even more string-manipulation capabilities than
many other COBOL implementations. The following summarizes GNU COBOL’s string-
processing capabilities:

Concatenate two or more strings:

• "CONCATENATE" intrinsic function (see [CONCATENATE], page 254).

• "STRING" statement (see [STRING], page 463).

Conversion of a numeric time or date to a formatted character string:

• "LOCALE-TIME" intrinsic function (see [LOCALE-TIME], page 281).

• "LOCALE-DATE" intrinsic function (see [LOCALE-DATE], page 280).

Convert a binary value to its corresponding character in the program’s characterset:

• "CHAR" intrinsic function (see [CHAR], page 252). Add 1 to argument before invoking
the function; the description of the "CHAR" intrinsic function presents a technique
utilizing the "MOVE" statement that will accomplish the same thing without the need
of adding 1 to the numeric argument value first.

Convert a character string to lower-case:

• "LOWER-CASE" intrinsic function (see [LOWER-CASE], page 285).

• "C$TOLOWER" built-in system subroutine (see [C$TOLOWER], page 531).

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 17

• "CBL_TOLOWER" built-in system subroutine (see [CBL TOLOWER], page 547).

Convert a character string to upper-case:

• "UPPER-CASE" intrinsic function (see [UPPER-CASE], page 334).

• "C$TOUPPER" built-in system subroutine (see [C$TOUPPER], page 531).

• "CBL_TOUPPER" built-in system subroutine (see [CBL TOUPPER], page 547).

Convert a character string to only printable characters:

• "C$PRINTABLE" built-in system subroutine (see [C$PRINTABLE], page 530).

Convert a character to its numeric value in the program’s characterset:

• "ORD" intrinsic function (see [ORD], page 307). Subtract 1 from the result; the descrip-
tion of the "ORD" intrinsic function presents a technique utilizing the "MOVE" statement
that will accomplish the same thing without the need of adding 1 to the numeric ar-
gument value first.

Count occurrences of substrings in a larger string:

• "INSPECT" statement (see [INSPECT], page 405) with the "TALLYING" clause.

Decode a formatted numeric string back to a numeric value:

• "NUMVAL" intrinsic function (see [NUMVAL], page 304).

• "NUMVAL-C" intrinsic function (see [NUMVAL-C], page 305).

Determine the length of a string or data-item capable of storing strings:

• "LENGTH" intrinsic function (see [LENGTH], page 277).

• "BYTE-LENGTH" intrinsic function (see [BYTE-LENGTH], page 251).

Extract a substring from a string based on its starting character position and length:

• Use of a reference modifier on the string field - See [Reference Modifiers], page 213.

Format a numeric item for output, including thousands-separators ("," in the USA), cur-
rency symbols ("$" in the USA), decimal points, credit/Debit Symbols, Leading Or Trailing
Sign Characters:

• "MOVE" statement (see [MOVE], page 414) with picture-symbol editing applied to the
receiving field:

Justification (left, right or centered) of a string field:

3 June 2014 Chapter 1 - Introduction



18 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

• "C$JUSTIFY" built-in system subroutine (see [C$JUSTIFY], page 528).

Monoalphabetic substitution of one or more characters in a string with different characters:

• "INSPECT" statement (see [INSPECT], page 405) with the "CONVERTING".

• "TRANSFORM" statement (see [TRANSFORM], page 473).

• "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 324).

• "SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 325).

Parse a string, breaking it up into substrings based upon one or more delimiting character
sequences1:

• "UNSTRING" statement (see [UNSTRING], page 475).

Removal of leading or trailing spaces from a string:

• "TRIM" intrinsic function (see [TRIM], page 333).

Substitution of a single substring with another of the same length, based upon the sub-
strings starting character position and length:

• "MOVE" statement (see [MOVE], page 414) with a reference modifier on the "receiving"
field (see [Reference Modifiers], page 213).

Substitution of one or more substrings in a string with replacement substrings of the same
length, regardless of where they occur:

• "INSPECT" statement (see [INSPECT], page 405) with a "REPLACING" clause.

• "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 324).

• "SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 325).

Substitution of one or more substrings in a string with replacement substrings of a poten-
tially different length, regardless of where they occur:

• "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 324).

• "SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 325).

1.3.12. Screen Formatting Features

The COBOL2002 standard formalizes extensions to the COBOL language that allow for the
definition and processing of text-based screens, as is a typical function on mainframe and

1 These delimiters may be single characters, multiple-character strings or multiple consecutive occurrences of
either

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 19

midframe computers as well as on many point-of-sale (i.e. "cash register") systems. GNU
COBOL implements virtually all the screen-handling features described by COBOL2002.

These features allow fields to be displayed at specific row/column positions, various colors
and video attributes to be assigned to screen fields and the pressing of specific function keys
(F1, F2, . . . ) to be detectable. All of this takes place through the auspices of the "SCREEN
SECTION" (see [SCREEN SECTION], page 115) and special formats of the "ACCEPT" state-
ment (see [ACCEPT], page 338) and the "DISPLAY" statement (see [DISPLAY], page 370).

The COBOL2002 standard, and therefore GNU COBOL, only covers textual user interface
(TUI) screens (those comprised of ASCII characters presented using a variety of visual
attributes) and not the more-advanced graphical user interface (GUI) screen design and
processing capabilities built into most modern operating systems. There are subroutine-
based packages available that can do full GUI presentation —most of which may be called by
GNU COBOL programs, with a moderate research time investment (Tcl/Tk, for example)
— but none are currently included with GNU COBOL.

1.3.12.1. A Sample Screen

A Sample Screen Produced by a GNU COBOL Program:

The above screen was produced by the GNU COBOL Interactive Compiler, or GCic. See
the "GNU COBOL Sample Programs (gnucobsp)" documentation for the source code to
this program.

3 June 2014 Chapter 1 - Introduction



20 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Screens are defined in the screen section of the data division. Once defined, screens are used
at run-time via the "ACCEPT" and "DISPLAY" statements.

1.3.12.2. Color Palette and Video Attributes

GNU COBOL supports the following visual attribute specifications in the "SCREEN

SECTION" (see [SCREEN SECTION], page 115):

Color

Eight (8) different colors may be specified for both the background (screen)
and foreground (text) color of any row/column position on the screen. Colors
are specified by number, although a copybook supplied with all GNU COBOL
distributions ("screenio.cpy") defines COB-COLOR-xxxxxx names for the var-
ious colors so they may be specified as a more meaningful name rather than
a number. The eight colors, by number, with the constant nams defined in
screenio.cpy, are as follows:

0. Black: COB-COLOR-BLACK

1. Blue: COB-COLOR-BLUE

2. Green: COB-COLOR-GREEN

3. Cyan (Turquoise): COB-COLOR-CYAN

4. Red: COB-COLOR-RED

5. Magenta: COB-COLOR-MAGENTA

6. Yellow: COB-COLOR-YELLOW

7. White: COB-COLOR-WHITE

Text Brightness

There are three possible brightness levels supported for text — lowlight (dim),
normal and highlight (bright). Not all GNU COBOL implementations will
support all three (some treat lowlight the same as normal). The deciding factor
as to whether two or three levels are supported lies with the version of the
"curses" package that is being used. This is a utility screen-IO package that
is included into the GNU COBOL run-time library when the GNU COBOL
software is built.

As a general rule of thumb, Windows implementations support two levels while
Unix ones support all three.

Blinking

This too is a video feature that is dependent upon the "curses" package built
into your version of GNU COBOL. If blinking is enabled in that package, text
displayed in fields defined in the screen section as being blinking will endlessly

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 21

cycle between the brightest possible setting (highlight) and an "invisible" set-
ting where the text color matches that of the field background color. AWindows
build, which generally uses the "pcurses" package, will uses a brighter-than-
normal background color to signify "blinking".

Reverse Video

This video attribute simply swaps the foreground and background colors and
display options.

Field Outlining

It is possible, if supported by the "curses" package being used, to draw borders
on the top, left and/or bottom edges of a field.

Secure Input

If desired, screen fields used as input fields may defined as "secure" fields, where
each input character (regardless of what was actually typed) will appear as an
asterisk (*) character. The actual character whose key was pressed will still be
stored into the field in the program, however. This is very useful for password
or account number fields.

Prompt Character

Input fields may have any character used as a fill character. These fill characters
provide a visual indication of the size of the input field, and will automatically
be transformed into spaces when the input field is propcessed by the program.
If no such character is defined for an input field, an underscore (" ") will be
assumed.

The following is a sample of the GNU COBOL color Palette, showing all possible combina-
tions of the various video attributes. This example was prepared on a Macintosh running
OSX Mavericks (10.9). Blinking works — the screen snapshot shows things in mid blink,
when the text and background colors are momentarily the same. Unfortunately, only two
screen intensities are available (like Windows, the "lowlight" setting is the same as the
default).

3 June 2014 Chapter 1 - Introduction



22 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

The GNU COBOL Color Palette and Video Options::

The rows of each block are numbered with the background color while columns are numbered
with the foreground color.

See Section “Colors” in GNU COBOL Sample Programs, for a source and cross-reference
listing of the program (Colors.cbl) that produced the above screen.

1.3.13. Report Writer Features

GNU COBOL includes an implementation of the Report Writer Control System, or RWCS.
This is a standardized, optional add-on feature to the COBOL language which automates
much of the mechanics involved in the generation of printed reports by:

1. Controlling the pagination of reports, including:

A. The automatic production of a one-time notice on the first page of the report
(report heading).

B. The production of zero or more header lines at the top of every page of the report
(page heading).

C. The production of zero or more footer lines at the bottom of every page of the
report (page footing).

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 23

D. The automatic numbering of printed pages.

E. The formatting of those report lines that make up the main body of the report
(detail).

F. Full awareness of where the "pen" is about to "write" on the current page, auto-
matically forcing an eject to a new page, along with the automatic generation of
a page footer to close the old page and/or a page header to begin the new one.

G. The production of a one-time notice at the end of the last page of a report (report
footing).

2. Performing special reporting actions based upon the fact that the data being used to
generate the report has been sorted according to one or more key fields:

A. Automatically suppressing the presentation of one or more fields of data from
the detail group when the value(s) of the field(s) duplicate those of the previously
generated detail group. Fields such as these are referred to as group-indicate fields.

B. Automatically causing suppressed detail group-indicate fields to re-appear should
a detail group be printed on a new page.

C. Recognizing when control fields on the report — fields tied to those that were used
as "SORT" statement (see [SORT], page 453) keys — have changed. This is known
as a control break. The RWCS can automatically perform the following reporting
actions when a control break occurs:

• Producing a footer, known as a control footing after the detail lines that shared
the same old value for the control field.

• Producing a header, known as a control heading before the detail lines that
share the same new value for the control field.

3. Perform data summarization, as follows:

A. Automatically generating subtotals in control and/or report footings, summarizing
values of any fields in the detail group.

B. Automatically generating crossfoot totals in detail groups. These would be sums
of two or more values presented in the detail group.

The "REPORT SECTION" (see [REPORT SECTION], page 107) documentation explores the
description of reports and the "PROCEDURE DIVISION" (see [PROCEDURE DIVISION],
page 201) chapter documents the various language statements that actually produce re-
ports. Before reading these, you might find it helpful to read [Report Writer Usage Notes],
page 483, which is dedicated to putting the pieces together for you.

1.3.14. Data Initialization

There are three ways in which data division data gets initialized.

1. When a program or subprogram is first executed, much of the data in it’s data division
will be initialized as follows:

3 June 2014 Chapter 1 - Introduction



24 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

• Alphanumeric and alphabetic (i.e. text) data items will be initialized to "SPACES".

• Numeric data items will be initialized to a value of "ZERO".

• Data items with an explicit "VALUE" (see [VALUE], page 197) clause in their
definition will be initialized to that specific value.

The various sections of the data division each have their own rules as to when the
actions described above will occur — consult the documentation on those sections for
additional information.

These default initialization rules can vary quite substantially from one COBOL imple-
mentation to another. For example, it is quite common for data division storage to
be initialized to all binary zeros except for those data items where "VALUE" clauses
are present. Take care when working with applications originally developed for an-
other COBOL implementation to ensure that GNU COBOL’s default initialization
rules won’t prove disruptive.

2. A programmer may use the "INITIALIZE" statement (see [INITIALIZE], page 399) to
intitialize any group or elementary data item at any time. This statement provides far
more initialization options than just the simple rules stated above.

3. When the "ALLOCATE" statement (see [ALLOCATE], page 356) statement is used to
allocate a data item or to simply allocate an area of storage of a size specified on
the "ALLOCATE", that allocation may occur with or without initialization, as per the
programmer’s needs.

1.3.15. Syntax Diagram Conventions

Syntax of the GNU COBOL language will be described in special "syntax diagrams" using
the following syntactical-description techniques:

MANDATORY-RESERVED-WORD

~~~~~~~~~~~~~~~~~~~~~~~

Reserved words of the COBOL language will appear in UPPERCASE. When
they appear underlined, as this one is, they are required reserved words.

OPTIONAL-RESERVED-WORD

When reserved words appear without underlining, as this one is, they are op-
tional; such reserved words are available in the language syntax merely to im-
prove readability — their presence or absence has no effect upon the program.

ABBREVIATION

~~~~

When only a portion of a reserved word is underlined, it indicates that the word
may either be coded in its full form or may be abbreviated to the portion that
is underlined.

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 25

substitutable-items

Generic terms representing user-defined substitutable items will be shown en-
tirely in lowercase in syntax diagrams. When such items are referenced in text,
they will appear as <substitutable-items>.

Complex-Syntax-Clause

Items appearing in Mixed Case within a syntax diagram represent complex
clauses of other syntax elements that may appear in that position. Some
COBOL syntax gets quite complicated, and using a convention such as this
significantly reduces the complexity of a syntax diagram. When such items are
referenced in text, they will appear as <<Complex-Syntax-Clause>>.

[ ]

Square bracket metacharacters on syntax diagrams document language syntax
that is optional. The [] characters themselves should not be coded. If a syntax
diagram contains "a [b] c", the "a" and "c" syntax elements are mandatory
but the "b" element is optional.

|

Vertical bar metacharacters on syntax diagrams document simple choices. The
| character itself should not be coded. If a syntax diagram contains "a|b|c",
exactly one of the items "a", "b" or "c" must be selected.

{ xxxxxx }

{ yyyyyy }

{ zzzzzz }

A vertical list of items, bounded by multiple brace characters, is another way
of signifying a choice between a series of items where exactly one item must be
selected. This form is used to show choices when one or more of the selections
is more complex than just a single word, or when there are too many choices
to present horizontally with "|" metacharacters.

| xxxxxx |

| yyyyyy |

| zzzzzz |

A vertical list of items, bounded by multiple vertical bar characters, signifies
a choice between a series of items where one or more of the choices could be
selected.

...

The ... metacharacter sequence signifies that the syntax element immediately
preceeding it may be repeated. The ... sequence itself should not be coded. If
a syntax diagram contains "a b... c", syntax element "a" must be followed

3 June 2014 Chapter 1 - Introduction



26 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

by at least one "b" element (possibly more) and the entire sequence must be
terminated by a "c" syntax element.

{ }

The braces ({}) metacharacters may be used to group a sequence of syntax ele-
ments together so that they may be treated as a single entity. The {} characters
themselves should not be coded. These are typically used in combination with
the "|" or "..." metacharacters.

$*^()-+=:"’<,>./

Any of these characters appearing within a syntax diagram are to be interpreted
literally, and are characters that must be coded — where allowed — in the
statement whose format is being described. Note that a "." character is a
literal character that must be coded on a statement whereas a "..." symbol is
the metacharacter sequence described above.

1.3.16. Format of Program Source Lines

Prior to the COBOL2002 standard, source statements in COBOL programs were structured
around 80-column punched cards. This means that each source line in a COBOL program
consisted of five different "areas", defined by their column number(s).

As of the COBOL2002 standard, a second mode now exists for COBOL source code state-
ments — in this mode of operation, COBOL statements may each be up to 255 characters
long, with no specific requirements as to what should appear in which columns.

Of course, in keeping with the long-standing COBOL tradition of maintaining backwards
compatibility with older standards, programmers (and, of course, compliant COBOL com-
pilers) are capable of working in either mode. It is even possible to switch back and forth
in the same program. The terms ’Fixed Format Mode’ and ’Free Format Mode’ are used to
refer to these two modes of source code formatting.

The GNU COBOL compiler (cobc) supports both of these source line format modes, de-
faulting to Fixed Format Mode lacking any other information.

The compiler can be instructed to operate in either mode in any of the following four ways:

1. Using a compiler option switch — use the "-fixed" switch to start in Fixed Format
Mode (remember that this is the default) or the "-free" switch to start in Free Format
Mode.

2. You may use the "SOURCEFORMAT AS FIXED" and "SOURCEFORMAT AS FREE" clauses of
the ">>SET" CDF directive (see [>>SET], page 49) within your source code to switch
to Fixed or Free Format Mode, respectively.

3. You may use the ">>FORMAT IS FIXED" and "FORMAT IS FREE" clauses of the
">>DEFINE" CDF directive (see [>>DEFINE], page 45) within your source code to
switch to Fixed or Free Format Mode, respectively.

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 27

4. You may use the ">>SOURCE" CDF directive (see [>>SOURCE], page 50) to switch to
Free Format Mode (">>SOURCE FORMAT IS FREE") or Fixed Format Mode (">>SOURCE
FORMAT IS FIXED".

Using methods 2-4 above, you may switch back and forth between the two formats at will.

The last three options above are all equivalent; all three are supported by GNU COBOL
so that source code compatibility may be maintained with a wide variety of other COBOL
implementations. With all three, if the compiler is currently in Fixed Format Mode, the
">>" must begin in column 8 or beyond, provided no part of the directive extends past
column 72. If the compiler is currently in Free Format Mode, the ">>" may appear in any
column, provided no part of the directive extends past column 255.

Depending upon which source format mode the compiler is in, you will need to follow various
rules for the format mode currently in effect. These rules are presented in the upcoming
paragraphs.

The following discussion presents the various components of every GNU COBOL source
line record when the compiler is operating in Fixed Format Mode. Remember that this is
the default mode for the GNU COBOL compiler.

1-6 - Sequence Number Area

Historically, back in the days when punched-cards were used to submit COBOL
program source to a COBOL compiler, this part of a COBOL statement was
reserved for a six-digit sequence number. While the contents of this area are
ignored by COBOL compilers, it existed so that a program actually punched
on 80-character cards could — if the card deck were dropped on the floor —
be run through a card sorter machine and restored to it’s proper sequence. Of
course, this isn’t necessary today; if truth be told, it hasn’t been necessary for
a long time.

See [Marking Changes in Programs], page 579, for discussion of a valuable use
to which the sequence number area may be put today.

7 - Indicator Area

Column 7 serves as an indicator in which one of five possible values will appear
— space, "D" (or "d"), "-" (dash), "/" or "*". The meanings of these characters
are as follows:

space

No special meaning — this is the normal character that will appear
in this area.

D/d

3 June 2014 Chapter 1 - Introduction



28 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

The line contains a valid GNU COBOL statement that is normally
treated as a comment unless the program is being compiled in de-
bugging mode.

*

The line is a comment.

/

The line is a comment that will also force a page eject in the com-
pilation listing. While GNU COBOL will honor such a line as a
comment, it will not form-feed any generated listing.

-

The line is a continuation of the previous line. These are needed
only when an alphanumeric literal (quoted character string), re-
served word or user-defined word are being split across lines.

8-11 - Area "A"

Language DIVISION, SECTION and paragraph section headers must begin in
Area A, as must the level numbers 01, 77 in data description entries and the
"FD" and "SD" file and SORT description headers.

12-72 - Area "B"

All other COBOL programming language components are coded in these
columns.

73-80 - Program Name Area

This is another obsolete area of COBOL statements. This part of every state-
ment also hails back to the day when programs were punched on cards; it was
expected that the name of the program (or at least the first 8 characters of it)
would be punched here so that — if a dropped COBOL source deck contained
more than one program — that handy card sorter machine could be used to first
separate the cards by program name and then sort them by sequence number.
Today’s COBOL compilers (including GNU COBOL) simply ignore anything
past column 72.

See [Marking Changes in Programs], page 579, for discussion of a valuable use
to which the program name area may be put today.

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 29

1.3.17. Program Structure� �
Complete GNU COBOL Program Syntax
 	

[ IDENTIFICATION DIVISION. ]

~~~~~~~~~~~~~~~~~~~~~~~

PROGRAM-ID|FUNCTION-ID. name-1 [ Program-Options ] .

~~~~~~~~~~ ~~~~~~~~~~~

[ ENVIRONMENT DIVISION. ]

~~~~~~~~~~~ ~~~~~~~~

[ CONFIGURATION SECTION. ]

~~~~~~~~~~~~~ ~~~~~~~

[ SOURCE-COMPUTER. Compilation-Computer-Specification . ]

~~~~~~~~~~~~~~~

[ OBJECT-COMPUTER. Execution-Computer-Specification . ]

~~~~~~~~~~~~~~~

[ REPOSITORY. Function-Specification... . ]

~~~~~~~~~~

[ SPECIAL-NAMES. Program-Configuration-Specification . ]

~~~~~~~~~~~~~

[ INPUT-OUTPUT SECTION. ]

~~~~~~~~~~~~ ~~~~~~~

[ FILE-CONTROL. General-File-Description... . ]

~~~~~~~~~~~~

[ I-O-CONTROL. File-Buffering-Specification... . ]

~~~~~~~~~~~

[ DATA DIVISION. ]

~~~~~~~~~~~~~

[ FILE SECTION. Detailed-File-Description... . ]

~~~~~~~~~~~~

[ WORKING-STORAGE SECTION. Permanent-Data-Definition... . ]

~~~~~~~~~~~~~~~ ~~~~~~~

[ LOCAL-STORAGE SECTION. Temporary-Data-Definition... . ]

~~~~~~~~~~~~~ ~~~~~~~

[ LINKAGE SECTION. Subprogram-Argument-Description... . ]

~~~~~~~ ~~~~~~~

[ REPORT SECTION. Report-Description... . ]

~~~~~~ ~~~~~~~

[ SCREEN SECTION. Screen-Layout-Definition... . ]

~~~~~~ ~~~~~~~

PROCEDURE DIVISION [ { USING Subprogram-Argument... } ]

~~~~~~~~~ ~~~~~~~~ { ~~~~~ }

{ CHAINING Main-Program-Argument... }

~~~~~~~~

3 June 2014 Chapter 1 - Introduction



30 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

[ RETURNING identifier-1 ] .

[ DECLARATIVES. ] ~~~~~~~~~

~~~~~~~~~~~~

[ Event-Handler-Routine... . ]

[ END DECLARATIVES. ]

~~~ ~~~~~~~~~~~~

General-Program-Logic

[ Nested-Subprogram... ]

[ END PROGRAM|FUNCTION name-1 ]

~~~ ~~~~~~~ ~~~~~~~~

————————————————————————————————————————

Each program consists of up to four ’Divisions’ (major groupings of sections, paragraphs and
descriptive or procedural coding that all relate to a common purpose), named Identification,
Environment, Data and Procedure.

1. Not all divisions are needed in every program, but they must be specified in the order
shown when they are used.

2. The following points pertain to the identification division

• The "IDENTIFICATION DIVISION." header is always optional.

3. The following points pertain to the environment division:

• If both optional sections of this division are coded, they must be coded in the
sequence shown.

• Each of these sections consists of a series of specific paragraphs
("SOURCE-COMPUTER" and "OBJECT-COMPUTER", for example). Each of
these paragraphs serves a specific purpose. If no code is required for the purpose
one of the paragraphs serves, the entire paragraph may be omitted.

• If none of the paragraphs within one of the sections are coded, the section header
itself may be omitted.

• The paragraphs within each section may only be coded in that section, but may
be coded in any order.

• If none of the sections within the environment division are coded, the
"ENVIRONMENT DIVISION." header itself may be omitted.

4. The following points pertain to the data division:

• The data division consists of six optional sections — when used, those sections
must be coded in the order shown in the syntax diagram.

• Each of these sections consists of code which serves a specific purpose. If no code is
required for the purpose one of those sections serves, the entire section, including
it’s header, may be omitted.

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 31

• If none of the sections within the data division are coded (a highly unlikely, but
theoretically possible circumstance), the "DATA DIVISION." header itself may be
omitted.

5. The following points pertain to the procedure division:

• As with the other divisions, the procedure division may consist of sections and
those sections may — in turn — consist of paragraphs. Unlike the other divisions,
however, section and paragraph names are defined by the programmer, and there
may not be any defined at all if the programmer so wishes.

• Each Event-Handler-Routine will be a separate section devoted to trapping a par-
ticular run-time event. If there are no such sections coded, the "DECLARATIVES."
and "END DECLARATIVES." lines may be omitted.

6. A single file of COBOL source code may contain:

• A portion of a program; these files are known as copybooks

• A single program. In this case, the "END PROGRAM" or "END FUNCTION" statement
is optional.

• Multiple programs, separated from one another by "END PROGRAM" or "END

FUNCTION" statements. The final program in such a source code file need not
have an "END PROGRAM" or "END FUNCTION" statement.

7. Subprogram "B" may be nested inside program "A" by including program B’s source
code at the end of program A’s procedure division without an intervening "END

PROGRAM A." or "END FUNCTION A." statement. For now, that’s all that will be said
about nesting. See [Independent vs Contained vs Nested Subprograms], page 557, for
more information.

8. Regardless of how many programs comprise a single GNU COBOL source file, only a
single output executable program will be generated from that source file when the file
is compiled.

1.3.18. Comments

The following information describes how comments may be imbedded into GNU COBOL
program source to provide documentation.

Comment Type Source Mode — Description
Blank Lines FIXED — Blank lines may be inserted as desired.

FREE — Blank lines may be inserted as desired.

3 June 2014 Chapter 1 - Introduction



32 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Full-line
comments

FIXED — An entire source line will be treated as a comment
(and will be ignored by the compiler) by coding an asterisk
("*") in column seven (7).

FREE — An entire source line will be treated as a comment
(and will be ignored by the compiler) by coding the sequence
"*>", starting in any column, as the first non-blank characters
on the line.

Full-line
comments with
form-feed

FIXED — An entire source line will be treated as a comment
by coding a slash ("/") in column seven (7). Many COBOL
compilers will also issue a form-feed in the program listing so
that the "/" line is at the top of a new page. The GNU COBOL
compiler does not support this form-feed behavior.

The GNU COBOL Interactive Compiler, or GCic, does sup-
port this form-feed behavior when it generates program source
listings! See Section “GCic” in GNU COBOL Sample Pro-
grams, for the source and cross-reference listing (produced by
GCic) of this program — you can see the effect of "/" there.

FREE — There is no Free Source Mode equivalent to "/".

Partial-line
comments

FIXED — Any text following the character sequence "*>" on a
source line will be treated as a comment. The "*" must appear
in column seven (7) or beyond.

FREE — Any text following the character sequence "*>" on a
source line will be treated as a comment. The "*" may appear
in any column.

Comments that
may be treated
as code, typi-
cally for debug-
ging purposes

FIXED — By coding a "D" in column 7 (upper- or lower-case),
an otherwise valid GNU COBOL source line will be treated as
a comment by the compiler.

FREE — By specifying the character sequence ">>D" (upper-
or lower-case) as the first non-blank characters on a source line,
an otherwise valid GNU COBOL source line will be treated as
a comment by the compiler.

Debugging statements may be compiled either by specifying
the "-fdebugging-line" switch on the GNU COBOL com-
piler or by adding the "WITH DEBUGGING MODE" clause to the
"SOURCE-COMPUTER" paragraph.

1.3.19. Literals

Literals are constant values that will not change during the execution of a program. There
are two fundamental types of literals — numeric and alphanumeric.

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 33

1.3.19.1. Numeric Literals

A numeric literal is a numeric constant which may be used as an array subscript, as a value
in arithmetic expressions, or in any procedural statement where a numeric value may be
used. Numeric literals may take any of the following forms:

• Integers such as 1, 56, 2192 or -54.

• Non-integer fixed point values such as 1.317 or -2.95.

• Floating-point values using "Enn" notation such as 9.92E25, representing 9.92 x 10^25
(10 raised to the 25th power) or 5.7E-14, representing 5.7 x 10^-14 (10 raised to the
-14th power). Both the mantissa (the number before the E) and the exponent (the
number after the E) may be explicitly specified as positive (with a +), negative (with a
-) or unsigned (and therefore implicitly positive). A floating-point literal’s value must
be within the range -1.7 x 10^308 to +1.7 x 10^308 with no more than 15 decimal digits
of precision.

• Hexadecimal numeric literals such as H"1F" (31 decimal), h’22’ (34 decimal) or
H’DEAD’ (57005 decimal). The H character may either be upper- or lower-case and
either single quote (’) or double-quote (") characters may be used in a hexadecimal
literal, provided both aren’t used in the same literal. Hexadecimal numeric literals are
limited to a maximum of sixteen hexadecimal digits (a 64-bit value).

1.3.19.2. Alphanumeric Literals

An alphanumeric literal is a character string suitable for display on a computer screen,
printing on a report, transmission through a communications connection or storage in al-
phanumeric or alphabetic data items.

An alphanumeric literal is not valid for use in arithmetic expressions unless it is first con-
verted to it’s numeric computational equivalent; there are three numeric conversion intrin-
sic functions built into GNU COBOL that can perform this conversion — "NUMVAL" (see
[NUMVAL], page 304), "NUMVAL-C" (see [NUMVAL-C], page 305) and "NUMVAL-F" (see
[NUMVAL-F], page 306).

Alphanumeric literals may take any of the following forms:

• A sequence of characters enclosed by a pair of single-quote (’) or double-quote (")
characters constitutes a string literal. The double-quote character (") may be used as a
data character within an apostrophe-delimited string literal, and an apostrophe may be
used as a data character within a double-quote-delimited string literal. If an apostrophe
character must be included as a data character within an apostrophe-delimited string
literal, express that character as two consecutive apostrophes (”). If a double-quote
character must be included as a data character within a double-quote-delimited string
litaral, express that character as two consecutive double-quotes ("").

• A literal formed according to the same rules as for a string literal (above), but prefixed
with the letter "Z" (upper- or lower-case) constitutes a zero-delimited string literal.
These literals differ from ordinary string literals in that they will be explicitly ter-

3 June 2014 Chapter 1 - Introduction



34 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

minated with a byte of hexadecimal value 00. These ’Zero-Delimited Alphanumeric
Literals’ are easily passable to C subprograms, as this is the convention C uses to store
character strings.

• A ’Hexadecimal Alphanumeric Literal ’ such as X"4A4B4C" (4A4B4C16 = the ASCII
string ’JKL’), x’20’ (an ASCII space) or X’30313233’ (3031323316 = the ASCII string
’0123’). The "X" character may either be upper- or lower-case and either single quote
(’) or double-quote (") characters may be used. These hexadecimal alphanumeric lit-
erals should always consist of an even number of hexadecimal digits, because each
character is represented by eight bits worth of data (2 hex digits). Hexadecimal al-
phanumeric literals may be of almost unlimited length.

Alphanumeric literals too long to fit on a single line may be continued to the next line in
one of two ways:

1. If you are using Fixed Format Mode, the alphanumeric literal can be run right up to
and including column 72. The literal may then be continued on the next line anywhere
after column 11 by coding another quote or apostrophe (whichever was used to begin
the literal originally). The continuation line must also have a hyphen (-) coded in the
indicator area (column 7). Here is an example (the scale is just for column number
reference):

1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890123

01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE "This is a long l

- "ong literal that

- " must be continu

- "ed.".

2. Regardless of whether the compiler is operating in Fixed or Free Format Mode, GNU
COBOL allows alphanumeric literals to be broken up into separate fragments. These
fragments have their own beginning and ending quote/apostrophe characters and are
"glued together" at compilation time using "&" characters. No continuation indicator
is needed. Here’s an example:

1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890123

01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE "This is a" &

" long literal that must " &

"be continued.".

If your program is using Free Format Mode, there’s less need to continue long alphanumeric
literals because statements may be as long as 255 characters.

Numeric literals may be split across lines just as alphanumeric literals are, using either of
the above techniques and both reserved and user-defined words can be split across lines too
(using the first technique). The continuation of numeric literals and user-defined/reserved
words is provided merely to provide compatibility with older COBOL versions and pro-
grams, but should not be used with new programs — it just makes for ugly-looking pro-
grams.

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 35

1.3.19.3. Figurative Constants

Figurative constants are reserved words that may be used as literals anywhere the figurative
constant’s value could be interpreted as an arbitrarily long sequence of the characters in
question. When a specific length is required, such as would be the case with an argument
to a subprogram, a figurative constant may not be used. Thus, the following are valid uses
of figurative constants:

05 FILLER PIC 9(10) VALUE ZEROS.

...

MOVE SPACES TO Employee-Name

But this is not:

CALL "SUBPGM" USING SPACES

The following are the GNU COBOL figurative constants and their respective equivalent
values.

"ZERO"

This figurative constant has a value of numeric 0 (zero). "ZEROS" and "ZEROES"

are both synonyms of "ZERO".

"SPACE"

This figurative constant has a value of one or more space characters. "SPACES"
is a synonym of "SPACE".

"QUOTE"

This figurative constant has a value of one or more double-quote characters (").
"QUOTES" is a synonym of "QUOTE".

"LOW-VALUE"

This figurative constant has a value of one or more of whatever character oc-
cupies the lowest position in the program’s collating sequence as defined in the
"OBJECT-COMPUTER" (see [OBJECT-COMPUTER], page 58) paragraph or — if
no such specification was made — in whatever default characterset the program
is using (typically, this is the ASCII characterset). "LOW-VALUES" is a synonym
of "LOW-VALUE".

When the characterset in use is ASCII with no collating sequence modifications,
the "LOW-VALUES" figurative constant value is the ASCII "NUL" character.
Because charactersets can be redefined, however, you should not rely on this
fact — use the "NULL" figurative constant instead.

3 June 2014 Chapter 1 - Introduction



36 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

"HIGH-VALUE"

This figurative constant has a value of one or more of whatever character occu-
pies the highest position in the program’s collating sequence as defined in the
"OBJECT-COMPUTER" paragraph or — if no such specification was made — in
whatever default characterset the program is using (typically, this is the ASCII
characterset). "HIGH-VALUES" is a synonym of "HIGH-VALUE".

"NULL"

A character comprised entirely of zero-bits (regardless of the programs collating
sequence).

Programmers may create their own figurative constants via the "SYMBOLIC CHARACTERS"

(see [Symbolic-Characters-Clause], page 71) clause of the "SPECIAL-NAMES" (see [SPECIAL-
NAMES], page 62) paragraph.

1.3.20. Punctuation

A comma (",") or a semicolon (";") may be inserted into a GNU COBOL program to
improve readability at any spot where white space would be legal, except of course within
alphanumeric literals (unless you actually mean for those characters to be part of the al-
phanumeric literal’s value). These characters are always optional.

The use of comma characters can cause confusion to a COBOL compiler if the "DECIMAL

POINT IS COMMA" clause is used in the "SPECIAL-NAMES" (see [SPECIAL-NAMES],
page 62) paragraph, as might be the case in Europe. The following statement, which calls
a subroutine passing it two arguments (the numeric constants 1 and 2):

CALL "SUBROUTINE" USING 1,2

Would — with "DECIMAL POINT IS COMMA" in effect — actually be interpreted as a sub-
routine call with 1 argument (the non-integer numeric literal whose value is 1 and 2 tenths).
For this reason, it is best to always follow a comma with a space.

The period character (".") is used to terminate statements in the identification, environment
and data divisions and sentences in the procedure division. Syntax diagrams describing code
in the first three divisions will explicitly show where periods need to occur.

The rules for where and when periods are needed in the procedure division are somewhat
complicated. See [Use of Periods], page 227, for the details.

1.3.21. LENGTH OF� �
LENGTH OF Syntax
 	

LENGTH OF numeric-literal-1 | identifier-1

~~~~~~

Chapter 1 - Introduction 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 37

————————————————————————————————————————

Alphanumeric literals and identifiers may optionally be prefixed with the "LENGTH OF"

clause. The compile-time value generated by this clause will be the number of bytes in the
alphanumeric literal or the defined size (in bytes) of the identifier.

1. The reserved word "OF" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

Here is an example. The following two GNU COBOL statements both display the same
result (27):

01 Demo-Identifier PIC X(27).

...

DISPLAY LENGTH OF "This is a LENGTH OF Example"

DISPLAY LENGTH OF Demo-Identifier

2. The "LENGTH OF" clause on a literal or identifier reference may generally be used any-
where a numeric literal might be specified, with the following exceptions:

• As part of the "FROM" clause of a "WRITE" (see [WRITE], page 479) or "RELEASE"
statement (see [RELEASE], page 434).

• As part of the "TIMES" clause of a "PERFORM" statement (see [PERFORM],
page 422).

1.3.22. Interfacing to Other Environments

Through the "CALL" statement, COBOL programs may invoke other COBOL programs
serving as subprograms. This is quite similar to cross-program linkage capabilities provided
by other languages. In GNU COBOL’s case, the "CALL" facility is powerful enough to
be tailored to the point where a GNU COBOL program can communicate with operating
system, database management and run-time library APIs, even if they weren’t written
in COBOL themselves. See [GNU COBOL Main Programs CALLing C Subprograms],
page 574, for an example of how a GNU COBOL program could invoke a C-language
subprogram, passing information back and forth between the two.

The fact that GNU COBOL supports a full-featured two-way interface with C-language
programs means that — even if you cannot access a library API directly — you could always
do so via a small C "wrapper" program that is "CALL"ed by a GNU COBOL program.

————————————————————
End of Chapter 1 — Introduction

3 June 2014 Chapter 1 - Introduction





GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 39

2. CDF - Compiler Directing Facility

The Compiler Directing Facility, or CDF, is a means of controlling the compilation of GNU
COBOL programs. CDF provides a mechanism for dynamically setting or resetting certain
compiler switches, introducing new source code from one or more source code libraries,
making dynamic source code modifications and conditionally processing or ignoring source
statements altogether. This is accomplished via a series of special CDF statements and
directives that will appear in the program source code.

When the compiler is operating in Fixed Format Mode, all CDF statements must begin in
column eight (8) or beyond.

There are two types of supported CDF statements in GNU COBOL — Text Manipulation
Statements and Compiler Directives.

The CDF text manipulation statements "COPY" and "REPLACE" are used to introduce new
code into programs either with or without changes, or may be used to modify existing
statements already in the program. Text manipulation statements are always terminated
with a period.

CDF directives, denoted by the presence of a ">>" character sequence as part of the state-
ment name itself, are used to influence the process of program compilation.

Compiler directives are never terminated with a period.

3 June 2014 Chapter 2 - CDF - Compiler Directing Facility



40 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

2.1. COPY� �
CDF COPY Statement Syntax
 	

COPY copybook-name

~~~~

[ IN|OF library-name ]

~~ ~~

[ SUPPRESS PRINTING ]

~~~~~~~~

[ REPLACING { Phrase-Clause | String-Clause }... ] .

~~~~~~~~~

————————————————————————————————————————� �
CDF COPY Phrase-Clause Syntax
 	

{ ==pseudo-text-1== } BY { ==pseudo-text-2== }

{ identifier-1 } ~~ { identifier-2 }

{ literal-1 } { literal-2 }

{ word-1 } { word-2 }

————————————————————————————————————————� �
CDF COPY String-Clause Syntax
 	

[ LEADING|TRAILING ] ==partial-word-1== BY ==partial-word-2==

~~~~~~~ ~~~~~~~~ ~~

————————————————————————————————————————

1. "COPY" statements are used to import copybooks (see [Copybooks], page 10) into a
program.

2. "COPY" statements may be used anywhere within a COBOL program where the code
contained within the copybook would be syntactically valid.

3. The optional "SUPPRESS" clause (with or without the optional "PRINTING" reserved
word) is valid syntactically but is non-functional. It is supported to facilitate compat-
ibility with source code written for other versions of COBOL.

4. There is no difference between the use of the word "IN" and the word "OF" — use the
one you prefer.

5. A period is absolutely mandatory at the end of every "COPY" statement, even if the
statement occurs within the scope of another one where a period might appear dis-
ruptive, such as within the scope of an "IF" (see [IF], page 397) statement. This

Chapter 2 - CDF - Compiler Directing Facility 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 41

mandatory period at the end of the statement will not, however, affect the statement
scope in which the "COPY" occurs.

6. Both <pseudo-text-2> and <partial-word-2> may be null.

7. All "COPY" statements are located and the contents of the corresponding copybooks
inserted into the program source code before the actual compilation process begins.
If a copybook contains a "COPY" statement, the copybook insertion process will be
repeated to resolve the imbedded "COPY". This will continue until no unresolved "COPY"

statements remain. At that point, actual program compilation will begin.

8. See [Locating Copybooks], page 515, for the specific rules on how copybooks are located
by the compiler.

9. The optional "REPLACING" clause allows for one or more of either of the following kinds
of text replacements to be made:

<<Phrase-Clause>>

Replacement of one or more complete reserved words, user-defined identi-
fiers or literals; the following points apply to this option:

• This option cannot be used to replace part of a word, identifier or
literal.

• Whatever preceeds the "BY" will be referred to here as the search
string.

• Single-item search strings can be specified by coding the
"<identifier-1>", "<literal-1>" or "<word-1>" being replaced.

• Multiple-item search strings can be specified using the "==<pseudo-

text-1>==" option. For example, to replace all occurrences of "UPON
PRINTER", you would specify "==UPON PRINTER==".

• The replacement string, which follows the "BY", may be specified using
any of the four options.

• If the replacement string is a multiple-item phrase or is to be deleted
altogether, you must use the "==<pseudo-text-2>==" option. If
"<pseudo-text-2>" is null (in other words, the replacement text is
specified as "===="), all encountered occurrences of the search string
will be deleted.

<<String-Clause>>

Using this, you may replace character sequences that occur at the beginning
("LEADING") or end ("TRAILING") of reserved or user-defined words. For
example, to change all words of the form "0100-xxxxxx" to "020-xxxxxx",
code "LEADING ==0100-== BY ==020-==". To simply remove all "0100-"
prefixes from words, code "LEADING ==0100-== BY ====".

3 June 2014 Chapter 2 - CDF - Compiler Directing Facility



42 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

2.2. REPLACE� �
CDF REPLACE Statement (Format 1) Syntax
 	

REPLACE [ ALSO ] { Phrase-Clause | String-Clause }... .

~~~~~~~ ~~~~

————————————————————————————————————————� �
CDF REPLACE Statement (Format 2) Syntax
 	

REPLACE [ LAST ] OFF .

~~~~~~~ ~~~~ ~~~

————————————————————————————————————————� �
CDF REPLACE Phrase-Clause Syntax
 	

{ ==pseudo-text-1== } BY { ==pseudo-text-2 }

~~

————————————————————————————————————————� �
CDF REPLACE String-Clause Syntax
 	

[ LEADING|TRAILING ] ==partial-word-1== BY ==partial-word-2==

~~~~~~~ ~~~~~~~~ ~~

————————————————————————————————————————

1. The "REPLACE" statement provides a mechanism for changing all or part of one or more
GNU COBOL statements.

2. A period is absolutely mandatory at the end of every "REPLACE" statement (either
format), even if the statement occurs within the scope of another one where a period
might appear disruptive (such as within the scope of an "IF" (see [IF], page 397) state-
ment; the period will not, however, affect the statement scope in which the "REPLACE"
occurs.

3. The following points apply to Format 1 of the "REPLACE" statement:

A. Format 1 of the "REPLACE" statement can be used to make changes to program
source code in much the same way as the "REPLACING" option of the "COPY"

statement can, via these options:

Chapter 2 - CDF - Compiler Directing Facility 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 43

<<Phrase-Clause>>

Replace one or more complete reserved words, user-defined identifiers
or literals; the following points apply to this option:

• This option cannot be used to replace part of a word, identifier
or literal.

• Whatever preceeds the "BY" will be referred to here as the search
string.

• Search strings on "REPLACE" are always specified using the
"==<pseudo-text-1>==" option. For example, to replace all
occurrences of "UPON PRINTER", you would specify "==UPON

PRINTER==".

• The replacement string, which follows the "BY", is specified using
the "==<pseudo-text-2>==" option. If "<pseudo-text-2>" is
null (in other words, the replacement text is specified as "===="),
all encountered occurrences of the search string will be deleted.

<<String-Clause>>

Using this, you may replace character sequences that occur at the be-
ginning ("LEADING") or end ("TRAILING") of reserved or user-defined
words. For example, to change all words of the form "0100-xxxxxx" to
"020-xxxxxx", code "LEADING ==0100-== BY ==020-==". To simply
remove all "0100-" prefixes from words, code "LEADING ==0100-==

BY ====".

B. Once a Format 1 "REPLACE" statement is encountered in the currently-compiling
source file, Replace Mode becomes active, and the change(s) specified by that
statement will be automatically made on all subsequent source statements the
compiler reads from the file.

C. Replace Mode remains in-effect — continuing to make source code changes —
until another Format 1 "REPLACE" is encountered, the end of currently compiling
program source file is reached or a Format 2 "REPLACE" statement is encountered.

D. When a Format 1 "REPLACE" statement with the "ALSO" keyword is encountered
without Replace Mode being currently active, the effect will be as if the "ALSO"

had not been specified. If Replace Mode already was in effect, the effect will be
to "push" the current change specification(s) onto the top of a stack and add the
specification(s) of the new statement to those that were already in effect.

E. When a Format 1 "REPLACE" without the "ALSO" keyword is encountered, any
stacked change specification(s), if any, will be discarded and the currently in-effect
change specification(s), if any, will be replaced by those of the new statement.

F. When the end of the currently-compiling source file is reached, Replace Mode is
deactivated and any stacked replace specifications will be discarded — compilation

3 June 2014 Chapter 2 - CDF - Compiler Directing Facility



44 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

of the next source file (if any) will begin with Replace Mode inactive and no change
specification(s) on the stack.

4. The following points apply to Format 2 of the "REPLACE" statement:

A. If Replace Mode is currently inactive, the Format 2 REPLACE statement will be
ignored.

B. If Replace Mode is currently active, a "REPLACE OFF." will deactivate Replace
Mode and discard any replace specification(s) on the stack. The compiler will
henceforth operate as if no "REPLACE" had ever been encountered, until such time
as another Format 1 "REPLACE" is encountered.

C. If Replace Mode is currently active, a "REPLACE LAST OFF." will replace the cur-
rent replace specification(s) with those popped off the top of the stack. If there
were no replace specification(s) on the stack, the effect will be as if a "REPLACE

OFF." had been coded.

Chapter 2 - CDF - Compiler Directing Facility 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 45

2.3. >>DEFINE� �
CDF >>DEFINE Directive Syntax
 	

>>DEFINE [ CONSTANT ] cdf-variable-1 AS { OFF }

~~~~~~~~ ~~~~~~~~ { ~~~ }

{ literal-1 [ OVERRIDE ] }

{ ~~~~~~~~ }

{ PARAMETER [ OVERRIDE ] }

~~~~~~~~~ ~~~~~~~~

————————————————————————————————————————

Use the ">>DEFINE" CDF directive to create CDF variables and (optionally) assign them
either literal or environment variable values.

1. The reserved word "AS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. CDF variables defined in this way become undefined once an "END PROGRAM" or "END
FUNCTION" directive is encountered in the input source.

3. The ">>DEFINE" CDF directive is one way to create CDF variables that may be pro-
cessed by other CDF statements such as ">>IF" (see [>>IF], page 46). The ">>SET"

CDF directive (see [>>SET], page 49) provides another way to create them.

4. CDF variable names follow the rules for standard GNU COBOL user-defined names,
and may not duplicate any CDF reserved word. CDF variable names may duplicate
COBOL reserved words, provided the "CONSTANT" option is not specified, but such
names are not recommended.

5. The "CONSTANT" option is valid only in conjunction with <literal-1>. When "CONSTANT"

is specified, the CDF variable that is created may be used within your regular COBOL
code as if it were a literal value. Without this option, the CDF variable may only be
referenced on other CDF statements. The "OFF" option is used to create a variable
without assigning it any value.

6. The "PARAMETER" option is used to create a variable whose value is that of the environ-
ment variable of the same name. Note that this value assignment occurs at compilation
time, not program execution time.

7. In the absence of the "OVERRIDE" option, <cdf-variable-1> must not yet have been
defined. When the "OVERRIDE" option is specified, <cdf-variable-1> will be created
with the specified value, if it had not yet been defined. If it had already been defined,
it will be redefined with the new value.

3 June 2014 Chapter 2 - CDF - Compiler Directing Facility



46 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

2.4. >>IF� �
CDF >>IF Directive Syntax
 	

>>IF CDF-Conditional-Expression-1

~~~~ [ Program-Source-Lines-1 ]

[ >>ELIF CDF-Conditional-Expression-2

~~~~~~ [ Program-Source-Lines-2 ] ]...

[ >>ELSE

~~~~~~ [ Program-Source-Lines-3 ] ]

>>END-IF

~~~~~~~~

————————————————————————————————————————� �
CDF-Conditional-Expression Syntax
 	

{ cdf-variable-1 } IS [ NOT ] { DEFINED }

{ literal-1 } ~~~ { ~~~~~~~ }

{ SET }

{ ~~~ }

{ CDF-RelOp { cdf-variable-2 } }

{ { literal-2 } }

————————————————————————————————————————� �
CDF-RelOp Syntax
 	

>= or GREATER THAN OR EQUAL TO

~~~~~~~ ~~ ~~~~~

> or GREATER THAN

~~~~~~~

<= or LESS THAN OR EQUAL TO

~~~~ ~~ ~~~~~

< or LESS THAN

~~~~

= or EQUAL TO

~~~~~

<> or EQUAL TO (with "NOT")

~~~~~

————————————————————————————————————————

Chapter 2 - CDF - Compiler Directing Facility 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 47

The ">>IF" CDF directive causes the GNU COBOL compiler to process or ignore COBOL
source statements, CDF text-manipulation statements and/or CDF directives depending
upon the value of one or more conditional expressions based upon CDF variables.

1. The reserved words "IS", "THAN" and "TO" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. Each ">>IF" directive must be terminated by an ">>END-IF" directive.

3. There may be any number of ">>ELIF" clauses following an ">>IF", including zero.

4. There may no more than one ">>ELSE" clause following an ">>IF". When ">>ELSE"

is used, it must follow the ">>IF" and all ">>ELIF" clauses.

5. Only one of the <<Program-Source-Lines-n>> block of statements that lie within the
scope of the ">>IF"-">>END-IF" may be processed by the compiler. Which one (if any)
that gets processed will be decided as follows:

A. Each <<CDF-Conditional-Expression-n>> will be evaluated, in turn, in the se-
quence in which they are coded in the >>IF statement and any ">>ELIF" clauses
that may be present until one evaluates to TRUE. Once one of them evaluates
to TRUE, the <<Program-Source-Lines-n>> block of code that corresponds to the
TRUE <<CDF-Conditional-Expression-n>> will be one that is processed. All oth-
ers within the ">>IF"-">>END-IF" scope will be ignored.

B. If no <<CDF-Conditional-Expression>> evaluates to TRUE, and there is an
">>ELSE" clause, the <<Program-Source-Lines-3>> block of statements following
the ">>ELSE" clause will be processed by the compiler and all others within the
">>IF"-">>END-IF" scope will be ignored.

C. If no <<CDF-Conditional-Expression-n>> evaluates to TRUE and there is
no ">>ELSE" clause, then none of the <<Program-Source-Lines-n>> block of
statements within the ">>IF"-">>END-IF" scope will be processed by the
compiler.

D. If the <Program-Source-Lines-n>> statement block selected for processing
is empty, no error results — there will just be no code generated from the
">>IF"-">>END-IF" structure.

6. A <<Program-Source-Lines-n>> block may contain any valid COBOL or CDF code.

7. The following points pertain to any <<CDF-Conditional-Expression-n>>:

A. The "DEFINED" option tests for whether <cdf-variable-1> has been defined, but
not yet assigned a value (">>DEFINE ... OFF"); use the "NOT" option to test for
the variable not being defined.

B. The "SET" option tests for whether <cdf-variable-1> has been given a value, either
via a ">>SET" statement or via a ">>DEFINE" without the "OFF" option.

C. Two CDF variables, two literals or a single CDF variable and a single literal may

3 June 2014 Chapter 2 - CDF - Compiler Directing Facility



48 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

be compared against each other using a relational operator. Unlike the standard
GNU COBOL "IF" statement (see [IF], page 397), multiple comparisons cannot
be "AND"ed or "OR"ed together; you may nest a second ">>IF" inside the first,
however, to simulate an "AND" and an "OR" may be simulated via the ">>ELIF"
option.

D. The "<>" symbol stands for "NOT EQUAL TO".

Chapter 2 - CDF - Compiler Directing Facility 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 49

2.5. >>SET� �
CDF >>SET Directive Syntax
 	

>>SET { [ CONSTANT ] cdf-variable-1 [ AS literal-1 ] }

~~~~~ { ~~~~~~~~ ~~ }

{ SOURCEFORMAT AS FIXED|FREE }

{ ~~~~~~~~~~~~ ~~~~~ ~~~~ }

{ NOFOLDCOPYNAME }

{ ~~~~~~~~~~~~~~ }

{ FOLDCOPYNAME AS UPPER|LOWER }

~~~~~~~~~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

The ">>SET" CDF directive provides an alternate means of performing the actions of the
">>DEFINE" and ">>SOURCE" directives, as well as a means of controlling the compiler’s
"-free" switch, "-fixed" switch and "-ffold-copy" switch from within program source
code.

1. The reserved word "AS" is optional (only on the "SOURCEFORMAT" and "FOLDCOPYNAME"

clauses) and may be included, or not, at the discretion of the programmer. The presence
or absence of this word has no effect upon the program.

2. CDF variables defined in this way become undefined once an "END PROGRAM" or "END
FUNCTION" directive is encountered in the input source.

3. The "FOLDCOPYNAME" option provides the equivalent of specifying the compiler
"-ffold-copy=xxx" switch, where "xxx" is either "UPPER" or "LOWER".

4. The "NOFOLDCOPYNAME" option turns off the effect of either the ">>SET FOLDCOPYNAME"

statement or the compiler "-ffold-copy=xxx" switch.

5. If the "CONSTANT" option is used, <literal-1> must also be used. This option provides
another means of defining constants that may be used anywhere in the program that
a literal could be specified.

6. The remaining options of the ">>SET" CDF directive provide equivalent functionality
to the ">>DEFINE" and ">>SOURCE" directives, as follows:

A. ">>SET <cdf-variable-1>" ≡ ">>DEFINE <cdf-variable-1> AS OFF"

B. ">>SET <cdf-variable-1> AS <literal-1>" ≡ ">>DEFINE <cdf-variable-1>

AS <literal-1>"

C. ">>SET CONSTANT <cdf-variable-1> AS <literal-1>" ≡ ">>DEFINE

CONSTANT <cdf-variable-1> AS <literal-1>"

D. ">>SET SOURCEFORMAT AS FIXED" ≡ ">>SOURCE FORMAT IS FIXED"

E. ">>SET SOURCEFORMAT AS FREE" ≡ ">>SOURCE FORMAT IS FREE"

3 June 2014 Chapter 2 - CDF - Compiler Directing Facility



50 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

2.6. >>SOURCE� �
CDF >>SOURCE Directive Syntax
 	

>>SOURCE FORMAT IS FIXED|FREE

~~~~~~~~ ~~~~~ ~~~~

————————————————————————————————————————

The ">>SOURCE" CDF directive puts the compiler into "FIXED" or "FREE" source-code
format mode. This, in effect, provides yet another mechanism for controlling the compiler’s
"-free" switch and "-fixed" switch.

1. The reserved words "FORMAT" and "IS" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. You may switch between "FIXED" and "FREE" mode as desired.

3. You may also use the ">>SET" CDF directive to perform this function.

4. If the compiler is already in the specified mode, this statement will have no effect.

Chapter 2 - CDF - Compiler Directing Facility 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 51

2.7. >>TURN� �
CDF >>TURN Directive Syntax
 	

>>TURN { exception-name-1 [ file-name-1 ]... }...

~~~~~~

{ OFF }

{ ~~~ }

{ CHECKING ON [ WITH LOCATION ] }

~~~~~~~~ ~~ ~~~~~~~~

The ">>TURN" CDF directive is syntactically recognized but is otherwise non-functional.

————————————————————————————————————————

————————————————————
End of Chapter 2 — CDF - Compiler Directing Facility

3 June 2014 Chapter 2 - CDF - Compiler Directing Facility





GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 53

3. IDENTIFICATION DIVISION
� �

IDENTIFICATION DIVISION Syntax
 	
[ IDENTIFICATION DIVISION. ]

~~~~~~~~~~~~~~ ~~~~~~~~

{ PROGRAM-ID. } program-id [ AS literal-1 ] [ Type-Clause ] .

{ ~~~~~~~~~~ }

{ FUNCTION-ID. }

~~~~~~~~~~~

[ AUTHOR. comment-1. ]

~~~~~~

[ DATE-COMPILED. comment-2. ]

~~~~~~~~~~~~~

[ DATE-WRITTEN. comment-3. ]

~~~~~~~~~~~~

[ INSTALLATION. comment-4. ]

~~~~~~~~~~~~

[ REMARKS. comment-5. ]

~~~~~~~

[ SECURITY. comment-6. ]

~~~~~~~~

The "AUTHOR", "DATE-COMPILED", "DATE-WRITTEN", "INSTALLATION", "REMARKS" and
"SECURITY" paragraphs are supported by GNU COBOL only to provide compatibility with
programs written for the ANS1974 (or earlier) standards. As of the ANS1985 standard,
these clauses have become obsolete and should not be used in new programs.

————————————————————————————————————————� �
PROGRAM-ID Type Clause Syntax
 	

IS [ COMMON ] [ INITIAL|RECURSIVE PROGRAM ]

~~~~~~ ~~~~~~~ ~~~~~~~~~

————————————————————————————————————————

The identification division provides basic identification of the program by giving it a name
and optionally defining some high-level characteristics via the eight pre-defined paragraphs
that may be specified.

1. The paragraphs shown above may be coded in any sequence.

2. The reserved words "AS", "IS" and "PROGRAM" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has
no effect upon the program.

3 June 2014 Chapter 3 - IDENTIFICATION DIVISION



54 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

3. A Type Clause may be coded only when "PROGRAM-ID" is specified. If one is coded,
either "COMMON", "COMMON INITIAL" or "COMMON RECURSIVE" must be specified.

4. While the actual "IDENTIFICATION DIVISION" header is optional, the "PROGRAM-ID"

/ "FUNCTION-ID" paragraphs are not; only one or the other, however, may be coded.

5. The compiler’s "-Wobsolete" switch will cause the GNU COBOL compiler to issue
warnings messages if these (or any other obsolete syntax) is used in a program.

6. If specified, <literal-1> must be an actual alphanumeric literal and may not be a figu-
rative constant.

7. The "PROGRAM-ID" and "FUNCTION-ID" paragraphs serve to identify the program to
the external (i.e. operating system) environment. If there is no "AS" clause present,
the <program-id> will serve as that external identification. If there is an "AS" clause
specified, that specified literal will serve as the external identification. For the remain-
der of this document, that "external identification" will be referred to as the primary
entry-point name.

8. The "INITIAL", "COMMON" and "RECURSIVE" words are used only within subprograms
serving as subroutines. Their purposes are as follows:

A. "COMMON" should be used only within subprograms that are nested subprograms. A
nested subprogram declared as "COMMON" may be called from any nested program
in the source file being compiled, not just those "above" it in the nesting structure.

B. The "RECURSIVE" clause, if any, will cause the compiler to generate different object
code for the subprogram that will enable it to invoke itself and to properly return
back to the program that invoked it.

User-defined functions (i.e. "FUNCTION-ID") are always recursive.

C. The "INITIAL" clause, if specified, guarantees the subprogram will be in its initial
(i.e. compiled) state each and every time it is executed, not just the first time.

————————————————————
End of Chapter 3 — IDENTIFICATION DIVISION

Chapter 3 - IDENTIFICATION DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 55

4. ENVIRONMENT DIVISION� �
ENVIRONMENT DIVISION Syntax
 	

ENVIRONMENT DIVISION.

~~~~~~~~~~~ ~~~~~~~~

[ CONFIGURATION SECTION. ]

~~~~~~~~~~~~~ ~~~~~~~~

[ SOURCE-COMPUTER. Compilation-Computer-Specification . ]

~~~~~~~~~~~~~~~

[ OBJECT-COMPUTER. Execution-Computer-Specification . ]

~~~~~~~~~~~~~~~

[ REPOSITORY. Function-Specification... . ]

~~~~~~~~~~

[ SPECIAL-NAMES. Program-Configuration-Specification . ]

~~~~~~~~~~~~~

[ INPUT-OUTPUT SECTION. ]

~~~~~~~~~~~~ ~~~~~~~

[ FILE-CONTROL. General-File-Description... . ]

~~~~~~~~~~~~

[ I-O-CONTROL. File-Buffering Specification... . ]

~~~~~~~~~~~

————————————————————————————————————————

This division defines the external computer environment in which the program will be
operating. This includes defining any files that the program may be .

• If both optional sections of this division are coded, they must be coded in the sequence
shown.

• The paragraphs within the sections may be coded in any order.

• These sections consist of a series of specific, pre-defined, paragraphs
("SOURCE-COMPUTER" and "OBJECT-COMPUTER", for example), each of which
serves a specific purpose. If no code is required for the purpose one of the paragraphs
serves, the entire paragraph may be omitted.

• If any of the paragraphs within one of the sections are coded, the section header itself
must be coded.

• If none of the paragraphs within one of the sections are coded, the section header itself
may be omitted.

• If none of the sections within the environment division are coded, the "ENVIRONMENT

DIVISION." header itself may be omitted.

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



56 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4.1. CONFIGURATION SECTION� �
CONFIGURATION SECTION Syntax
 	

CONFIGURATION SECTION.

~~~~~~~~~~~~~ ~~~~~~~

[ SOURCE-COMPUTER. Compilation-Computer-Specification . ]

~~~~~~~~~~~~~~~

[ OBJECT-COMPUTER. Execution-Computer-Specification . ]

~~~~~~~~~~~~~~~

[ REPOSITORY. Function-Specification... . ]

~~~~~~~~~~

[ SPECIAL-NAMES. Program-Configuration-Specification . ]

~~~~~~~~~~~~~

————————————————————————————————————————

This section defines the computer system upon which the program is being compiled and
executed and also specifies any special environmental configuration or compatibility char-
acteristics.

1. The four paragraphs in this section may be specified in any order.

2. The configuration section is not allowed in a nested subprogram — nested programs
will inherit the configuration section settings of their parent program.

3. If none of the features provided by the configuration section are required by a program,
the entire "CONFIGURATION SECTION." header may be omitted from the program.

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 57

4.1.1. SOURCE-COMPUTER� �
SOURCE-COMPUTER Syntax
 	

SOURCE-COMPUTER. computer-name [ WITH DEBUGGING MODE ] .

~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~

————————————————————————————————————————

This paragraph defines the computer upon which the program is being compiled and pro-
vides one way in which debugging code imbedded within the program may be activated.

1. The reserved word "WITH" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. This paragraph is not allowed in a nested subprogram — nested programs will inherit
the "SOURCE-COMPUTER" settings of their parent program.

3. The value specified for <computer-name> is irrelevant, provided it is a valid COBOL
word that does not match any GNU COBOL reserved word. The <computer-name>
value may include spaces. This need not match the <computer-name> used with the
"OBJECT-COMPUTER" paragraph, if any.

4. The "DEBUGGING MODE" clause, if present, will inform the compiler that debugging lines
(those with a "D" in column 7 if Fixed Source Mode is in effect, or those prefixed with
a ">>D" if Free Source Mode is in effect) — normally treated as comments — are to
be compiled.

5. Even without the "DEBUGGING MODE" clause, it is still possible to compile debugging
lines. Debugging lines may also be compiled by specifying the "-fdebugging-line"

switch to the GNU COBOL compiler.

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



58 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4.1.2. OBJECT-COMPUTER� �
OBJECT-COMPUTER Syntax
 	

OBJECT-COMPUTER. [ computer-name ]

~~~~~~~~~~~~~~~

[ MEMORY SIZE IS integer-1 WORDS|CHARACTERS ]

~~~~~~ ~~~~ ~~~~~ ~~~~~~~~~~

[ PROGRAM COLLATING SEQUENCE IS alphabet-name-1 ]

~~~~~~~~~

[ SEGMENT-LIMIT IS integer-2 ]

~~~~~~~~~~~~~

[ CHARACTER CLASSIFICATION IS { locale-name-1 } ]

~~~~~~~~~~~~~~ { LOCALE }

{ ~~~~~~ }

{ USER-DEFAULT }

{ ~~~~~~~~~~~~ }

{ SYSTEM-DEFAULT }

~~~~~~~~~~~~~~

.

The "MEMORY SIZE" and "SEGMENT-LIMIT" clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————

This paragraph describes the computer upon which the program will execute.

1. The <computer-name>, if specified, must immediately follow the "OBJECT-COMPUTER"

paragraph name. The remaining clauses may be coded in any sequence.

2. The reserved words "CHARACTER", "IS", "PROGRAM" and "SEQUENCE" are optional and
may be included, or not, at the discretion of the programmer. The presence or absence
of these words has no effect upon the program.

3. The value specified for <computer-name>, if any, is irrelevant provided it is a valid
COBOL word that does not match any GNU COBOL reserved word. The <computer-
name> may include spaces. This need not match the <computer-name> used with the
"SOURCE-COMPUTER" paragraph, if any.

4. The "OBJECT-COMPUTER" paragraph is not allowed in a nested subprogram — nested
programs will inherit the "OBJECT-COMPUTER" settings of their parent program.

5. The "COLLATING SEQUENCE" clause allows you to specify a customized character collat-
ing sequence to be used when alphanumeric values are compared to one another. Data
will still be stored in the characterset native to the computer, but the logical sequence
in which characters are ordered for comparison purposes can be altered from that de-

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 59

fined by the computer’s native characterset. The <alphabet-name-1> you specify needs
to be defined in the "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 62) paragraph.

6. If no "COLLATING SEQUENCE" clause is specified, the collating sequence implied by the
characterset native to the computer (usually ASCII) will be used.

7. The optional "CLASSIFICATION" clause may be used to specify a locale for the envi-
ronment in which the program will be executing, for the purpose of influencing the
uppercase and lowercase mappings of characters for the "UPPER-CASE" (see [UPPER-
CASE], page 334) and "LOWER-CASE" (see [LOWER-CASE], page 285) intrinsic func-
tions and the classification of characters for the "ALPHABETIC", "ALPHABETIC-LOWER"
and "ALPHABETIC-UPPER" class tests. The definitions of these classes will be taken
from the cultural convention specification ("LC_CTYPE") from the specified locale.

The meanings of the four locale specifications are as follows:

A. <locale-name-1> references a "LOCALE" (see [SPECIAL-NAMES], page 62) defini-
tion.

B. The keyword "LOCALE" refers to the current locale (in effect at the time the pro-
gram is executed)

C. The keyword "USER-DEFAULT" references the default locale specified for the user
currently executing this program.

D. The keyword "SYSTEM-DEFAULT" denotes the default locale specified for the com-
puter upon which the program is executing.

8. Absence of a "CLASSIFICATION" clause will cause character classification to occur ac-
cording to the rules for the computer’s native characterset (ASCII, EBCDIC, . . . ).

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



60 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4.1.3. REPOSITORY� �
REPOSITORY Syntax
 	

REPOSITORY.

~~~~~~~~~~

FUNCTION { function-prototype-name-1 [ AS literal-1 ] }...

~~~~~~~~ { ~~ }

{ intrinsic-function-name-1 [ AS literal-2 ] }

{ ~~ }

{ intrinsic-function-name-2 INTRINSIC }

{ ALL INTRINSIC ~~~~~~~~~ }

~~~ ~~~~~~~~~

————————————————————————————————————————

The REPOSITORY paragraph provides a way to control access to the various built-in
intrinsic functions and any user defined functions that your program will be using.

1. The "REPOSITORY" paragraph is not allowed in a nested subprogram — nested pro-
grams will inherit the "REPOSITORY" settings of their parent program.

2. The "INTRINSIC" clause allows you to flag one or more (or "ALL") built-in intrinsic
functions as being usable without the need to code the keyword "FUNCTION" in front
of the function names.

3. As an alternative to using the "ALL INTRINSIC" clause, you may instead compile your
GNU COBOL programs using the "-fintrinsics=ALL" switch.

4. The <function-prototype-name-1> option is required to specify the name of a user-
defined function your program will be using. Optionally, should you desire, you may
specify an alias name by which you will reference that user-defined function. Should
you wish, you may also use the "AS" clause to provide an alias name for a built-in
intrinsic function.

5. The following example enables all intrinsic functions to be specified without
the use of the "FUNCTION" keyword, (2) names two user-defined functions
named "MY-FUNCTION-1" and "MY-FUNCTION-2" that will be used by the
program and (3) specifies the alias names "SIGMA" for the intrinsic function
"STANDARD-DEVIATION" and "MF2" for "MY-FUNCTION-2".

REPOSITORY.

FUNCTION ALL INTRINSIC.

FUNCTION MY-FUNCTION-1.

FUNCTION MY-FUNCTION-2 AS "MF2".

FUNCTION STANDARD-DEVIATION AS "SIGMA".

A special note about user-defined functions — because you must name a user-defined func-

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 61

tion that your program will be using in the "REPOSITORY" paragraph, you may always
reference that function from your program’s procedure division without needing to use the
"FUNCTION" keyword.

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



62 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4.1.4. SPECIAL-NAMES� �
SPECIAL-NAMES Syntax
 	

SPECIAL-NAMES.

~~~~~~~~~~~~~

[ CALL-CONVENTION integer-1 IS mnemonic-name-1 ]

~~~~~~~~~~~~~~~

[ CONSOLE IS CRT ]

~~~~~~~ ~~~

[ CRT STATUS IS identifier-1 ]

~~~ ~~~~~~

[ CURRENCY SIGN IS literal-1 ]

~~~~~~~~ ~~~~

[ CURSOR IS identifier-2 ]

~~~~~~

[ DECIMAL-POINT IS COMMA ]

~~~~~~~~~~~~~ ~~~~~

[ EVENT STATUS IS identifier-3 ]

~~~~~ ~~~~~~

[ LOCALE locale-name-1 IS literal-2 ]...

~~~~~~

[ NUMERIC SIGN IS TRAILING SEPARATE ]

~~~~~~~ ~~~~ ~~~~~~~~ ~~~~~~~~

[ SCREEN CONTROL IS identifier-4 ]

~~~~~~ ~~~~~~~

[ device-name-1 IS mnemonic-name-2 ]...

[ feature-name-1 IS mnemonic-name-3 ]...

[ Alphabet-Clause ]...

[ Class-Definition-Clause ]...

[ Switch-Definition-Clause ]...

[ Symbolic-Characters-Clause ]...

.

The "EVENT STATUS" and "SCREEN CONTROL" clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————
<<Alphabet-Name-Clause>>, <<Class-Definition-Clause>>,

<<Switch-Definition-Clause>> and <<Symbolic-Characters-Clause>>
are discussed in detail in the next four sections.

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 63

The "SPECIAL-NAMES" paragraph provides a means for specifying various program and
operating environment configuration options.

1. The various clauses that may be specified within the "SPECIAL-NAMES" paragraph may
be coded in any order.

2. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

3. The "SPECIAL-NAMES" paragraph is not allowed in a nested subprogram — nested
programs will inherit the "SPECIAL-NAMES" settings of their parent program.

4. Only the final clause specified within this paragraph should be terminated with a
period.

5. The "CALL-CONVENTION" clause allows a decimal integer, representing a series of
ON/OFF switch settings, to be associated with a mnemonic name which may then
be coded on a "CALL" statement (see [CALL], page 359). The switch settings defined
by this mnemonic will then control how the linkage to a subroutine invoked by the
"CALL" statement that references <mnemonic-name-1> will be handled.

6. The "CONSOLE IS CRT" clause, if specified, will cause a "DISPLAY" statement lack-
ing an explict "UPON" clause to be treated as a "DISPLAY screen-data-item" state-
ment (see [DISPLAY screen-data-item], page 374), and any "ACCEPT" statement lack-
ing a "FROM" clause to be treated as a "ACCEPT screen-data-item" statement (see
[ACCEPT screen-data-item], page 342).

7. If the "CRT STATUS" clause is not specified, an implicit "COB-CRT-STATUS" identifier
(with a "PICTURE 9(4)") will be allocated for the purpose of receiving screen "ACCEPT"

statuses. If "CRT STATUS" is specified, then <identifier-1> must be defined in the
program as a "PICTURE 9(4)" field.

8. The "CURRENCY SIGN" clause may be used to redefine the character to be used as a
currency sign in a "PICTURE" (see [PICTURE], page 162) clause. The default currency
sign is a dollar-sign ($). You may specify any character except "0"-"9", "A"-"Z",
"a"-"z", "+", "-", ",", ".", "*", "/", ";", "(", ")", "=", "\", quote (") or space.

9. The "CURSOR IS" clause allows you to specify a 4- or 6-character data item into which
the cursor screen location at the time a screen "ACCEPT" is satisfied. The value will be
returned as rrcc or rrrccc, depending upon the length of the specified <identifier-2>,
where rr and rrr represent the row number (starting at zero) and cc and ccc represent
the column number (also starting at zero). There is no default data item allocated
for this data if the "CURSOR IS" clause is not specified, and it is the programmer’s
responsibility to define <identifier-2> if the clause is specified.

10. The "DECIMAL POINT IS COMMA" clause reverses the definition of the "," and "." char-
acters when they are used as "PICTURE" editing symbols and within numeric literals.
This can have unwanted side-effects - see [Punctuation], page 36.

11. The "LOCALE" clause may be used to associate external OS-defined locale names
(<literal-2>) with an internal name (<locale-name-1>) that may then be referenced

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



64 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

within the program. Locale names are defined by the Operating System and/or C
compiler GNU COBOL will be utilizing on your computer.

12. The following is the list of possible locale codes, for example, that would be available
on a Windows computer running a GNU COBOL version that was built utilizing the
MinGW Unix-emulator and the GNU C compiler (gcc):

A af ZA, am ET, ar AE, ar BH, ar DZ, ar EG, ar IQ, ar JO, ar KW,
ar LB, ar LY, ar MA, ar OM, ar QA, ar SA, ar SY, ar TN, ar YE,
arn CL, as IN, az Cyrl AZ, az Latn AZ

B ba R, be BY, bg BG, bn IN bo BT, bo CN, br FR, bs Cyrl BA,
bs Latn BA

C ca ES, cs CZ, cy GB

D da DK, de AT, de CH, de DE, de LI, de LU, dsb DE, dv MV

E el GR, en 029, en AU, en BZ, en CA, en GB, en IE, en IN, en JM,
en MY en NZ, en PH, en SG, en TT, en US, en ZA, en ZW, es AR,
es BO, es CL, es CO, es CR, es DO, es EC, es ES, es GT, es HN,
es MX, es NI, es PA, es PE, es PR, es PY, es SV, es US, es UY es VE,
et EE, eu ES

F fa IR, fi FI, fil PH, fo FO, fr BE, fr CA, fr CH, fr FR, fr LU, fr MC,
fy NL

G ga IE, gbz AF, gl ES, gsw FR, gu IN

H ha Latn NG, he IL, hi IN, hr BA, hr HR, hu HU, hy AM

I id ID, ig NG, ii CN, is IS, it CH, it IT, iu Cans CA, iu Latn CA

J ja JP

K ka GE, kh KH, kk KZ, kl GL, kn IN, ko KR, kok IN, ky KG

L lb LU, lo LA, lt LT, lv LV

M mi NZ, mk MK, ml IN, mn Cyrl MN, mn Mong CN moh CA, mr IN,
ms BN, ms MY, mt MT

N nb NO, ne NP, nl BE, nl NL, nn NO, ns ZA

O oc FR, or IN

P pa IN, pl PL, ps AF, pt BR, pt PT

Q qut GT, quz BO, quz EC, quz PE

R rm CH, ro RO, ru RU, rw RW

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 65

S sa IN, sah RU, se FI, se NO se SE, si LK, sk SK, sl SI, sma NO,
sma SE, smj NO, smj SE, smn FI, sms FI, sq AL, sr Cyrl BA,
sr Cyrl CS, sr Latn BA, sr Latn CS, sv FI, sv SE, sw KE syr SY

T ta IN, te IN, tg Cyrl TJ, th TH tk TM, tmz Latn DZ, tn ZA, tr IN,
tr TR, tt RU

U ug CN, uk UA, ur PK, uz Cyrl UZ, uz Latn UZ

V vi VN

W wen DE, wo SN

X xh ZA

Y yo NG

Z zh CN, zh HK, zh MO, zh SG, zh TW, zu ZA

13. The "NUMERIC SIGN TRAILING SEPARATE" specification causes all signed numeric
"USAGE DISPLAY" data items to be created as if the "SIGN IS TRAILING SEPARATE

CHARACTER" clause was included in their definitions.

14. The "<device-name-1> IS <mnemonic-name-2>" clause allows you to specify an al-
ternate name (<device-name-1>) for one of the built-in GNU COBOL device name
<mnemonic-name-2>. The list of device names built-into GNU COBOL, and the phys-
ical device associated with that name, are as follows:

"CONSOLE"

This is the (screen-mode) display of the PC or Unix system.

"STDIN"

"SYSIN"

"SYSIPT"

These devices (they are all synonymous) represent standard system input
(pipe 0). On a PC or UNIX system, this is typically the keyboard. The
contents of a file may be delivered to a GNU COBOL program for access
via one of these device names by adding the sequence "0< filename" to the
end of the programs execution command.

"PRINTER"

"STDOUT"

"SYSLIST"

"SYSLST"

"SYSOUT"

These devices (they are all synonymous) represent standard system output
(pipe 1). On a PC or UNIX system, this is typically the display. Output

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



66 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

sent to one of these devices by a GNU COBOL program can be sent to
a file by adding the sequence "1> filename" to the end of the programs
execution command.

"STDERR"

"SYSERR"

These devices (they are synonymous) represent standard system error out-
put (pipe 2). On a PC or UNIX system, this is typically the display. Output
sent to one of these devices by a GNU COBOL program can be sent to
a file by adding the sequence "2> filename" to the end of the programs
execution command.

15. The "<feature-name-1> IS <mnemonic-name-3>" clause allow for mnemonic names
to be assigned to up to the 13 printer channel (i.e. vertical page positioning) position
feature names "Cnn" (nn=01-12) and "CSP". Once a channel position has been assigned
a mnemonic name, statements of the form "WRITE <record-name> AFTER ADVANCING

<mnemonic-name-3>" may be coded to write the specified print record at the channel
position assigned to <mnemonic-name-3>.

Printers supporting channel positioning are generally mainframe-type line printers.
When writing to printers that do not support channel positioning, a formfeed will be
issued to the printer.

The "CSP" positioning option stands for "No Spacing". Testing on a MinGW build of
GNU COBOL shows that this too results in a formfeed being issued.

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 67

4.1.4.1. Alphabet-Name-Clause� �
SPECIAL-NAMES Alphabet-Clause Syntax
 	

ALPHABET alphabet-name-1 IS { ASCII }

~~~~~~~~ { ~~~~~ }

{ EBCDIC }

{ ~~~~~~ }

{ NATIVE }

{ ~~~~~~ }

{ STANDARD-1 }

{ ~~~~~~~~~~ }

{ STANDARD-2 }

{ ~~~~~~~~~~ }

{ Literal-Clause... }

————————————————————————————————————————� �
SPECIAL-NAMES ALPHABET Literal-Clause Syntax
 	

literal-1 [ { THRU|THROUGH literal-2 } ]

{ ~~~~ ~~~~~~~ }

{ {ALSO literal-3}... }

~~~~

————————————————————————————————————————

The "ALPHABET" clause provides a means for relating a name to a specified character code
set or collating sequence, including those you define yourself using the <literal-1> option.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved words "THRU" and "THROUGH" are interchangeable.

3. GNU COBOL considers "ASCII", "STANDARD-1" and "STANDARD-2" to be interchange-
able.

4. "NATIVE" specifies the system default characterset.

5. The following points apply to using the <literal-n> specifications to compose a custom
characterset:

A. The <literal-n> values are either integers or alphanumeric quoted characters. These
represent a single character in the "NATIVE" characterset, either by it’s actual text
value (alphanumeric quoted character) or by ordinal position in the "NATIVE"

characterset (integer),

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



68 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

B. The sequence in which characters are defined in this clause specifies the relative
order those characters should have when comparisons are made using this alphabet.

C. Character positions in this list do not affect the actual binary storage values used
for the characters — binary values will still be those of the "NATIVE" characterset.

D. You may specify any of the figurative constants "SPACE", "SPACES", "ZERO",
"ZEROS", "ZEROES", "QUOTE", "QUOTES", "HIGH-VALUE", "HIGH-VALUES",
"LOW-VALUE" or "LOW-VALUES" for any of the <literal-1>, <literal-2> or <literal-3>
specifications.

6. Once you have defined an alphabet name, that alphabet name may be used on speci-
fications in "CODE-SET", "COLLATING SEQUENCE", or "SYMBOLIC CHARACTERS" clauses
elsewhere in the program.

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 69

4.1.4.2. Class-Definition-Clause� �
SPECIAL-NAMES Class-Definition-Clause Syntax
 	

CLASS class-name-1 IS { literal-1 [ THRU|THROUGH literal-2 ] }...

~~~~~ ~~~~ ~~~~~~~

————————————————————————————————————————

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved words "THRU" and "THROUGH" are interchangeable.

3. Both <literal-1> and <literal-2> must be alphanumeric literals of length 1.

4. The literal(s) specified on this clause define the possible characters that may be found
in a data item’s value in order to be considered part of the class.

5. For example, the following defines a class called "Hexadecimal", the definition of which
specifies the only characters that may be present in an alphanumeric data item if that
data item is to be part of the "Hexadecimal" class:

CLASS Hexadecimal IS ’0’ THRU ’9’

’A’ THRU ’F’

’a’ THRU ’f’

6. Once class "Hexadecimal" has been defined, program code could then use a statement
such as "IF input-item IS Hexadecimal" to determine if the value of characters in
a data item are valid according to that class.

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



70 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4.1.4.3. Switch-Definition-Clause� �
SPECIAL-NAMES Switch-Definition-Clause Syntax
 	

switch-name-1 [ IS mnemonic-name-1 ]

[ ON STATUS IS condition-name-1 ]

~~

[ OFF STATUS IS condition-name-2 ]

~~~

————————————————————————————————————————

The switch-definition clause associates a condition-name with a run-time execution switch
so that the status of that switch may be tested from within a program.

1. The reserved words "IS" and "STATUS" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The valid <switch-name-1> names are "SWITCH-n" (n=0-15).

3. If the program is compiled with the "-fsyntax-extension" switch, the switch names
"SWn" (n=0-15) are also valid; they correspond to "SWITCH-0" through "SWITCH-15",
respectively.

4. At execution time, each switch will be associated with a "COB_SWITCH_n" run-time
environment variable (see [Run Time Environment Variables], page 522), where "n"
will have the value "0" through "15". Any of these sixteen environment variables that
have the value "ON" (regardless of upper- or lower-case value) will be considered to be
set "on". Any of these sixteen environment variables having no value at all or a value
other than "ON" will be considered "OFF".

5. Each specified switch must have at least one of a "IS <mnemonic-name-1>", "ON

STATUS" or an "OFF STATUS" option defined for it, otherwise there will be no way
to reference the switch from within a GNU COBOL program.

6. The "IS <mnemonic-name-1>" syntax provides a means for setting the switch to either
an ON or OFF value via the "SET" statement (see [SET], page 445).

7. The "ON STATUS" and "OFF STATUS" syntax provides a way of associating a condition-
name with either the on or off status of the switch, so that status may be tested at
execution time via the "IF" statement (see [IF], page 397).

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 71

4.1.4.4. Symbolic-Characters-Clause� �
SPECIAL-NAMES-Symbolic-Characters-Clause Syntax
 	

SYMBOLIC CHARACTERS

~~~~~~~~

{ symbolic-character-1... IS|ARE integer-1... }...

[ IN alphabet-name-1 ]

~~

————————————————————————————————————————

This clause may be used to define your own figurative constants.

1. The reserved words "ARE", "CHARACTERS" and "IS" are optional and may be included,
or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

2. There must be exactly as many <integer-1> values specified as there are <symbolic-
character-1> names.

3. Each symbolic character name will be associated with the corresponding <integer-1>th
character in the alphabet named in the "IN" clause. The integer values are selecting
characters from the alphabet by their ordinal position and not by their numeric value;
thus, an integer of 15 will select the 15th character in the specified alphabet, regardless
of the actual numeric value of the bit pattern that constitutes that character.

4. If no <alphabet-name-1> is specified, the systems native characterset will be assumed.

5. The following two code examples define the same set of figurative constant names for
five ASCII control characters (assuming that ASCII is the system’s native characterset).
The two examples are identical in their effects, even though the manner in which the
figurative constants are defined is different.

SYMBOLIC CHARACTERS NUL IS 1 SYMBOLIC CHARACTERS NUL SOH BEL DC1 DC2

SOH IS 2 ARE 1 2 8 18 19

BEL IS 8

DC1 IS 18

DC2 IS 19

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



72 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4.2. INPUT-OUTPUT SECTION� �
INPUT-OUTPUT SECTION Syntax
 	

[ INPUT-OUTPUT SECTION. ]

~~~~~~~~~~~~ ~~~~~~~

[ FILE-CONTROL. ]

~~~~~~~~~~~~

[ SELECT-Statement... ]

[ I-O-CONTROL. ]

~~~~~~~~~~~

[ MULTIPLE-FILE-Statement ]

[ SAME-RECORD-Statement ]

————————————————————————————————————————

The "INPUT-OUTPUT" section provides for the definition of any files the program will be
accessing as well as control of the I/O buffering process against those files through the
"FILE-CONTROL" and "I-O-CONTROL" paragraphs, respectively.

1. As the diagram shows, there are three types of statements that may occur in the
two paragraphs of this section. If none of the statements are coded in a particular
paragraph, the paragraph itself may be omitted, otherwise it is required.

2. If neither paragraph is coded, the "INPUT-OUTPUT SECTION." header itself may be
omitted, otherwise it is normally required.

3. If the compiler "config" file you are using has "relaxed-syntax-check" set to "yes",
the "FILE-CONTROL" and "I-O-CONTROL" paragraphs may be specified without the
"INPUT-OUTPUT SECTION." header having been coded.

4. If both statement types are coded in the "I-O-CONTROL" paragraph, the order in which
those statements are coded is irrelevant.

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 73

4.2.1. SELECT� �
SELECT Statement Syntax
 	

SELECT [ [ NOT ] OPTIONAL ] file-name-1

~~~~~~ ~~~ ~~~~~~~~

[ ASSIGN { TO } [{ EXTERNAL }] [{ DISC|DISK }] [{ identifier-1 }] ]

~~~~~~ { USING } { ~~~~~~~~ } { ~~~~ ~~~~ } { word-1 }

{ DYNAMIC } { DISPLAY } { literal-1 }

~~~~~~~ { ~~~~~~~ }

{ KEYBOARD }

{ ~~~~~~~~ }

{ LINE ADVANCING }

{ ~~~~ ~~~~~~~~~ }

{ PRINTER }

{ ~~~~~~~ }

{ RANDOM }

{ ~~~~~~ }

{ TAPE }

~~~~

[ COLLATING SEQUENCE IS alphabet-name-1 ]

~~~~~~~~~

[ FILE|SORT ] STATUS IS identifier-2 [ identifier-3 ] ]

~~~~ ~~~~ ~~~~~~

[ LOCK MODE IS { MANUAL|AUTOMATIC } ]

~~~~ { ~~~~~~ ~~~~~~~~~ }

{ EXCLUSIVE [ WITH { LOCK ON MULTIPLE RECORDS } ] }

~~~~~~~~~ { ~~~~ ~~ ~~~~~~~~ ~~~~~~~ }

{ LOCK ON RECORD }

[ ORGANIZATION-Clause ] { ~~~~ ~~ ~~~~~~ }

{ ROLLBACK }

[ RECORD DELIMITER IS STANDARD-1 ] ~~~~~~~~

~~~~~~ ~~~~~~~~~ ~~~~~~~~~~

[ RESERVE integer-1 AREAS ]

~~~~~~~

[ SHARING WITH { ALL OTHER } ]

~~~~~~~ { ~~~ }

{ NO OTHER }

{ ~~ }

{ READ ONLY }

. ~~~~ ~~~~

The "COLLATING SEQUENCE", "RECORD DELIMITER", "RESERVE" and "ALL OTHER" clauses
are syntactically recognized but are otherwise non-functional.

————————————————————————————————————————

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



74 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

The "SELECT" statement creates a definition of a file and links that COBOL definition to
the external operating system environment.

1. The reserved words "AREAS", "IS", "MODE", "OTHER", "SEQUENCE", "TO", "USING" and
"WITH" are optional and may be included, or not, at the discretion of the programmer.
The presence or absence of these words has no effect upon the program.

2. After <file-name-1>, the various clauses may be coded in any sequence.

3. A period must follow the last coded clause.

4. The "OPTIONAL" clause, to be used only for files that will be used to provide input data
to the program, indicates the file may or may not actually be available at run-time.
Attempts to "OPEN" an "OPTIONAL" file when the file does not exist will receive a special
non-fatal file status value (see status 05 in the list of file status values below) indicating
the file is not available; a subsequent attempt to "READ" that file will return an "AT

END" (end-of-file) condition. Optionally, files may be designated as "NOT OPTIONAL",
if desired. This is useful when specifying the compiler’s "-foptional-file" switch,
which automatically makes all files "OPTIONAL" except for those explicitly declared as
"NOT OPTIONAL".

5. The <file-name-1> value that you specify will be the name by which you will reference
the file within your program. This name should be formed according to the rules for
user-defined names (see [User-Defined Words], page 6).

6. The optional "ASSIGN" clause specifies how — at runtime, when <file-name-1> is
opened — either a logical device (STDIN, STDOUT) or a file anywhere in one of
the currently-mounted filesystems will be associated with <file-name-1>, as follows:

A. There are three components to the "ASSIGN" clause — a <<Type>> specification
("EXTERNAL", "DYNAMIC" or neither), a <<Device>> (the list of device choices) and
a <<Locator>> (shown as a choice between <identifier-1>, <word-1> and <literal-
1>).

B. "ASSIGN TO DISC ’<file-name-1>’" will be assumed if there is no "ASSIGN"

clause on a "SELECT".

C. If an "ASSIGN" clause is coded without a <<Device>>, the device "DISC" will be
assumed.

D. If a <<Locator>> clause is coded, the COBOL file <file-name-1> will be attached
to a data file within any filesystem that is mounted and available to the executing
program at the time <file-name-1> is opened. How that file is identified varies,
depending upon the specified <<Locator>>, as follows:

a. If <literal-1> is coded, the value of the literal will serve as the File Location
String that will identify the data file.

b. If <identifier-1> is coded, the value of the identifier will serve as the File
Location String that will identify the data file.

c. If <word-1> (a syntactically valid word not duplicating that of a reserved

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 75

or user-defined word) is coded, and a <<Type>> of "EXTERNAL" is specified,
<word-1> itself will serve as the File Location String that will identify the data
file. If, however, a <<Type>> of "EXTERNAL" was not specified, the compiler
will create a "PIC X(1024)" data item named <word-1> within the program;
the contents of that data item at the time the progrem opens <file-name-1>
will then serve as the File Location String that will identify the data file.

d. File Location Strings will be discussed shortly.

E. If no <<Locator>> is coded, <file-name-1> will be attached to a logical device or a
file based upon the specified (or implied) <<Device>>, as follows:

a. "DISC" or "DISK" will assume an attachment to a file named <file-name-1>
in whatever directory is current at the time the file is opened.

b. "DISPLAY" will assume an attachment to the "STDOUT" logical device; these
files should only be used for output.

c. "KEYBOARD" will assume an attachment to the "STDIN" logical device; these
files should only be used for input.

d. "PRINTER" will assume an attachment to the "LPT1" logical device/port; these
files should only be used for output.

e. "RANDOM" or "TAPE" will behave exactly as "DISC" does. These two additional
<<Device>>s are provided to facilitate the compilation of COBOL source from
other COBOL implementations.

F. The "LINE ADVANCING" device requires that a <<Locator>> be specified; these files
should only be used for output. A COBOL Line Advancing file will allow carriage-
control characters such as line-feeds and form-feeds to be written to the attached
operating system file, via the "ADVANCING" clause of the "WRITE" statement (see
[WRITE], page 479).

G. File Location Strings are used (at runtime) to identify the path and filename to
the data file that must be attached to <file-name-1> when that file is opened.

H. If the compiler "config" file you used to compile the program with had a "filename-
mapping" value of "yes", the GNU COBOL runtime system will first attempt to
identify a currently-defined environment variable whose value will serve as the data
file’s path and filename, as follows:

a. If the compiler "config" file (see [Compiler Configuration Files], page 516) you
used to compile the program specified "mf" as the "assign-clause" value, then
the File Locator String will be interpreted according to Microfocus COBOL
rules — namely, everything before the last "-" in the File Locator String
will be ignored; the characters after the last "-" will be treated as the base
of an environment variable name. If there is no "-" character in the File
Locator String then the entire File Locator String will serve as the base of an
environment variable name. This is the default behavior for every config file
except "ibm".

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



76 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

b. If, on the other hand, the compiler "config" file you used to compile the
program specified "mf" as the "assign-clause" value, then the File Locator
String will be interpreted according to according to IBM COBOL rules —
namely, the File Locator String is expected to be of theform "S-xxx" or "AS-
xxx", in which case the "xxx" will be treated as the base of an environment
variable name. If there is no "-" character in the File Locator String then the
entire File Locator String will serve as the base of an environment variable
name.

c. Once an environment variable name base (let’s refer to it as "bbbb") has been
determined, the runtime system will look for the first one of the following
environment variables that exists, in this sequence:

DD bbbb
dd bbbb
bbbb

Windows systems are case-insensitive with regard to environment variables,
so there is no difference between the first two when using a GNU COBOL
implementation built for either Windows/MinGW or native Windows.

If an environment variable was found, it’s value will serve as the path and
filename to the data file.

I. If no environment variable was found, or the "config" file used to compile the
program had a "filename-mapping" value of "no", then the File Locator String
value will serve as the path and filename to the data file.

J. Paths and filenames may be specified on an absolute ("C:\Data\datafile.dat",
"/Data/datafile.dat", . . . ) or relative-to-the-current-directory
("Data\datafile.dat", "Data/datafile.dat", . . . ) basis.

There may not even be a path ("datafile.dat"), in which case the file must be
in the current directory.

7. The "FILE STATUS" or "SORT STATUS" clause (they are both equivalent and only one
or the other, if any, should be specified) is used to specify the name of a two-digit
numeric data item into which an I/O status code will be saved after every I/O verb
that is executed against the file. This does not actually allocate the data item — you
must define the item yourself somewhere in the data division.

Possible status codes that can be returned to a "FILE STATUS" data item are as follows:

Code Explanation
00 Success
02 Success (Duplicate Record Key Written)
05 Success (Optional File Not Found)
07 Success (No Unit)

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 77

10 End of file reached if reading forward or beginning-of-file reached if reading
backward

14 Out of key range
21 Key invalid
22 Attempt to duplicate key value
23 Key not found
30 Permanent I/O error
31 Inconsistent filename
34 Boundary violation
35 File not found
37 Permission denied
38 Closed with lock
39 Conflicting attribute
41 File already open
42 File not open
43 Read not done
44 Record overflow
46 Read error
47 "OPEN INPUT" denied (insufficient permissions to read file)
48 "OPEN OUTPUT" denied (insufficient permissions to write to file)
49 "OPEN I-O" denied (insufficient permissions to read and/or write file)
51 Record locked
52 End of page
57 "LINAGE" specifications invalid
61 File sharing failure
91 File not available

8. The "SHARING" clause defines the conditions under which the program will be willing
(or not) to allow other programs executing at the same time to access the file. See [File
Sharing], page 231, for the details.

9. The "LOCK" clause defines how concurrent access to the file will be managed on a
record-by-record basis. See [Record Locking], page 233, for the details.

10. A "SELECT" statement without an "ORGANIZATION" explicitly coded will be handled
as if the following ORGANIZATION clause had been specified:

ORGANIZATION IS SEQUENTIAL

ACCESS MODE IS SEQUENTIAL

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



78 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4.2.1.1. ORGANIZATION SEQUENTIAL� �
ORGANIZATION SEQUENTIAL Clause Syntax
 	

[ ORGANIZATION|ORGANISATION IS ] RECORD BINARY SEQUENTIAL

~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~

[ ACCESS MODE IS SEQUENTIAL ]

~~~~~~ ~~~~~~~~~~

————————————————————————————————————————

Files declared as "ORGANIZATION SEQUENTIAL" will consist of records with no explicit end-
of-record delimiter character sequences; records in such files are "delineated" by a calculated
byte-offset (based on the maximum record length) into the file.

1. The reserved words "BINARY", "IS", "MODE" and "RECORD" are optional and may be
included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

2. The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

3. The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations
that consider "ORGANIZATION" to be optional. Most COBOL implementations do re-
quire the word "ORGANIZATION", so it should be used in new programs.

4. These files cannot be prepared with any standard text-editing or word processing soft-
ware as all such programs will imbed delimiter characters at the end of records (use
"ORGANIZATION IS LINE SEQUENTIAL" instead).

5. These files may contain either "USAGE DISPLAY" or "USAGE COMPUTATIONAL" (of any
variety) data since no binary data sequence can be accidentally interpreted as an end-
of-record delimiter.

6. While records in a "ORGANIZATION SEQUENTIAL" file may be defined as having variable-
length records, the file will be structured in such a manner as to reserve space for each
record equal to the size of the largest possible record, based on the file’s description in
the "FILE SECTION".

7. The "ACCESS MODE SEQUENTIAL" clause is optional because, if absent, it will be as-
sumed anyway for this type of file. The internal structure of these files is such that
they can only be processed in a sequential manner; in order to read the 100th record
in such a file, for example, you first must read records 1 through 99.

8. Sequential files are processed using the following statements:

• "CLOSE" (see [CLOSE], page 364)

• "COMMIT" (see [COMMIT], page 365)

• "DELETE" (see [DELETE], page 369)

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 79

• "MERGE" (see [MERGE], page 411)

• "OPEN" (see [OPEN], page 420)

• "READ" (see [READ], page 428)

• "REWRITE" (see [REWRITE], page 437)

• "SORT" (see [SORT], page 453)

• "UNLOCK" (see [UNLOCK], page 474)

• "WRITE" (see [WRITE], page 479)

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



80 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4.2.1.2. ORGANIZATION LINE SEQUENTIAL� �
ORGANIZATION LINE SEQUENTIAL Clause Syntax
 	

[ ORGANIZATION|ORGANISATION IS ] LINE SEQUENTIAL

~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~

[ ACCESS MODE IS SEQUENTIAL ]

~~~~~~ ~~~~~~~~~~

[ PADDING CHARACTER IS literal-1 | identifier-1 ]

~~~~~~~

The "PADDING CHARACTER" clause is syntactically recognized but is otherwise
non-functional.

————————————————————————————————————————

Files declared as "ORGANIZATION LINE SEQUENTIAL" will consist of records terminated by
an end-of-record delimiter character or character sequence.

1. The reserved words "CHARACTER", "IS" and "MODE" are optional and may be included,
or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

2. The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

3. The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations
that consider that word to be optional. Most COBOL implementations do require the
word "ORGANIZATION", so it should be used in new programs.

4. This is the only "ORGANIZATION" valid for files that are assigned to the "PRINTER"

device.

5. These files may be created with any standard text-editing or word processing software
capable of writing text files. Such files should not contain any "USAGE COMPUTATIONAL"

or "BINARY" (of any variety) data since such fields could accidentally contain byte
sequences that could be interpreted as an end-of-record delimiter.

6. Both fixed- and variable-length record formats are supported.

7. The end-of-record delimiter sequence will be X’0A’ (an ASCII line-feed character) or a
X’0D0A’ (an ASCII carriage-return + line-feed sequence). The former is used on Unix
implementations of GNU COBOL (includingWindows/MinGW,Windows/Cygwin and
OSX implementations) while the latter would be used with native Windows implemen-
tations.

8. When reading a "LINE SEQUENTIAL" file, records in excess of the size implied by the
file’s description in the "FILE SECTION" will be truncated while records shorter than
that size will be padded to the right with "SPACES".

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 81

9. The "ACCESS MODE SEQUENTIAL" clause is optional because, if absent, it will be as-
sumed anyway for this type of file. The internal structure of these files is such that the
data can only be processed in a sequential manner; in order to read the 100th record
in such a file, for example, you first must read records 1 through 99.

10. Files assigned to "PRINTER" or "CONSOLE" should be specified as "ORGANIZATION LINE

SEQUENTIAL".

11. Line Sequential files are processed using the following statements:

• "CLOSE" (see [CLOSE], page 364)

• "COMMIT" (see [COMMIT], page 365)

• "DELETE" (see [DELETE], page 369)

• "MERGE" (see [MERGE], page 411)

• "OPEN" (see [OPEN], page 420)

• "READ" (see [READ], page 428)

• "REWRITE" (see [REWRITE], page 437)

• "SORT" (see [SORT], page 453)

• "UNLOCK" (see [UNLOCK], page 474)

• "WRITE" (see [WRITE], page 479)

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



82 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4.2.1.3. ORGANIZATION RELATIVE� �
ORGANIZATION RELATIVE Clause Syntax
 	

[ ORGANIZATION|ORGANISATION IS ] RELATIVE

~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~

[ ACCESS MODE IS { SEQUENTIAL } ]

~~~~~~ { ~~~~~~~~~~ }

{ DYNAMIC }

{ ~~~~~~~ }

{ RANDOM }

~~~~~~

[ RELATIVE KEY IS identifier-1 ]

~~~~~~~~

————————————————————————————————————————

These files are files with an internal organization such that records may be processed in a
sequential manner based upon their physical location in the file or in a random manner by
allowing records to be read, written or updated by specifying the relative record number in
the file.

1. The reserved words "IS", "KEY" and "MODE" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

3. The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations
that consider that word to be optional. Most COBOL implementations do require the
word "ORGANIZATION", so it should be used in new programs.

4. "ORGANIZATION RELATIVE" files cannot be assigned to the "CONSOLE", "DISPLAY",
"LINE ADVANCING" or "PRINTER" devices.

5. The "RELATIVE KEY" clause is optional only if "ACCESS MODE SEQUENTIAL" is specified.

6. While an "ORGANIZATION RELATIVE" file may be defined as having variable-length
records, the file will be structured in such a manner as to reserve space for each record
equal to the size of the largest possible record as defined by the file’s description in the
"FILE SECTION".

7. "ACCESS MODE SEQUENTIAL", the default "ACCESS MODE" if none is specified, indicates
that the records of the file will be processed in a sequential manner, according to their
physical sequence in the file.

8. "ACCESS MODE RANDOM" means that records will be processed in random sequence by
specifying their record number in the file every time the file is read or written.

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 83

9. "ACCESS MODE DYNAMIC" indicates the program may switch back and forth between
"SEQUENTIAL" and "RANDOM" mode during execution. The file starts out initially in
"SEQUENTIAL"mode when first opened but the program may use the "START" statement
(see [START], page 459) to switch between sequential and random access.

10. The "RELATIVE KEY" data item is a numeric data item that cannot be defined as a field
within records of this file. Its purpose is to return the current relative record number
of a relative file that is being processed in "SEQUENTIAL" access mode and to serve as
a key that specifies the relative record number to be read or written when processing
a relative file in "RANDOM" access mode.

11. Relative files are processed using the following statements:

• "CLOSE" (see [CLOSE], page 364)

• "COMMIT" (see [COMMIT], page 365)

• "DELETE" (see [DELETE], page 369)

• "MERGE" (see [MERGE], page 411), "ACCESS MODE RANDOM" not allowed

• "OPEN" (see [OPEN], page 420)

• "READ" (see [READ], page 428)

• "REWRITE" (see [REWRITE], page 437)

• "SORT" (see [SORT], page 453), "ACCESS MODE RANDOM" not allowed

• "START" (see [START], page 459)

• "UNLOCK" (see [UNLOCK], page 474)

• "WRITE" (see [WRITE], page 479)

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



84 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4.2.1.4. ORGANIZATION INDEXED� �
ORGANIZATION INDEXED Clause Syntax
 	

[ ORGANIZATION|ORGANISATION IS ] INDEXED

~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~

[ ACCESS MODE IS { SEQUENTIAL } ]

~~~~~~ { ~~~~~~~~~ }

{ DYNAMIC }

{ ~~~~~~~ }

{ RANDOM }

~~~~~~

[ RECORD KEY IS identifier-1

~~~~~~

[ =|{SOURCE IS} identifier-2 ] ]

~~~~~~

[ ALTERNATE RECORD KEY IS identifier-3

~~~~~~~~~ ~~~~~~

[ =|{SOURCE IS} identifier-4 ]

~~~~~~

[ WITH DUPLICATES ] ]...

~~~~~~~~~~

The "SOURCE" clause is syntactically recognized but is otherwise non-functional. It is sup-
ported to provide compatibility with COBOL source written for other COBOL implemen-
tations.

————————————————————————————————————————

Indexed files, like relative files, may have their records processed in either a sequential or
random manner. Unlike relative files, however, the actual location of a record in an indexed
file is calculated automatically based upon the value(s) of one or more alphanumeric fields
within records of the file. For example, an indexed file containing product data might use
the product identification code as a record key. This means you may read, write or update
the "A6G4328"th record or the "Z8X7723"th record directly, based upon the product id
value of those records!

1. The reserved words "IS", "KEY" and "MODE" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. The reserved words "ORGANIZATION" and "ORGANISATION" are interchangeable.

3. The phrase "ORGANIZATION IS" (and it’s internationalized alternative, "ORGANISATION
IS") is optional to provide compatibility with those (few) COBOL implementations
that consider that word to be optional. Most COBOL implementations do require the
word "ORGANIZATION", so it should be used in new programs.

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 85

4. "ORGANIZATION INDEXED" files cannot be assigned to "CONSOLE", "DISPLAY",
"KEYBOARD", "LINE ADVANCING" or "PRINTER".

5. "ACCESS MODE SEQUENTIAL", the default "ACCESS MODE" if none is specified, indicates
that the records of the file will be processed in a sequential manner with respect to the
values of the "RECORD KEY" or the "ALTERNATE RECORD KEY" most-recently referenced
on a "START" statement (see [START], page 459).

6. "ACCESS MODE RANDOM" means that records will be processed in random sequence by
accessing the record with specific record key or alternate record key values.

7. "ACCESS MODE DYNAMIC" allows the file will be processed either in "RANDOM" or
"SEQUENTIAL" mode; the program may switch between the two modes as needed. The
"START" statement is used to make the switch between modes.

8. The "PRIMARY KEY" clause defines the field within the record used to provide the
primary access to records within the file. No two records in the file will be allowed to
have the same "PRIMARY KEY" field value.

9. The "ALTERNATE RECORD KEY" clause, if used, defines an additional field within the
record that provides an alternate means of directly accessing records or an additional
field by which the file’s contents may be processed sequentially. You have the choice of
allowing records to have duplicate alternate key values, if necessary.

10. There may be multiple "ALTERNATE RECORD KEY" clauses, each defining an additional
alternate key for the file.

11. Indexed files are processed using the following statements:

• "CLOSE" (see [CLOSE], page 364)

• "COMMIT" (see [COMMIT], page 365)

• "DELETE" (see [DELETE], page 369)

• "MERGE" (see [MERGE], page 411), "ACCESS MODE RANDOM" not allowed

• "OPEN" (see [OPEN], page 420)

• "READ" (see [READ], page 428)

• "REWRITE" (see [REWRITE], page 437)

• "SORT" (see [SORT], page 453), "ACCESS MODE RANDOM" not allowed

• "START" (see [START], page 459)

• "UNLOCK" (see [UNLOCK], page 474)

• "WRITE" (see [WRITE], page 479)

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION



86 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4.2.2. MULTIPLE FILE� �
I-O-CONTROL MULTIPLE FILE Syntax
 	

MULTIPLE FILE TAPE CONTAINS

~~~~~~~~

{ file-name-1 [ POSITION integer-1 ] }...

~~~~~~~~

.

The "MULTIPLE FILE TAPE" clause is obsolete and is therefore recognized but not func-
tional.

————————————————————————————————————————

Chapter 4 - ENVIRONMENT DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 87

4.2.3. SAME RECORD AREA� �
I-O-CONTROL SAME AREA Syntax
 	

SAME { SORT-MERGE } AREA FOR file-name-1... .

~~~~ { ~~~~~~~~~~ }

{ SORT }

{ ~~~~ }

{ RECORD }

~~~~~~

The "SAME SORT-MERGE" and "SAME SORT" clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————

The "SAME RECORD AREA" clause allows you to specify that multiple files should share the
same input and output memory buffers.

1. The reserved words "AREA" and "FOR" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. This statement must be terminated with a period.

3. While coding only a single file name (the repeated <file-name-1> item) is syntactically
valid, this statement will have no effect upon the program unless at least two files are
specified.

4. The effect of this statement will be to cause the specified files to share the same I/O
buffer in memory. These buffers can sometimes get quite large, and by having multiple
files share the same buffer memory you may significantly cut down the amount of
memory the program is using (thus making "room" for more procedural code or data).
If you do use this feature, take care to ensure that no more than one of the specified
files are ever OPEN simultaneously.

————————————————————
End of Chapter 4 — ENVIRONMENT DIVISION

3 June 2014 Chapter 4 - ENVIRONMENT DIVISION





GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 89

5. DATA DIVISION

� �
DATA DIVISION Syntax
 	

DATA DIVISION.

~~~~ ~~~~~~~~

[ FILE SECTION.

~~~~ ~~~~~~~

{ File/Sort-Description [ { FILE-SECTION-Data-Item } ]... }... ]

{ { 01-Level-Constant } }

{ { 78-Level-Constant } }

{ 01-Level-Constant }

{ 78-Level-Constant }

[ WORKING-STORAGE SECTION.

~~~~~~~~~~~~~~~ ~~~~~~~

[ { WORKING-STORAGE-SECTION-Data-Item } ]... ]

{ 01-Level-Constant }

{ 78-Level-Constant }

[ LOCAL-STORAGE SECTION.

~~~~~~~~~~~~~ ~~~~~~~

[ { LOCAL-STORAGE-SECTION-Data-Item } ]... ]

{ 01-Level-Constant }

{ 78-Level-Constant }

[ LINKAGE SECTION.

~~~~~~~ ~~~~~~~

[ { LINKAGE-SECTION-Data-Item } ]... ]

{ 01-Level-Constant }

{ 78-Level-Constant }

[ REPORT SECTION.

~~~~~~ ~~~~~~~

{ Report-Description [ { Report-Group-Definition } ]... }... ]

{ { 01-Level-Constant } }

{ { 78-Level-Constant } }

{ 01-Level-Constant }

{ 78-Level-Constant }

[ SCREEN SECTION.

~~~~~~ ~~~~~~~

[ { SCREEN-SECTION-Data-Item } ]... ]

{ 01-Level-Constant }

{ 78-Level-Constant }

————————————————————————————————————————

All data used by any COBOL program must be defined in one of the six sections of the
data division, depending upon the purpose of the data.

3 June 2014 Chapter 5 - DATA DIVISION



90 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

1. If no data will be described in one of the data division sections, that section header
may be omitted.

2. If no data division sections are needed, the "DATA DIVISION." header itself may be
omitted.

3. If more than one section is needed in the data division (a common situation), the
sections must be coded in the sequence they are presented above.

5.1. Data Definition Principles

GNU COBOL data items, like those of other COBOL implementations, are described in
a hierarchical manner. This accommodates the fact that data items frequently need to be
able to be broken up into subordinate items. Take for example, the following logical layout
of a portion of a data item named "Employee":

The "Employee" data item consists of two subordinate data items — an "Employee-Name"

and an "Employment-Dates" data item (presumably there would be a lot of others too, but
we don’t care about them right now). As the diagram shows, each of those data items are,
in turn, broken down into subordinate data items. This hierarchy of data items can get
rather "deep", and GNU COBOL, like other COBOL implementations, can handle up to
49 levels of such hierarchical structures.

As was presented earlier (see [Structured Data], page 10), a data item that is broken down
into other data items is referred to as a group item, while one that isn’t broken down is
called an elementary item.

COBOL uses the concept of a "level number" to indicate the level at which a data item
occurs in a data structure such as the example shown above. When these data items are
defined, they are all defined together with a number in the range 1-49 specified in front of
their names. Over the years, a convention has come to exist among COBOL programmers
that level numbers are always coded as two-digit numbers — they don’t have to be specified
as two-digit numbers, but every example you see in this document will take that approach!

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 91

The data item at the top, also referred to as a "record", always has a level number of 01.
After that, you may assign level numbers as you wish (01–02–03–04. . . , 01–05–10–15. . . ,
etc.), as long as you follow these simple rules:

1. Every data item at the same "level" of a hierarchy diagram such as the one you see
here (if you were to make one, which you rarely — if ever — will, once you get used to
this concept) must have the same level number.

2. Every new level uses a level number that is strictly greater than the one used in the
parent (next higher) level.

3. When describing data hierarchies, you may never use a level number greater than 49
(except for 66, 77, 78 and 88 which have very special meanings — see see [Special Data
Items], page 118).

So, the definition of these data items in a GNU COBOL program would go something like
this:

01 Employee

05 Employee-Name

10 Last-Name

10 First-Name

10 Middle-Initial

05 Employment-Dates

10 From-Date

15 Year

15 Month

15 Day

10 To-Date

15 Year

15 Month

15 Day

The indentation is purely at the discretion of the programmer to make things easier for
humans to read (the compiler couldn’t care less). Historically, COBOL implementations
that required Fixed Format Mode source programs required that the "01" level number
begin in Area A and that everything else begins in Area B. GNU COBOL only requires
that all data definition syntax occur in columns 8-72. In Free Format Mode, of course, there
aren’t even those limitations.

Did you notice that there are two each of "Year", "Month" and "Day" data names defined?
Thet’s perfectly legal, provided that each can be uniquely "qualified" so as to be dis-
tinct from the other. Take for example the "Year" items. One is defined as part of the
"From-Date" data item while the other is defined as part of the "To-Date" data item. In
COBOL, we would actually code references to these two data items as either "Year OF

From-Date" and "Year OF To-Date" or "Year IN From-Date" and "Year IN To-Date"

(COBOL allows either "IN" or "OF" to be used). Since these references would clarify any

3 June 2014 Chapter 5 - DATA DIVISION



92 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

confusion to us as to which "Year" might be referenced, the GNU COBOL compiler won’t
be confused either.

The coding example shown above is incomplete — it only describes the data item names
and their hierarchical relationships to one other. In addition, any valid data item definitions
will also need to describe what type of data is to be contained in a data item (Numeric?
Alphanumeric? Alphabetic?), how much data can be held in the data item and a multitude
of other characteristics.

When group items are being defined, subordinate items may be assigned a "name" of
"FILLER". There may be any number of "FILLER" items defined within a group item.
A data item named "FILLER" cannot be referenced directly; these items are generally used
to specify an unused portion of the total storage allocated to a group item. Note that it is
possible that the name of the group item itself might be specified as "FILLER" if there is
no need to ever refer directly to the group structure itself.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 93

5.2. FILE SECTION� �
FILE SECTION Syntax
 	

[ FILE SECTION.

~~~~ ~~~~~~~

{ File/Sort-Description [ { FILE-SECTION-Data-Item } ]... }... ]

{ { 01-Level-Constant } }

{ { 78-Level-Constant } }

{ 01-Level-Constant }

{ 78-Level-Constant }

————————————————————————————————————————

Every file that has been referenced by a "SELECT" statement (see [SELECT], page 73) must
also be described in the file section of the data division.

Files destined for use as sort/merge work files must be described with a Sort/Merge File
Description ("SD") while every other file is described with a File Description ("FD"). Each
of these descriptions will almost always be followed with at least one record description.

3 June 2014 Chapter 5 - DATA DIVISION



94 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.2.1. File/Sort-Description� �
File/Sort-Description Syntax
 	

FD|SD file-name-1 [ IS EXTERNAL|GLOBAL ]

~~ ~~ ~~~~~~~~ ~~~~~~

[ BLOCK CONTAINS [ integer-1 TO ] integer-2 CHARACTERS|RECORDS ]

~~~~~ ~~ ~~~~~~~~~~ ~~~~~~~

[ CODE-SET IS alphabet-name-1 ]

~~~~~~~~

[ DATA { RECORD IS } identifier-1... ]

~~~~ { ~~~~~~ }

{ RECORDS ARE }

~~~~~~~

[ LABEL { RECORD IS } OMITTED|STANDARD ]

~~~~~ { ~~~~~~ } ~~~~~~~ ~~~~~~~~

{ RECORDS ARE }

~~~~~~~

[ LINAGE IS integer-3 | identifier-2 LINES

~~~~~~

[ LINES AT BOTTOM integer-4 | identifier-3 ]

~~~~~~

[ LINES AT TOP integer-5 | identifier-4 ]

~~~

[ WITH FOOTING AT integer-6 | identifier-5 ] ]

~~~~~~~

[ RECORD { CONTAINS [ integer-7 TO ] integer-8 CHARACTERS } ]

~~~~~~ { ~~ }

{ IS VARYING IN SIZE }

{ ~~~~~~~ }

{ [ FROM [ integer-7 TO ] integer-8 CHARACTERS }

{ ~~ }

{ DEPENDING ON identifier-6 ] }

~~~~~~~~~

[ RECORDING MODE IS recording-mode ]

~~~~~~~~~

[ { REPORT IS } report-name-1... ]

{ ~~~~~~ }

{ REPORTS ARE }

~~~~~~~

[ VALUE OF implementor-name-1 IS literal-1 | identifier-7 ] .

~~~~~ ~~

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 95

The "BLOCK CONTAINS", "DATA RECORD", "LABEL RECORD", "RECORDING MODE" and
"VALUE OF" clauses are syntactically recognized but are obsolete and non-functional.
These clauses should not be coded in new programs.

————————————————————————————————————————

1. The reserved words "ARE", "AT", "CHARACTERS" ("RECORD" clause only), "CONTAINS",
"FROM", "IN", "IS", "ON" and "WITH" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The terms "RECORD IS" and "RECORDS ARE" are interchangeable.

3. The terms "REPORT IS" and "REPORTS ARE" are interchangeable.

4. Only files intended for use as work files for either the "SORT" (see [SORT], page 453)
or "MERGE" (see [MERGE], page 411) statements should be coded with an SD — all
others should be defined with a FD.

5. The sequence in which files are defined via "FD" or "SD", as compared to the sequence
in which their "SELECT" statements were coded, is irrelevant.

6. The name specified as <file-name-1> must exactly match the name specified on the
file’s "SELECT" statement.

7. The "CODE-SET" clause allows a custom alphabet, defined in the "SPECIAL-NAMES"

(see [SPECIAL-NAMES], page 62) paragraph, to be associated with a file. This clause
is valid only when used with sequential or line sequential files.

8. The "LINAGE" clause may only be specified in the "FD" of a sequential or line sequential
file. If used with a sequential file, the organization of that file will be implicitly changed
to line sequential. The various components of the "LINAGE" clause define the layout of
printed pages as follows:

• "LINES AT TOP" — the number of unused (i.e. left blank) lines at the top of every
page. The default if this if not specified is zero.

• "LINES AT BOTTOM" — the number of unused (i.e. left blank) lines at the bottom
of every page. The default if this if not specified is zero.

• "LINAGE IS n LINES" — the total number of used/usable lines on the page.

• The sum of the previous three specifications should be the total number of possible
lines available on one printed page.

• "FOOTING AT" — the line number beyond which nothing may be printed except
for any footing that is to appear on every page. The default for this if not specified
is zero, meaning there will be no footings. This value cannot be larger than the
"LINAGE IS n LINES" value.

9. This page structure — once defined — can be automatically enforced by the "WRITE"

statement (see [WRITE], page 479).

3 June 2014 Chapter 5 - DATA DIVISION



96 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

10. Specifying a "LINAGE" clause in an "FD" will cause the "LINAGE-COUNTER" special
register to be created for the file. This automatically-created data item will always
contain the current relative line number on the page being prepared which will serve
as the starting point for a "WRITE" statement.

11. The "RECORD CONTAINS" and "RECORD IS VARYING" clauses are ignored (with a warn-
ing message issued) when used with line sequential files. With other file organizations,
these mutually-exclusive clauses define the length of data records within the file. The
data item specified as <identifier-6> must be defined within one of the record descrip-
tions of <file-name-1>.

12. The "REPORT IS" clause announces to the compiler that the file will be dedicated to
the Report Writer Control System (RWCS); the clause names one or more reports,
each to be described in the report section. The following special rules apply when the
"REPORT" clause is used:

A. The clause may only be specified in the "FD" of a sequential or line sequential file.
If used with a sequential file, the organization of that file will be implicitly changed
to line sequential.

B. The "FD" cannot be followed by record descriptions — detailed descriptions of data
to be printed to the file will be defined in the "REPORT SECTION" (see [REPORT
SECTION], page 107).

C. If a "LINAGE" clause is also specified, Values specified for "LINAGE IS" and
"FOOTING AT" will be ignored. The values of "LINES AT BOTTOM" and "LINES

AT TOP", if any, will be honored.

13. The following special rules apply only to sort/merge work files:

A. Sort/merge work files should be assigned to "DISK" (or "DISC") on their "SELECT"
statements.

B. Sorts and merges will be performed in memory, if the amount of data being sorted
allows.

C. Should actual disk work files be necessary due to the amount of data being sorted
or merged, they will be automatically allocated to disk in a folder defined by:

• The "TMPDIR" run-time environment variable (see [Run Time Environment
Variables], page 522)

• The "TMP" run-time environment variable

• The "TEMP" run-time environment variable

(in that order)

D. These disk files will be automatically purged upon "SORT" or "MERGE" termination.
They will also be purged if the program terminates abnormally before the "SORT"
or "MERGE" finishes. Should you ever need to know, temporary sort/merge work
files will be named "cob*.tmp".

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 97

E. If you specify a specific filename in the sort/merge work file’s "SELECT", it will be
ignored.

14. See [Data Description Clauses], page 125, for information on the "EXTERNAL" and
"GLOBAL" options.

3 June 2014 Chapter 5 - DATA DIVISION



98 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.2.2. FILE-SECTION-Data-Item� �
FILE-SECTION-Data-Item Syntax
 	

level-number [ identifier-1 | FILLER ] [ IS GLOBAL|EXTERNAL ]

~~~~~~ ~~~~~~ ~~~~~~~~

[ BLANK WHEN ZERO ]

~~~~~ ~~~~

[ JUSTIFIED RIGHT ]

~~~~

[ OCCURS [ integer-1 TO ] integer-2 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-2 ]

~~~~~~~~~

[ ASCENDING|DESCENDING KEY IS identifier-3 ]

~~~~~~~~~ ~~~~~~~~~~

[ INDEXED BY identifier-4 ] ]

~~~~~~~

[ PICTURE IS picture-string ]

~~~

[ REDEFINES identifier-5 ]

~~~~~~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE [CHARACTER] ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] ]

~~~~ ~~~~ ~~~~ ~~~~~

[ USAGE IS data-item-usage ] . [ FILE-SECTION-Data-Item ]...

~~~~~

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————

Every sort file description ("SD" or "FD") must be followed by at least one 01-level data
item, except for file descriptions containing the "REPORT IS" clause. These 01-level data
items, in turn, may be broken down into subordinate group and elementary items. An
01-level data item defined here in the file section is also known as a ’Record ’, even if it is
an elementary item, provided that elementary item lacks the "CONSTANT" attribute.

1. The reserved words "BY", "IS", "KEY", "ON" and "WHEN" are optional and may be
included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

2. The reserved words "SYNCRONIZED" and "SYNCRONIZED" are interchangeable. Both
may be abbreviated to "SYNC".

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 99

3. The reserved word "PICTURE" may be abbreviated to "PIC".

4. As the syntax diagram shows, the definition of a <<FILE-SECTION-Data-Item>> is a
recursive one in that there may be any number of such specifications coded following
a FD or SD. The first such specification must have a level number of 01, and will
describe a specific format of data record within the file. Specifications that follow
that one may have level numbers greater than 01, in which case they are defining a
hierarchical breakdown of the record. The definition of a record is terminated when
one of the following occurs:

• Another 01-level item is found — this signifies the start of another record layout
for the file.

• Another "FD" or "SD" is found — this marks the completion of the detailed de-
scription of the file and begins another.

• A division or section header is found — this also marks the completion of the
detailed description of the file and signifies the end of the file section as well.

5. Every <<FILE-SECTION-Data-Item>> description must be terminated with a period.

6. If there are multiple record descriptions present for a given "FD" or "SD", the one
with the longest length will define the size of the record buffer into which a "READ"

statement (see [READ], page 428) or a "RETURN" statement (see [RETURN], page 436)
will deliver data read from the file and from which a "WRITE" statement (see [WRITE],
page 479) or "RELEASE" statement (see [RELEASE], page 434) statement will obtain
the data to be written to the file.

7. The various 01-level record descriptions for a file description implicitly share that one
common record buffer (thus, they provide different ways to view the structure of data
that can exist within the file). Record buffers can be shared between files by using the
"SAME RECORD AREA" (see [SAME RECORD AREA], page 87) clause.

8. The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 66, 77, 78
and 88 all have special uses — See [Special Data Items], page 118, for details.

9. Not specifying an <identifier-1> or "FILLER" immediately after the level number has
the same effect as if "FILLER" were specified. A data item named "FILLER" cannot
be referenced directly; these items are generally used to specify an unused portion of
the total storage allocated to a group item or to describe a group item whose contents
which will only be referenced using the names of those items that belong to it.

10. "EXTERNAL" cannot be combined with "GLOBAL" or "REDEFINES".

11. File section data buffers (and therefore all 01-level record layouts defined in the file
section) are initialized to all binary zeros when the program is loaded into storage.

12. See [Data Description Clauses], page 125, for information on the usage of the various
data description clauses.

3 June 2014 Chapter 5 - DATA DIVISION



100 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.3. WORKING-STORAGE SECTION� �
WORKING-STORAGE-SECTION-Data-Item Syntax
 	

level-number [ identifier-1 | FILLER ] [ IS GLOBAL | EXTERNAL ]

~~~~~~ ~~~~~~ ~~~~~~~~

[ BASED ]

~~~~~

[ BLANK WHEN ZERO ]

~~~~~ ~~~~

[ JUSTIFIED RIGHT ]

~~~~

[ OCCURS [ integer-1 TO ] integer-2 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-2 ]

~~~~~~~~~

[ ASCENDING|DESCENDING KEY IS identifier-3 ]

~~~~~~~~~ ~~~~~~~~~~

[ INDEXED BY identifier-4 ] ]

~~~~~~~

[ PICTURE IS picture-string ]

~~~

[ REDEFINES identifier-5 ]

~~~~~~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] ]

~~~~ ~~~~ ~~~~ ~~~~~

[ USAGE IS data-item-usage ]

~~~~~

[ VALUE IS [ ALL ] literal-1 ] . [ WORKING-STORAGE-SECTION-Data-Item ]...

~~~~~ ~~~

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————

The working-storage section is used to describe data items that are not part of files, screens
or reports and whose data values persist throughout the execution of the program.

1. The reserved words "BY", "CHARACTER", "IS", "KEY", "ON", "RIGHT" (JUSTIFIED),
"TIMES" and "WHEN" are optional and may be included, or not, at the discretion of the
programmer. The presence or absence of these words has no effect upon the program.

2. The reserved words "SYNCRONIZED" and "SYNCRONISED" are interchangeable. Both
may be abbreviated as "SYNC".

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 101

3. The reserved word "PICTURE" may be abbreviated to "PIC".

4. The reserved word "JUSTIFIED" may be abbreviated to "JUST".

5. As the syntax diagram shows, the definition of a <<WORKING-STORAGE-SECTION-
Data-Item>> is a recursive one in that there may be any number of such specifications
coded following one another. The first such specification must have a level number
of 01. Specifications that follow that one may have level numbers greater than 01, in
which case they are defining a hierarchical breakdown of a record. The definition of a
record is terminated when one of the following occurs:

• Another 01-level item is found — this signifies the end of the definition of one
record and the start of a another.

• A 77-level item is found — this signifies the end of the definition of the record and
begins the definition of a special data item; See [77-Level Data Items], page 122,
for more information.

• A division or section header is found — this also marks the completion of a record
and signifies the end of the working-storage section as well.

6. Every <<WORKING-STORAGE-SECTION-Data-Item>> description must be termi-
nated with a period.

7. The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through
49 are used to define data items that may be part of a hierarchical structure. Level
number 01 can also be used to define a constant — an item with an unchangable value
specified at compilation time.

8. Level numbers 66, 77, 78 and 88 all have special uses — See [Special Data Items],
page 118, for details.

9. Not specifying an <identifier-1> or "FILLER" immediately after the level number has
the same effect as if "FILLER" were specified. A data item named "FILLER" cannot
be referenced directly; these items are generally used to specify an unused portion of
the total storage allocated to a group item or to describe a group item whose contents
which will only be referenced using the names of those items that belong to it.

10. Data items defined within the working-storage section are automatically initialized once
— as the program in which the data is defined is loaded into memory. Subprograms may
be loaded into memory more than once (see the "CANCEL" statement (see [CANCEL],
page 363)), in which case initialization will happen each time they are loaded. See
[Data Initialization], page 23, for a discussion of the initialization rules.

11. See [Data Description Clauses], page 125, for information on the usage of the various
data description clauses.

3 June 2014 Chapter 5 - DATA DIVISION



102 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.4. LOCAL-STORAGE SECTION� �
LOCAL-STORAGE-SECTION-Data-Item Syntax
 	

level-number [ identifier-1 | FILLER ] [ IS GLOBAL|EXTERNAL ]

~~~~~~ ~~~~~~ ~~~~~~~~

[ BASED ]

~~~~~

[ BLANK WHEN ZERO ]

~~~~~ ~~~~

[ JUSTIFIED RIGHT ]

~~~~

[ OCCURS [ integer-1 TO ] integer-2 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-2 ]

~~~~~~~~~

[ ASCENDING|DESCENDING KEY IS identifier-3 ]

~~~~~~~~~ ~~~~~~~~~~

[ INDEXED BY identifier-4 ] ]

~~~~~~~

[ PICTURE IS picture-string ]

~~~

[ REDEFINES identifier-5 ]

~~~~~~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] ]

~~~~ ~~~~ ~~~~ ~~~~~

[ USAGE IS data-item-usage ]

~~~~~

[ VALUE IS [ ALL ] literal-1 ] . [ LOCAL-STORAGE-SECTION-Data-Item ]...

~~~~~ ~~~

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————

The local-storage section is similar to working-storage, but describes data within a sub-
program that will be dynamically allocated and initialized (automatically) each time the
subprogram is executed. See [Data Initialization], page 23, for the rules of data ititialization.

1. The reserved words "BY", "CHARACTER" "IS", "KEY", "ON", "RIGHT" (JUSTIFIED),
"TIMES" and "WHEN" are optional and may be included, or not, at the discretion of the
programmer. The presence or absence of these words has no effect upon the program.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 103

2. The reserved words "SYNCRONIZED" and "SYNCRONISED" are interchangeable. Both
may be abbreviated as "SYNC".

3. The reserved word "PICTURE" may be abbreviated to "PIC".

4. The reserved word "JUSTIFIED" may be abbreviated to "JUST".

5. As the syntax diagram shows, the definition of a <<LOCAL-STORAGE-SECTION-
Data-Item>> is a recursive one in that there may be any number of such specifications
coded following one another. The first such specification must have a level number
of 01. Specifications that follow that one may have level numbers greater than 01, in
which case they are defining a hierarchical breakdown of a record. The definition of a
record is terminated when one of the following occurs:

• Another 01-level item is found — this signifies the end of the definition of one
record and the start of a another.

• A division or section header is found — this also marks the completion of a record
and signifies the end of the local-storage section as well.

6. Every <<LOCAL-STORAGE-SECTION-Data-Item>> description must be terminated
with a period.

7. The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through
49 are used to define data items that may be part of a hierarchical structure. Level
number 01 can also be used to define a constant — an item with an unchangable value
specified at compilation time.

8. Level numbers 66, 77, 78 and 88 all have special uses — See [Special Data Items],
page 118, for details.

9. Not specifying an <identifier-1> or "FILLER" immediately after the level number has
the same effect as if "FILLER" were specified. A data item named "FILLER" cannot
be referenced directly; these items are generally used to specify an unused portion of
the total storage allocated to a group item or to describe a group item whose contents
which will only be referenced using the names of those items that belong to it.

10. Local-storage cannot be used in nested subprograms.

11. See [Data Description Clauses], page 125, for information on the usage of the various
data description clauses.

3 June 2014 Chapter 5 - DATA DIVISION



104 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.5. LINKAGE SECTION� �
LINKAGE-SECTION-Data-Item Syntax
 	

level-number [ identifier-1 | FILLER ] [ IS GLOBAL|EXTERNAL ]

~~~~~~ ~~~~~~ ~~~~~~~~

[ ANY LENGTH ]

~~~ ~~~~~~

[ BASED ]

~~~~~

[ BLANK WHEN ZERO ]

~~~~~ ~~~~

[ JUSTIFIED RIGHT ]

~~~~

[ OCCURS [ integer-1 TO ] integer-2 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-3 ]

~~~~~~~~~

[ ASCENDING|DESCENDING KEY IS identifier-4 ]

~~~~~~~~~ ~~~~~~~~~~

[ INDEXED BY identifier-5 ] ]

~~~~~~~

[ PICTURE IS picture-string ]

~~~

[ REDEFINES identifier-6 ]

~~~~~~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] ]

~~~~ ~~~~ ~~~~ ~~~~~

[ USAGE IS data-item-usage ] . [ LINKAGE-SECTION-Data-Item ]...

~~~~~

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————

The linkage section describes data within a subprogram that serves as either input argu-
ments to or output results from the subprogram.

1. The reserved words "BY", "CHARACTER", "IS", "KEY", "ON" and "WHEN" are optional
and may be included, or not, at the discretion of the programmer. The presence or
absence of these words has no effect upon the program.

2. The reserved words "SYNCRONIZED" and ""SYNCRONISED"" are interchangeable. Both
may be abbreviated as "SYNC".

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 105

3. The reserved word "PICTURE" may be abbreviated to "PIC".

4. The reserved word "JUSTIFIED" may be abbreviated to "JUST".

5. As the syntax diagram shows, the definition of a <<LINKAGE-SECTION-Data-Item>>

is a recursive one in that there may be any number of such specifications coded following
one another. The first such specification must have a level number of 01. Specifications
that follow that one may have level numbers greater than 01, in which case they are
defining a hierarchical breakdown of a record. The definition of a record is terminated
when one of the following occurs:

• Another 01-level item is found — this signifies the end of the definition of one
record and the start of a another.

• A division or section header is found — this also marks the completion of a record
and signifies the end of the linkage section as well.

6. Every <<LINKAGE-SECTION-Data-Item>> description must be terminated with a
period.

7. The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through
49 are used to define data items that may be part of a hierarchical structure. Level
number 01 can also be used to define a constant — an item with an unchangable value
specified at compilation time.

8. Level numbers 66, 77, 78 and 88 all have special uses — See [Special Data Items],
page 118, for details.

9. It is expected that:

A. A linkage section should occur only within a subprogram. The compiler will not
prevent its use in a main program, however.

B. All 01-level data items described within a subprogram’s linkage section should ap-
pear in a "PROCEDURE DIVISION USING" (see [PROCEDURE DIVISION USING],
page 202) or as arguments on an "ENTRY" statement.

C. Each 01-level data item described within a subprogram’s linkage section should
correspond to an argument passed on a "CALL" statement (see [CALL], page 359)
or an argument on a function call to the subprogram.

10. Not specifying an <identifier-1> or "FILLER" immediately after the level number has
the same effect as if "FILLER" were specified. A data item named "FILLER" cannot
be referenced directly; these items are generally used to specify an unused portion of
the total storage allocated to a group item or to describe a group item whose contents
which will only be referenced using the names of those items that belong to it. In the
linkage section, 01-level data items cannot be named "FILLER".

11. No storage is allocated for data defined in the linkage section; the data descriptions
there are merely defining storage areas that will be passed to the subprogram by a
calling program. Therefore, any discussion of the default initialization of such data
is irrelevant. It is possible, however, to manually allocate linkage section data items

3 June 2014 Chapter 5 - DATA DIVISION



106 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

that aren’t subprogram arguments via the "ALLOCATE" statement (see [ALLOCATE],
page 356) statement. In such cases, initialization will take place as per the documen-
tation of that statement.

12. See [Data Description Clauses], page 125, for information on the usage of the various
data description clauses.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 107

5.6. REPORT SECTION� �
REPORT SECTION Syntax
 	

[ REPORT SECTION.

~~~~~~ ~~~~~~~

{ Report-Description [ { Report-Group-Definition } ]... }... ]

{ { 01-Level-Constant } }

{ { 78-Level-Constant } }

{ 01-Level-Constant }

{ 78-Level-Constant }

————————————————————————————————————————� �
Report-Description (RD) Syntax
 	

RD report-name [ IS GLOBAL ]

~~ ~~~~~~

[ CODE IS literal-1 | identifier-1 ]

~~~~

[ { CONTROL IS } { FINAL }... ]

{ ~~~~~~~ } { ~~~~~ }

{ CONTROLS ARE } { identifier-2 }

~~~~~~~~

[ PAGE [ { LIMIT IS } ] [ { literal-2 } LINES ]

~~~~ { ~~~~~ } { identifier-3 } ~~~~

{ LIMITS ARE }

~~~~~~

[ literal-3 | identifier-4 COLUMNS|COLS ]

~~~~~~~ ~~~~

[ HEADING IS literal-4 | identifier-5 ]

~~~~~~~

[ FIRST DE|DETAIL IS literal-5 | identifier-6 ]

~~~~~ ~~ ~~~~~~

[ LAST CH|{CONTROL HEADING} IS literal-6 | identifier-7 ]

~~~~ ~~ ~~~~~~~ ~~~~~~~

[ LAST DE|DETAIL IS literal-7 | identifier-8 ]

~~~~ ~~ ~~~~~~

[ FOOTING IS literal-8 | identifier-9 ] ] .

~~~~~~~

The "CODE IS" and "COLUMNS" clauses are syntactically recognized but are otherwise non-
functional.

————————————————————————————————————————

3 June 2014 Chapter 5 - DATA DIVISION



108 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

This section describes the layout of printed reports as well as many of the functional aspects
of the generation of reports that will be produced via the Report Writer Control System.

1. The reserved words "ARE" and "IS" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The phrases "CONTROL IS" and "CONTROLS ARE" are interchangeable, as are the "PAGE
LIMIT" and "PAGE LIMITS" phrases.

3. The reserved word "LINES" may be abbreviated as "LINE".

4. The reserved word "COLUMNS" may be abbreviated as "COLS".

5. Each report referenced on a "REPORT IS" clause (see [File/Sort-Description], page 94)
must be described with a report description ("RD").

6. See [GLOBAL], page 146, for information on the "GLOBAL" option.

7. Please see [Report Writer Features], page 22, if you have not read it already. This will
familiarize you with the Report Writer terminology that will follow.

8. The following rules pertain to the "PAGE LIMITS" clause:

A. If no "PAGE LIMITS" clause is specified, the entire report will be generated as if it
consists of a single arbitrarily long page.

B. All literals (<literal-2> through <literal-8>) must be numeric with non-zero positive
integer values.

C. All identifiers (<identifier-2> through <identifier-8>) must be numeric, unedited
with non-zero positive integer values.

D. Any value specified for <literal-2>|<identifier-2> will define the total number
of available lines on any report page, not counting any unused margins at the
top and/or bottom of the page (defined by the "LINES AT TOP" and "LINES AT

BOTTOM" values specified on the "LINAGE" clause of the "FD" this "RD" is linked to
— see [File/Sort-Description], page 94).

E. Any value specified for <literal-3>|<identifier-3> will be ignored.

F. The "HEADING" clause defines the first line number at which a report heading or
page heading may be presented.

G. The "FIRST DETAIL" clause defines the first line at which a detail group may be
presented.

H. The "LAST CONTROL" HEADING clause defines the last line at which any line of
a control heading may be presented.

I. The "LAST DETAIL" clause defines the last line at which any line of a detail group
may be presented.

J. The "FOOTING" clause defines the last line at which any line of a control footing

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 109

group may be presented.

K. The following rules establish default values for the various "PAGE LIMIT" clauses,
assuming there is one:

• "HEADING" — the default is one (1)

• "FIRST DETAIL" — the HEADING value is used

• "LAST CONTROL HEADING" — the value from "LAST DETAIL" or, if that is
absent, the value from "FOOTING" or, if that too is absent, the value from
"PAGE LIMIT"

• "LAST DETAIL" — the value from "FOOTING" or, if that is absent, the value
from "PAGE LIMIT"

• "FOOTING" — the value from "LAST DETAIL" or, if that is absent, the value
from "PAGE LIMIT"

L. For the values specified on a "PAGE LIMIT" clause to be valid, all of the following
must be true:

• "HEADING" not > "FIRST DETAIL"

• "FIRST DETAIL" not > "LAST CONTROL HEADING"

• "LAST CONTROL HEADING" not > "LAST DETAIL"

• "LAST DETAIL" not > "FOOTING"

9. The following rules pertain to the "CONTROL" clause:

A. If there is no "CONTROL" clause, the report will contain no control breaks; this
implies that there can be no "CONTROL HEADING" or "CONTROL FOOTING" report
groups defined for this "RD".

B. Include the reserved word "FINAL" if you want to include a special control heading
before the first detail line is generated ("CONTROL HEADING FINAL") or after the
last detail line is generated ("CONTROL FOOTING FINAL").

C. If you specify "FINAL", it must be the first control break named in the "RD".

D. Any <identifier-9> specifications included on the "CONTROL" clause are referencing
data names defined in any data division section except for the report section.

E. There must be a "CONTROL HEADING" and/or "CONTROL FOOTING" report group
defined in the report section for each <identifier-9>.

F. At execution time:

• Each time a "GENERATE" statement (see [GENERATE], page 391) is executed
against a detail report group defined for this "RD", the RWCS will check the
contents of each <identifier-2> data item; whenever an <identifier-9>’s value
has changed since the previous GENERATE, a control break condition will
be in effect for that <identifier-2>.

3 June 2014 Chapter 5 - DATA DIVISION



110 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

• Once the list of control breaks has been determined, the "CONTROL FOOTING"

for each <identifier-2> having a control break (if any such report group is
defined) will be presented.

• Next, the "CONTROL HEADING" for each <identifier-2> having a control break
(if any such report group is defined) will be presented.

• The "CONTROL FOOTING" and "CONTROL HEADING" report groups will be pre-
sented in the sequence in which they are listed on the "CONTROL" clause.

• Only after this processing has occurred will the detail report group specified
on the "GENERATE" be presented.

10. Each "RD" will have the following allocated for it:

A. The "PAGE-COUNTER" special register (see [Special Registers], page 243), which will
contain the current report page number.

• This register will be set to a value of 1 when an "INITIATE" statement (see
[INITIATE], page 404) is executed for the report and will be incremented by
1 each time the RWCS starts a new page of the report.

• References to "PAGE-COUNTER" within the report section will be implicitly
qualified with the name of the report to which the report group referencing
the register belongs.

• References to "PAGE-COUNTER" in the procedure division must be qualified
with the appropriate report name if there are multiple "RD"s defined.

B. The "LINE-COUNTER" special register, which will contain the current line number
on the current page.

11. The "RD" must be followed by at least one 01-level report group definition.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 111

5.6.1. Report Group Definitions� �
Report-Group-Definition Syntax
 	

01 [ identifier-1 ]

[ LINE NUMBER IS { integer-1 [ [ ON NEXT PAGE ] } ]

~~~~ { ~~~~ ~~~~ }

{ +|PLUS integer-1 }

{ ~~~~ }

{ ON NEXT PAGE }

~~~~ ~~~~

[ NEXT GROUP IS { [ +|PLUS ] integer-2 } ]

~~~~ ~~~~~ { ~~~~ }

{ NEXT|{NEXT PAGE}|PAGE }

~~~~ ~~~~ ~~~~ ~~~~

[ TYPE IS { RH|{REPORT HEADING} } ]

~~~~ { ~~ ~~~~~~ ~~~~~~~ }

{ PH|{PAGE HEADING} }

{ ~~ ~~~~ ~~~~~~~ }

{ CH|{CONTROL HEADING} FINAL|identifier-2 }

{ ~~ ~~~~~~~ ~~~~~~~ ~~~~~ }

{ DE|DETAIL }

{ ~~ ~~~~~~ }

{ CF|{CONTROL FOOTING} FINAL|identifier-2 }

{ ~~ ~~~~~~~ ~~~~~~~ ~~~~~ }

{ PF|{PAGE FOOTING} }

{ ~~ ~~~~ ~~~~~~~ }

{ RF|{REPORT FOOTING} }

~~ ~~~~~~ ~~~~~~~

. [ REPORT-SECTION-Data-Item ]...

————————————————————————————————————————

The syntax shown here documents how a report group is defined to a report. This syntax
is valid only in the report section, and only then after an "RD".

1. The reserved words "IS", "NUMBER" and "ON" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has
no effect upon the program.

2. The "RH" and "REPORT HEADING" terms are interchangeable, as are "PH" and "PAGE

HEADING", "CH" and "CONTROL HEADING", "DE" and "DETAIL", "CF" and "CONTROL

FOOTING", "PF" and "PAGE FOOTING" as well as "RF" and "REPORT FOOTING".

3. The report group being defined will be a part of the most-recently coded "RD".

3 June 2014 Chapter 5 - DATA DIVISION



112 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4. The "TYPE" (see [TYPE], page 184) clause specifies the type of report group being
defined.

5. The level number used for a report group definition must be 01.

6. The optional <identifier-1> specification assigns a name to this report group so that
the group may be referenced either by a GENERATE statement or on a "USE BEFORE

REPORTING".

7. No two report groups in the same report ("RD") may named with the same <identifier-
1>. There may, however, be multiple <identifier-1> definitions in different reports. In
such instances, references to <identifier-1> must be qualified by the report name.

8. There may only be one report heading, report footing, final control heading, final
control footing, page heading and page footing defined per report.

9. Report group declarations must be followed by at least one <<REPORT-SECTION-
Data-Item>> with a level number in the range 02-49.

10. See [Data Description Clauses], page 125, for information on the usage of the various
data description clauses.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 113

5.6.2. REPORT SECTION Data Items� �
REPORT-SECTION-Data-Item Syntax
 	

level-number [ identifier-1 ]

[ BLANK WHEN ZERO ]

~~~~~ ~~~~

[ COLUMN [ { NUMBER IS } ] [ +|PLUS ] integer-1 ]

~~~ { ~~~~~~ } ~~~~

{ NUMBERS ARE }

~~~~~~~

[ GROUP INDICATE ]

~~~~~ ~~~~~~~~

[ JUSTIFIED RIGHT ]

~~~~

[ LINE NUMBER IS { integer-2 [ [ ON NEXT PAGE ] } ]

~~~~ { +|PLUS integer-2 ~~~~ ~~~~ }

{ ~~~~ }

{ ON NEXT PAGE }

~~~~ ~~~~

[ OCCURS [ integer-3 TO ] integer-4 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-2 ]

~~~~~~~~~

[ STEP integer-5 ]

~~~~

[ VARYING identifier-3 FROM { identifier-4 } BY { identifier-5 } ]

~~~~~~~ ~~~~ { integer-6 } ~~ { integer-7 }

[ PICTURE IS picture-string ]

~~~

[ PRESENT WHEN condition-name ]

~~~~~~~ ~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

[ { SOURCE IS literal-1|identifier-6 [ ROUNDED ] } ]

{ ~~~~~~ ~~~~~~~ }

{ SUM OF { identifier-7 }... [ { RESET ON FINAL|identifier-8 } ] }

{ ~~~ { literal-2 } { ~~~~~ ~~~~~ } }

{ VALUE IS [ ALL ] literal-3 { UPON identifier-9 } }

~~~~~ ~~~ ~~~~

. [ REPORT-SECTION-Data-Item ]...

————————————————————————————————————————

3 June 2014 Chapter 5 - DATA DIVISION



114 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Data item descriptions describing the report lines and fields that make up the substance of
a report group immediately follow the definition of that group.

1. The reserved words "IS", "NUMBER", "OF", "ON", "RIGHT", "TIMES" and "WHEN"

(BLANK) are optional and may be included, or not, at the discretion of the
programmer. The presence or absence of these words has no effect upon the program.

2. The reserved word "COLUMN" may be abbreviated as "COL".

3. The reserved word "JUSTIFIED" may be abbreviated as "JUST".

4. The reserved word "PICTURE" may be abbreviated as "PIC".

5. The "SOURCE" (see [SOURCE], page 178), "SUM" (see [SUM], page 326) and "VALUE"

(see [VALUE], page 197) clauses, valid only on an elementary item, are mutually-
exclusive of each other.

6. Group items (those without "PICTURE" clauses) are frequently used to describe entire
lines of a report, while elementary items (those with a picture clause) are frequently
used to describe specific fields of information on the report. When this coding conven-
tion is being used, group items will have "LINE" (see [LINE], page 153) clauses and no
"COLUMN" (see [COLUMN], page 136) clauses while elementary items will be specified
the other way around.

7. See [Data Description Clauses], page 125, for information on the usage of the various
data description clauses.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 115

5.7. SCREEN SECTION� �
SCREEN-SECTION-Data-Item Syntax
 	

level-number [ identifier-1 | FILLER ]

~~~~~~

[ AUTO | AUTO-SKIP | AUTOTERMINATE ] [ BELL | BEEP ]

~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~ ~~~~

[ BACKGROUND-COLOR|BACKGROUND-COLOUR IS integer-1 | identifier-2 ]

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

[ BLANK LINE|SCREEN ] [ ERASE EOL|EOS ]

~~~~~ ~~~~ ~~~~~~ ~~~~~ ~~~ ~~~

[ BLANK WHEN ZERO ] [ JUSTIFIED RIGHT ]

~~~~~ ~~~~ ~~~~

[ BLINK ] [ HIGHLIGHT | LOWLIGHT ] [ REVERSE-VIDEO ]

~~~~~ ~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~

[ COLUMN NUMBER IS [ +|PLUS ] integer-2 | identifier-3 ]

~~~ ~~~~

[ FOREGROUND-COLOR|FOREGROUND-COLOUR IS integer-3 | identifier-4 ]

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

[ { FROM literal-1 | identifier-5 } ]

{ ~~~~ }

{ TO identifier-5 }

{ ~~ }

{ USING identifier-5 }

{ ~~~~~ }

{ VALUE IS [ ALL ] literal-1 }

~~~~~ ~~~

[ FULL | LENGTH-CHECK ] [ REQUIRED | EMPTY-CHECK ] [ SECURE | NO-ECHO ]

~~~~ ~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~ ~~~~~~ ~~~~~~~

[ LEFTLINE ] [ OVERLINE ] [ UNDERLINE ]

~~~~~~~~ ~~~~~~~~ ~~~~~~~~~

[ LINE NUMBER IS [ +|PLUS ] integer-4 | identifier-6 ]

~~~~ ~~~~

[ OCCURS integer-5 TIMES ]

~~~~~~

[ PICTURE IS picture-string ]

~~~

[ PROMPT [ CHARACTER IS literal-2 | identifier-7 ]

~~~~~~ ~~~~~~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

. [ SCREEN-SECTION-Data-Item ]...

————————————————————————————————————————

3 June 2014 Chapter 5 - DATA DIVISION



116 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

The screen section describes the screens to be displayed during terminal/console I-O.

1. The reserved words "CHARACTER" ("SEPARATE" clause), "IS", "NUMBER", "RIGHT",
"TIMES" and "WHEN" are optional and may be included, or not, at the discretion of
the programmer. The presence or absence of these words has no effect upon the pro-
gram.

2. The reserved word "COLUMN" may be abbreviated as "COL".

3. The reserved word "PICTURE" may be abbreviated as "PIC".

4. The following sets of reserved words are interchangeable:

• "AUTO", "AUTO-SKIP" and "AUTOTERMINATE"

• "BACKGROUND-COLOR" and "BACKGROUND-COLOUR"

• "BELL" and "BEEP"

• "FOREGROUND-COLOR" and "FOREGROUND-COLOUR"

• "FULL" and "LENGTH-CHECK"

• "REQUIRED" and "EMPTY-CHECK"

• "SECURE" and "NO-ECHO"

5. Data items defined in the screen section describe input, output or combination screen
layouts to be used with "ACCEPT screen-data-item" statement (see [ACCEPT screen-
data-item], page 342) or "DISPLAY screen-data-item" statement (see [DISPLAY
screen-data-item], page 374) statements. These screen layouts may define the entire
available screen area or any subset of it.

6. The term ’available screen area’ is a nebulous one in those environments where
command-line shell sessions are invoked within a graphical user-interface environment,
as will be the case on Windows, OSX and most Unix/Linux systems — these
environments allow command-line session windows to exist with a variable number of
available screen rows and columns. When you are designing GNU COBOL screens,
you need to do so with an awareness of the logical screen row/column geometry the
program will be executing within.

7. Data items with level numbers 01 (Constants), 66, 78 and 88 may be used in the screen
section; they have the same syntax, rules and usage as they do in the other data division
sections.

8. Without "LINE" (see [LINE], page 153) or "COLUMN" (see [COLUMN], page 136)
clauses, screen section fields will display on the console window beginning at what-
ever line/column coordinate is stated or implied by the "ACCEPT screen-data-item"

or "DISPLAY screen-data-item" statement that presents the screen item. After a
field is presented to the console window, the next field will be presented immediately
following that field.

9. A "LINE" clause explicitly stated in the definition of a screen section data item will
override any "LINE" clause included on the "ACCEPT screen-data-item" or "DISPLAY

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 117

screen-data-item" statement that presents that data item to the screen. The same
is true of "COLUMN" clauses.

10. The Tab and Back-Tab (Shift-Tab on most keyboards) keys will position the cursor
from field to field in the line/column sequence in which the fields occur on the screen
at execution time, regardless of the sequence in which they were defined in the screen
section.

11. See [Data Description Clauses], page 125, for information on the usage of the various
data description clauses.

3 June 2014 Chapter 5 - DATA DIVISION



118 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.8. Special Data Items

5.8.1. 01-Level Constants� �
01-Level-Constant Syntax
 	

01 constant-name-1 CONSTANT [ IS GLOBAL ]

~~~~~~~~ ~~~~~~

{ AS { literal-1 } } .

{ { { BYTE-LENGTH } OF { identifier-1 } } }

{ { { ~~~~~~~~~~~ } { usage-name } } }

{ { { LENGTH } } }

{ ~~~~~~ }

{ FROM CDF-variable-name-1 }

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, SCREEN

The 01-level constant is one of four types of compilation-time constants that can be declared
within a program. The other three types are ">>DEFINE" CDF directive (see [>>DEFINE],
page 45) constants, ">>SET" CDF directive (see [>>SET], page 49) constants and 78-level
constants (see [78-Level Data Items], page 123).

1. The reserved words "AS", "IS" and "OF" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. See [GLOBAL], page 146, for information on the "GLOBAL" option.

3. This particular type of constant declaration provides the ability to determine the length
of a data item or the storage size associated with a particular numeric "USAGE" (see
[USAGE], page 186) type — something not possible with the other types of constants.

4. Constants defined in this way become undefined once an "END PROGRAM" or "END

FUNCTION" is encountered in the input source.

5. Data descriptions of this form do not actually allocate any storage — they merely
define a name (<constant-name-1>) that may be used anywhere a numeric literal
("BYTE-LENGTH" or "LENGTH" options) or a literal of the same type as <literal-1> may
be used.

6. The <constant-name-1> name may not be referenced on a CDF directive.

7. Care must be taken that <constant-name-1> does not duplicate any other data item
name that has been defined in the program as references to that data item name will
refer to the constant and not the data item. The GNU COBOL compiler will not issue
a warning about this condition.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 119

8. The value specified for <usage-name> may be any "USAGE" that does not
use a "PICTURE" (see [PICTURE], page 162) clause. These would be any
of "BINARY-C-LONG", "BINARY-CHAR", "BINARY-DOUBLE", "BINARY-LONG",
"BINARY-SHORT", "COMP-1" (or "COMPUTATIONAL-1"), "COMP-2" (or
"COMPUTATIONAL-2"), "FLOAT-DECIMAL-16", "FLOAT-DECIMAL-34", "FLOAT-LONG",
"FLOAT-SHORT", "POINTER", or "PROGRAM-POINTER".

9. The "BYTE-LENGTH" clause will produce a numeric value for <constant-name-1> identi-
cal to that which would be returned by the "BYTE-LENGTH" intrinsic function executed
against <identifier-1> or a data item declared with a "USAGE" of <usage-name>.

10. The "LENGTH" clause will produce a numeric value for <constant-name-1> identical
to that which would be returned by the "LENGTH" intrinsic function executed against
<identifier-1> or a data item declared with a "USAGE" of <usage-name>.

Here is the listing of a GNU COBOL program that uses 01-level constants to display the
length (in bytes) of the various picture-less usage types.

IDENTIFICATION DIVISION.

PROGRAM-ID. USAGELengths.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Len-BINARY-C-LONG CONSTANT AS LENGTH OF BINARY-C-LONG.

01 Len-BINARY-CHAR CONSTANT AS LENGTH OF BINARY-CHAR.

01 Len-BINARY-DOUBLE CONSTANT AS LENGTH OF BINARY-DOUBLE.

01 Len-BINARY-LONG CONSTANT AS LENGTH OF BINARY-LONG.

01 Len-BINARY-SHORT CONSTANT AS LENGTH OF BINARY-SHORT.

01 Len-COMP-1 CONSTANT AS LENGTH OF COMP-1.

01 Len-COMP-2 CONSTANT AS LENGTH OF COMP-2.

01 Len-FLOAT-DECIMAL-16 CONSTANT AS LENGTH OF FLOAT-DECIMAL-16.

01 Len-FLOAT-DECIMAL-34 CONSTANT AS LENGTH OF FLOAT-DECIMAL-34.

01 Len-FLOAT-LONG CONSTANT AS LENGTH OF FLOAT-LONG.

01 Len-FLOAT-SHORT CONSTANT AS LENGTH OF FLOAT-SHORT.

01 Len-POINTER CONSTANT AS LENGTH OF POINTER.

01 Len-PROGRAM-POINTER CONSTANT AS LENGTH OF PROGRAM-POINTER.

PROCEDURE DIVISION.

000-Main.

DISPLAY "On this system, with this build of GNU COBOL, the"

DISPLAY "PICTURE-less USAGEs have these lengths (in bytes):"

DISPLAY " "

DISPLAY "BINARY-C-LONG: " Len-BINARY-C-LONG

DISPLAY "BINARY-CHAR: " Len-BINARY-CHAR

DISPLAY "BINARY-DOUBLE: " Len-BINARY-DOUBLE

DISPLAY "BINARY-LONG: " Len-BINARY-LONG

DISPLAY "BINARY-SHORT: " Len-BINARY-SHORT

DISPLAY "COMP-1: " Len-COMP-1

DISPLAY "COMP-2: " Len-COMP-2

3 June 2014 Chapter 5 - DATA DIVISION



120 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

DISPLAY "FLOAT-DECIMAL-16: " Len-FLOAT-DECIMAL-16

DISPLAY "FLOAT-DECIMAL-34: " Len-FLOAT-DECIMAL-34

DISPLAY "FLOAT-LONG: " Len-FLOAT-LONG

DISPLAY "FLOAT-SHORT: " Len-FLOAT-SHORT

DISPLAY "POINTER: " Len-POINTER

DISPLAY "PROGRAM-POINTER: " Len-PROGRAM-POINTER

STOP RUN

.

The output of this program, on a Windows 7 system with a 32-bit MinGW build of GNU
COBOL is:

On this system, with this build of GNU COBOL, the

PICTURE-less USAGEs have these lengths (in bytes):

BINARY-C-LONG: 4

BINARY-CHAR: 1

BINARY-DOUBLE: 8

BINARY-LONG: 4

BINARY-SHORT: 2

COMP-1: 4

COMP-2: 8

FLOAT-DECIMAL-16: 8

FLOAT-DECIMAL-34: 16

FLOAT-LONG: 8

FLOAT-SHORT: 4

POINTER: 4

PROGRAM-POINTER: 4

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 121

5.8.2. 66-Level Data Items� �
66-Level-Data-Item Syntax
 	

66 identifier-1 RENAMES identifier-2 [ THRU|THROUGH identifier-3 ] .

~~~~~~~ ~~~~ ~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

A 66-level data item regroups previously defined items by specifying alternative, possibly
overlapping, groupings of elementary data items.

1. The reserved words "THRU" and "THROUGH" are interchangeable.

2. A level-66 data item cannot rename a level-66, level-01, level-77, or level-88 data item.

3. There may be multiple level-66 data items that rename data items contained within
the same 01-level record description.

4. All "RENAMES" entries associated with one logical record must immediately follow that
record’s last data description entry.

3 June 2014 Chapter 5 - DATA DIVISION



122 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.8.3. 77-Level Data Items� �
77-Level-Data-Item Syntax
 	

77 identifier-1 [ IS GLOBAL|EXTERNAL ]

~~~~~~ ~~~~~~~~

[ BASED ]

~~~~~

[ BLANK WHEN ZERO ]

~~~~~ ~~~~

[ JUSTIFIED RIGHT ]

~~~~

[ PICTURE IS picture-string ]

~~~

[ REDEFINES identifier-5 ]

~~~~~~~~~

[ SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ] ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

[ SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ] ]

~~~~ ~~~~ ~~~~ ~~~~~

[ USAGE IS data-item-usage ]

~~~~~

[ VALUE IS [ ALL ] literal-1 ] .

~~~~~ ~~~

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————
This syntax is valid in the following sections:

WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

The intent of a 77-level item is to be able to create a stand-alone elementary data item.

1. The reserved words "CHARACTER", "IS", "RIGHT" (JUSTIFIED) and "WHEN" are op-
tional and may be included, or not, at the discretion of the programmer. The presence
or absence of these words has no effect upon the program.

2. The reserved word "JUSTIFIED" may be abbreviated as "JUST", the reserved word
"PICTURE" may be abbreviated as "PIC" and the reserved words "SYNCRONIZED" and
"SYNCRONISED" may be abbreviated as "SYNC".

3. New programs requiring a stand-alone elementary item should be coded to use a level
number of 01 rather than 77.

4. See [Data Description Clauses], page 125, for information on the usage of the various
data description clauses.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 123

5.8.4. 78-Level Data Items� �
78-Level-Constant Syntax
 	

78 constant-name-1 VALUE IS literal-1 .

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, SCREEN

The 78-level constant is one of four types of compilation-time constants that can be declared
within a program. The other three types are ">>DEFINE" CDF directive (see [>>DEFINE],
page 45) constants, ">>SET" CDF directive (see [>>SET], page 49) constants and 01-level
constants (see [01-Level Constants], page 118).

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. Constants defined in this way become undefined once an "END PROGRAM" or "END

FUNCTION" is encountered in the input source.

3. Data descriptions of this form do not actually allocate any storage — they merely
define a name (<constant-name-1>) that may be used anywhere a literal of the same
type as <literal-1> may be used.

4. The <constant-name-1> name may not be referenced on a CDF directive.

5. Care must be taken that <constant-name-1> does not duplicate any other data item
name that has been defined in the program as references to that data item name will
refer to the constant and not the data item. The GNU COBOL compiler will not issue
a warning about this condition.

3 June 2014 Chapter 5 - DATA DIVISION



124 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.8.5. 88-Level Data Items� �
88-Level-Data-Item Syntax
 	

88 condition-name-1 { VALUE IS } {literal-1 [ THRU|THROUGH literal-2 ]}...

{ ~~~~~ } ~~~~ ~~~~~~~

{ VALUES ARE }

~~~~~~

[ WHEN SET TO FALSE IS literal-3 ] .

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

Condition names are Boolean (i.e. TRUE / FALSE) data items that receive their TRUE
and FALSE values based upon the values of the non 88-level data item whose definition
they immediately follow.

1. The reserved words "ARE", "IS", "SET" and "TO" are optional and may be included,
or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

2. The reserved words "THRU" and "THROUGH" are interchangeable.

3. Condition names are always defined subordinate to another (non 88-level) data item.
That data item must be an elementary item. Whenever the parent data item assumes
one of the values specified on the 88-level item’s "VALUE" (see [VALUE], page 197)
clause, <condition-name-1> will take on the value of TRUE.

4. Condition names do not occupy any storage.

5. The optional "THROUGH" clause allows a range of possible TRUE values to be specified.

6. Whenever the parent data item assumes any value except one of the values specified
on <condition-name-1>’s "VALUE" clause, <condition-name-1> will take on the value of
FALSE.

7. Executing the statement "SET <condition-name-1> TO TRUE" will cause <condition-
name-1>’s parent data item to take on the first value specified on <condition-name-1>’s
"VALUE" clause.

8. Executing the statement "SET <condition-name-1> TO FALSE" will cause <condition-
name-1>’s parent data item to take on the value specified on <condition-name-1>’s
"FALSE" clause. If <condition-name-1> does not have a "FALSE" clause, the "SET" (see
[SET], page 445) statement will generate an error message at compilation time.

9. See [Condition Names], page 218, for more information.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 125

5.9. Data Description Clauses

5.9.1. ANY LENGTH� �
ANY LENGTH Attribute Syntax
 	

ANY LENGTH

~~~ ~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

LINKAGE

Data items declared with the "ANY LENGTH" attribute have no fixed compile-time length.
Such items may only be defined in the linkage section of a subprogram as they may only serve
as subroutine argument descriptions. These items must have a "PICTURE" (see [PICTURE],
page 162) clause that specifies exactly one A, X or 9 symbol.

1. The "ANY LENGTH" and "BASED" (see [BASED], page 130) clauses cannot be used to-
gether in the same data item description.

3 June 2014 Chapter 5 - DATA DIVISION



126 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.2. AUTO� �
AUTO Attribute Syntax
 	

AUTO

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

A field whose description includes this attribute will cause the cursor to automatically
advance to the next input-enabled field of a screen if the field is completely filled with input
data.

1. The "AUTO", "AUTO-SKIP" (see [AUTO-SKIP], page 127) and "AUTOTERMINATE" (see
[AUTOTERMINATE], page 128) clauses are interchangeable, and may not be used
together in the same data item description.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 127

5.9.3. AUTO-SKIP� �
AUTO-SKIP Attribute Syntax
 	

AUTO-SKIP

~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

A field whose description includes this attribute will cause the cursor to automatically
advance to the next input-enabled field of a screen if the field is completely filled with input
data.

1. The "AUTO" (see [AUTO], page 126), "AUTO-SKIP" and "AUTOTERMINATE" (see
[AUTOTERMINATE], page 128) clauses are interchangeable, and may not be used
together in the same data item description.

3 June 2014 Chapter 5 - DATA DIVISION



128 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.4. AUTOTERMINATE� �
AUTOTERMINATE Attribute Syntax
 	

AUTOTERMINATE

~~~~~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

A field whose description includes this attribute will cause the cursor to automatically
advance to the next input-enabled field of a screen if the field is completely filled with input
data.

1. The "AUTO" (see [AUTO], page 126), "AUTO-SKIP" (see [AUTO-SKIP], page 127) and
"AUTOTERMINATE" clauses are interchangeable, and may not be used together in the
same data item description.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 129

5.9.5. BACKGROUND-COLOR� �
BACKGROUND-COLOR Attribute Syntax
 	

BACKGROUND-COLOR|BACKGROUND-COLOUR IS integer-1 | identifier-1

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause is used to specify the screen background color of the screen data item or the
default screen background color of subordinate items if used on a group item.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved words "BACKGROUND-COLOR" and "BACKGROUND-COLOUR" are interchange-
able.

3. You specify colors by number (0-7), or by using the constant names provided in the
"screenio.cpy" copybook (which is provided with all GNU COBOL source distribu-
tions).

4. Colors may also be specified using a numeric non-edited identifier whose value is in the
range 0-7.

See [Color Palette and Video Attributes], page 20, for more information on screen colors
and video attributes.

3 June 2014 Chapter 5 - DATA DIVISION



130 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.6. BASED� �
BASED Attribute Syntax
 	

BASED

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

Data items declared with "BASED" are allocated no storage at compilation time. At run-
time, the "ALLOCATE" (see [ALLOCATE], page 356) or "SET ADDRESS" (see [SET AD-
DRESS], page 447) statements are used to allocate space for and (optionally) initialize such
items.

1. The "BASED" and "ANY LENGTH" (see [ANY LENGTH], page 125) clauses cannot be
used together in the same data item description.

2. The "BASED" clause may only be used on level 01 and level 77 data items.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 131

5.9.7. BEEP� �
BEEP Attribute Syntax
 	

BEEP

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

1. The "BEEP" and "BELL" (see [BELL], page 132) clauses are interchangeable, and may
not be used together in the same data item description.

2. Use this clause to cause an audible tone to occur when the screen item is DISPLAYed.

3 June 2014 Chapter 5 - DATA DIVISION



132 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.8. BELL� �
BELL Attribute Syntax
 	

BELL

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

1. The "BEEP" (see [BEEP], page 131) and "BELL" clauses are interchangeable, and may
not be used together in the same data item description.

2. Use this clause to cause an audible tone to occur when the screen item is DISPLAYed.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 133

5.9.9. BLANK� �
BLANK Attribute Syntax
 	

BLANK LINE|SCREEN

~~~~~ ~~~~ ~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause will blank out either the entire screen (BLANK SCREEN) or just the line upon
which data is about to be displayed (BLANK LINE).

1. Blanked-out areas will have their foreground and background colors set to the attributes
of the field containing the "BLANK" clause.

2. This clause is useful when one screen section item is being displayed over the top of a
previously-displayed one.

3 June 2014 Chapter 5 - DATA DIVISION



134 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.10. BLANK WHEN ZERO� �
BLANK-WHEN-ZERO Attribute Syntax
 	

BLANK WHEN ZERO

~~~~~ ~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

This clause will cause that item’s value to be automatically transformed into spaces if a
value of 0 is ever MOVEd to the item.

1. The reserved word "WHEN" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. This clause may only be used on a PIC 9 data item with a "USAGE" (see [USAGE],
page 186) of "DISPLAY".

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 135

5.9.11. BLINK� �
BLINK Attribute Syntax
 	

BLINK

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "BLINK" clause modifies the visual appearance of the displayed field by making the
field contents blink.

See [Color Palette and Video Attributes], page 20, for more information on screen colors
and video attributes.

3 June 2014 Chapter 5 - DATA DIVISION



136 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.12. COLUMN� �
COLUMN (REPORT SECTION) Clause Syntax
 	

COLUMN [ { NUMBER IS } ] [ +|PLUS ] integer-1 ]

~~~ { NUMBERS ARE } ~~~~

————————————————————————————————————————� �
COLUMN (SCREEN SECTION) Clause Syntax
 	

COLUMN NUMBER IS [ +|PLUS ] integer-2 | identifier-3 ]

~~~ ~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT, SCREEN

The "COLUMN" clause provides the means of stating in which column a field should be
presented on the console window (screen section) or a report (report section).

1. The reserved words "ARE", "IS", "NUMBER" and "NUMBERS" are optional and may be
included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

2. The reserved word "COLUMN" may be abbreviated as "COL".

3. The line location of a report section or screen section field will be determined by the
"LINE" (see [LINE], page 153) clause.

4. The value of <integer-1> must be 1 or greater.

5. If <identifier-1> is used to specify either an absolute or relative column position,
<identifier-1> must be defined as a numeric item of any "USAGE" (see [USAGE],
page 186) other than "COMPUTATIONAL-1" or "COMPUTATIONAL-2", without editing
symbols. The value of <identifier-1> at the time the screen data item is presented must
be 1 or greater. Note that a "COMPUTATIONAL-1" or "COMPUTATIONAL-2" identifier will
be accepted by the compiler, but will produce unpredictable results at run-time.

6. The column coordinate of a field may be stated on an absolute basis (i.e. "COLUMN 5")
or on a relative basis based upon the end of the previously-presented field (i.e. "COLUMN
PLUS 1").

7. The symbol "+" may be used in lieue of the word "PLUS", if desired; if symbol "+" is
used, however, there must be at least one space separating it from <integer-1>. Failure
to include this space will cause the symbol "+" sign to be simply treated as part of
<integer-1> and will treat the "COLUMN" clause as an absolute column specification
rather than a relative one.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 137

8. Using relative column positioning ("COLUMN PLUS") has slightly different behavior de-
pending upon the section in which the clause is used, as follows:

A. When used on a report section data item, "COLUMN PLUS" will position the start
of the new field’s value such that there are <integer-1> blank columns between the
end of the previous field and the beginning of this field.

If a report data item’s description includes the "SOURCE" (see [SOURCE],
page 178), "SUM" (see [SUM], page 326) or "VALUE" (see [VALUE], page 197)
clause but has no "COLUMN" clause, "COLUMN PLUS 1" will be assumed.

B. When used on a screen section data item, "COLUMN PLUS" will position the new
field so that it begins exactly <integer-1> or <identifier-1> characters past the
last character of the previous field. Thus, "COLUMN PLUS 1" will leave no blank
positions between the end of the previous field and the start of this one.

If a screen data item’s description includes the "FROM" (see [FROM], page 144),
"TO" (see [TO], page 183), "USING" (see [USING], page 196) or "VALUE" (see
[VALUE], page 197) clause but has no "COLUMN" clause, the new screen field will
begin at the column coordinate of the last character of the previous field.

3 June 2014 Chapter 5 - DATA DIVISION



138 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.13. CONSTANT� �
CONSTANT Attribute Syntax
 	

CONSTANT

~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, SCREEN

This option signifies that the 01-level data item in whose declaration "CONSTANT" is specified
will be treated as a symbolic name for a literal value, useable wherever a literal of the
appropriate type could be used.

1. The value of a data item defined as a constant cannot be changed at run-time. In fact,
it is not syntactically acceptable to use such a data item as the destination field of any
procedure division statement that stores a value.

2. See [01-Level Constants], page 118, for additional information.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 139

5.9.14. EMPTY-CHECK� �
EMPTY-CHECK Attribute Syntax
 	

EMPTY-CHECK

~~~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause forces the user to enter data into the field it is specified on (or into all subordinate
input-capable fields if "EMPTY-CHECK" is specified on a group item).

1. The "EMPTY-CHECK" and "REQUIRED" (see [REQUIRED], page 174) clauses are inter-
changeable, and may not be used together in the same data item description.

2. In order to take effect, the user must first move the cursor into the field having this
clause in its definition.

3. The "ACCEPT screen-data-item" statement (see [ACCEPT screen-data-item],
page 342) will ignore the Enter key and any other cursor-moving keystrokes that
would cause the cursor to move to another screen item unless data has been entered
into the field. Function keys will still be allowed to terminate the "ACCEPT".

4. In order to be functional, this attribute must be supported by the underlying ’curses’
package your GNU COBOL implementation was built with. As of this time, the
’PDCurses’ package (used for native Windows or MinGW builds) does not support
"EMPTY-CHECK".

3 June 2014 Chapter 5 - DATA DIVISION



140 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.15. ERASE� �
ERASE Clause Syntax
 	

ERASE EOL|EOS

~~~~~ ~~~ ~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

"ERASE" will blank-out screen contents from the location where the screen data item whose
description contains this clause will be displayed, forward until the end of the screen ("ERASE
EOS") or line ("ERASE EOL") prior to displaying the screen data item.

1. Erased areas will have their foreground and background colors set to the attributes of
the field containing the "ERASE" clause.

2. This clause is useful when one screen section item is being displayed over the top of a
previously-displayed one.

See [Color Palette and Video Attributes], page 20, for more information on screen colors
and video attributes.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 141

5.9.16. EXTERNAL� �
EXTERNAL Attribute Syntax
 	

EXTERNAL

~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE

This clause marks a data item description, "FD" or "SD" see [File/Sort-Description], page 94
as being sharable with other programs executed from the same execution thread.

1. By specifying the "EXTERNAL" clause on either an FD or an SD, the file description is
capable of being shared between all programs executed from the same execution thread,
provided an "EXTERNAL" clause is coded with the file’s description in each program
requiring it. This sharing allows the file to be opened, read and/or written and closed
in different programs. This sharing applies to the record descriptions subordinate to
the file description too.

2. By specifying the "EXTERNAL" clause on the description of a data item, the data item
is capable of being shared between all programs executed from the same execution
thread, provided the data item is coded (with an "EXTERNAL" clause) in each program
requiring it.

3. The following points apply to the specification of "EXTERNAL" in a data item’s definition:

A. The "EXTERNAL" clause may only be specified at the 77 or 01 level.

B. An "EXTERNAL" item must have a data name and that name cannot be "FILLER".

C. "EXTERNAL" cannot be combined with "BASED" (see [BASED], page 130), "GLOBAL"
(see [GLOBAL], page 146) or "REDEFINES" (see [REDEFINES], page 172).

3 June 2014 Chapter 5 - DATA DIVISION



142 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.17. FALSE� �
FALSE Clause Syntax
 	

WHEN SET TO FALSE IS literal-1

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

This clause, which may only appear on the definition of a level-88 condition name, is used
to specify the value of the data item that serves as the parent of the level-88 condition name
that will force the condition name to assume a value of FALSE.

1. The reserved words "IS", "SET", "TO" and "WHEN" are optional and may be included,
or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

2. See [88-Level Data Items], page 124, or See [Condition Names], page 218, for more
information.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 143

5.9.18. FOREGROUND-COLOR� �
FOREGROUND-COLOR Attribute Syntax
 	

FOREGROUND-COLOR|FOREGROUND-COLOUR IS integer-1 | identifier-1

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause is used to specify the color of text within a screen data item or the default text
color of subordinate items if used on a group item.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved words "FOREGROUND-COLOR" and "FOREGROUND-COLOUR" are interchange-
able.

3. You specify colors by number (0-7), or by using the constant names provided in the
"screenio.cpy" copybook (which is provided with all GNU COBOL source distribu-
tions).

4. Colors may also be specified using a numeric non-edited identifier whose value is in the
range 0-7.

See [Color Palette and Video Attributes], page 20, for more information on screen colors
and video attributes.

3 June 2014 Chapter 5 - DATA DIVISION



144 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.19. FROM� �
FROM Clause Syntax
 	

FROM literal-1 | identifier-5

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause is used to specify either the data item a screen section field is to obtain it’s
value from when the screen is displayed, or a literal that will specify the value of that same
field.

1. The "FROM", "TO" (see [TO], page 183), "USING" (see [USING], page 196) and "VALUE"

(see [VALUE], page 197) clauses are mutually-exclusive in any screen section data
itsm’s definition.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 145

5.9.20. FULL� �
FULL Attribute Syntax
 	

FULL

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "FULL" clause forces the user to enter data into the field it is specified on (or into all
subordinate input-capable fields if specified on a group item) sufficient to fill every character
position of the field.

1. The "FULL" and "LENGTH-CHECK" (see [LENGTH-CHECK], page 152) clauses are in-
terchangeable, and may not be used together in the same data item description.

2. In order for this clause to take effect at execution time, the user must move the cursor
into the field having this clause in its definition.

3. The "ACCEPT screen-data-item" statement (see [ACCEPT screen-data-item],
page 342) will ignore the Enter key and any other cursor-moving keystrokes that
would cause the cursor to move to another screen item unless the proper amount of
data has been entered into the field. Function keys will still be allowed to terminate
the "ACCEPT", however.

4. In order to be functional, this attribute must be supported by the underlying ’curses’
package your GNU COBOL implementation was built with. As of this time, the ’PD-
Curses’ package (used for native Windows or MinGW builds) does not support "FULL".

3 June 2014 Chapter 5 - DATA DIVISION



146 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.21. GLOBAL� �
GLOBAL Attribute Syntax
 	

GLOBAL

~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, REPORT

This clause marks a data item, 01-level constant, "FD" (see [File/Sort-Description], page 94),
"SD" (see [File/Sort-Description], page 94) or an "RD" (see [REPORT SECTION], page 107)
as being sharable with any nested subprograms.

1. By specifying the "GLOBAL" clause on the description of a file or a report, that descrip-
tion is capable of being shared between a program and any nested subprograms within
it, provided the "FD", "SD" or "RD" is coded (with a "GLOBAL" clause) in each nested
subprogram requiring it. This sharing allows the file to be opened, read and/or written
and closed or the report to be initiated or terminated in those programs. Separately
compiled programs may not share a "GLOBAL" file description, but they may share
an "EXTERNAL" (see [EXTERNAL], page 141) file description. This sharing applies
to the record descriptions subordinate to the file description and the report groups
subordinate to the "RD" also.

2. By specifying the "GLOBAL" clause on the description of a data item, the data item
is capable of being shared between a program and any nested subprograms within it,
provided the data item is coded (with a "GLOBAL" clause) in each program requiring
it.

3. The following points apply to the specification of "GLOBAL" in a data item’s definition:

A. The "GLOBAL" clause may only be specified at the 77 or 01 level.

B. A "GLOBAL" item must have a data name and that name cannot be "FILLER".

C. "GLOBAL" cannot be combined with "EXTERNAL" (see [EXTERNAL], page 141),
"REDEFINES" (see [REDEFINES], page 172) or "BASED" (see [BASED], page 130).

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 147

5.9.22. GROUP INDICATE� �
GROUP-INDICATE Attribute Syntax
 	

GROUP INDICATE

~~~~~ ~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT

The "GROUP INDICATE" clause specifies that the data item in whose definition the clause
appears will be presented only in very limited circumstances.

1. This clause may only appear within a "DETAIL" report group (see [TYPE], page 184).

2. When this clause is present, the data item in question will be presented only under the
following circumstances:

A. On the first presentation of the detail group following the "INITIATE" (see
[INITIATE], page 404) of the report.

B. On the first presentation of the detail group after every new page is started.

C. On the first presentation of the detail group after any control break occurs.

3 June 2014 Chapter 5 - DATA DIVISION



148 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.23. HIGHLIGHT� �
HIGHLIGHT Attribute Syntax
 	

HIGHLIGHT

~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause controls the intensity of text ("FOREGROUND-COLOR" (see [FOREGROUND-
COLOR], page 143)) by setting that intensity to its highest of three possible settings.

1. This clause, along with "LOWLIGHT" (see [LOWLIGHT], page 155), are intended
to provide a three-level intensity scheme ("LOWLIGHT" . . . nothing (Normal) . . .
"HIGHLIGHT").

See [Color Palette and Video Attributes], page 20, for more information on screen colors
and video attributes.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 149

5.9.24. JUSTIFIED� �
JUSTIFIED Attribute Syntax
 	

JUSTIFIED RIGHT

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

The presence of a "JUSTIFIED RIGHT" clause in a data item’s definition alters the manner
in which data is stored into the field from the default ’left-justified, space filled’ behavior
to ’right justified, space filled’.

1. The reserved word "RIGHT" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved word "JUSTIFIED" may be abbreviated as "JUST".

3. This clause is valid only on alphabetic (PIC A) or alphanumeric (PIC X) data items.

4. The presence or absence of this clause influences the behavior of the "MOVE" (see
[MOVE], page 414) statement as well as the "FROM" (see [FROM], page 144), "SOURCE"
(see [SOURCE], page 178) and "USING" (see [USING], page 196) data item description
clauses.

5. If the value being stored into the field is the same length as the receiving field, the
presence or absence of the "JUSTIFIED RIGHT" clause on that field’s description is
irrelevant.

6. The following examples illustrate the behavior of the presence and absence of the
"JUSTIFIED RIGHT" clause when the field size is different than that of the value being
stored. In these examples, the symbol b represents a space.

When the value is shorter than the field size...

Without JUSTIFIED With JUSTIFIED

01 A PIC X(6). 01 A PIC X(6) JUSTIFIED RIGHT.

MOVE "ABC" TO A MOVE "ABC" TO A

Result is ’ABCbbb’ Result is ’bbbABC’

3 June 2014 Chapter 5 - DATA DIVISION



150 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

When the value is longer than the field size...

Without JUSTIFIED With JUSTIFIED

01 A PIC X(6). 01 A PIC X(6) JUSTIFIED RIGHT.

MOVE "ABCDEFGHI" TO A MOVE "ABCDEFGHI" TO A

Result is ’ABCDEF’ Result is ’DEFGHI’

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 151

5.9.25. LEFTLINE� �
LEFTLINE Attribute Syntax
 	

LEFTLINE

~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "LEFTLINE" clause will introduce a vertical line at the left edge of a screen field.

1. The "LEFTLINE", "OVERLINE" (see [OVERLINE], page 161) and "UNDERLINE" (see
[UNDERLINE], page 185) clauses may be used in any combination in a single field’s
description.

2. This clause is essentially non-functional when used within Windows command shell
(cmd.exe) environments and running programs compiled using a GNU COBOL imple-
mentation built using ’PDCurses’ (such as Windows/MinGW builds).

3. Whether or not this clause operates on Cygwin or UNIX/Linux/OSX systems will
depend upon the video attribute capabilities of the terminal output drivers and ’curses’
software being used.

See [Color Palette and Video Attributes], page 20, for more information on screen colors
and video attributes.

3 June 2014 Chapter 5 - DATA DIVISION



152 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.26. LENGTH-CHECK� �
LENGTH-CHECK Attribute Syntax
 	

LENGTH-CHECK

~~~~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "LENGTH-CHECK" clause forces the user to enter data into the field it is specified on (or
into all subordinate input-capable fields if specified on a group item) sufficient to fill every
character position of the field.

1. The "FULL" (see [FULL], page 145) and "LENGTH-CHECK" clauses are interchangeable,
and may not be used together in the same data item description.

2. In order for this clause to take effect at execution time, the user must move the cursor
into the field having this clause in its definition.

3. The "ACCEPT screen-data-item" statement (see [ACCEPT screen-data-item],
page 342) will ignore the Enter key and any other cursor-moving keystrokes that
would cause the cursor to move to another screen item unless the proper amount of
data has been entered into the field. Function keys will still be allowed to terminate
the "ACCEPT", however.

4. In order to be functional, this attribute must be supported by the underlying ’curses’
package your GNU COBOL implementation was built with. As of this time, the
’PDCurses’ package (used for native Windows or MinGW builds) does not support
"LENGTH-CHECK".

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 153

5.9.27. LINE� �
LINE (REPORT SECTION) Clause Syntax
 	

LINE NUMBER IS { integer-2 [ [ ON NEXT PAGE ] }

~~~~ { ~~~~ ~~~~ }

{ +|PLUS integer-2 }

{ ~~~~ }

{ ON NEXT PAGE }

~~~~ ~~~~

————————————————————————————————————————� �
LINE (SCREEN SECTION) Clause Syntax
 	

[ LINE NUMBER IS [ +|PLUS ] integer-4 | identifier-6 ]

~~~~ ~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT, SCREEN

This clause provides a means of explicitly stating on which line a field should be presented
on the console window (screen section) or on a report (report section).

1. The reserved words "IS", "NUMBER" and "ON" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has
no effect upon the program.

2. The following points document the use of format 1 of the "LINE" clause:

A. The column location of a report item will be determined by the "COLUMN" (see
[COLUMN], page 136) clause.

B. The value of <integer-1> must be 1 or greater.

C. The report line number upon which the data item containing this clause along
with any subordinate data items will be presented may be stated on an absolute
basis (i.e. "LINE 5") or on a relative basis based upon the previously-displayed
line (i.e. "LINE PLUS 1").

D. The symbol "+" may be used in lieue of the word "PLUS", if desired; if "+" is
used, however, there must be at least one space separating it from <integer-1>.
Failure to include this space will cause the "+" to be simply treated as part of
<integer-1> and will treat the LINE clause as an absolute line specification rather
than a relative one.

E. The optional "NEXT PAGE" clause specifies that — regardless of whether or not the

3 June 2014 Chapter 5 - DATA DIVISION



154 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

report group containing this clause could fit on the report page being currently
generated, the report group will be forced to appear on a new page.

3. The following points document the use for format 2 of the "LINE" clause:

A. The column location of a screen section field is determined by the "COLUMN" (see
[COLUMN], page 136) clause.

B. The value of <integer-1> must be 1 or greater.

C. If <identifier-1> is used to specify either an absolute or relative column position,
<identifier-1> must be defined as a numeric item of any "USAGE" (see [USAGE],
page 186) other than "COMPUTATIONAL-1" or "COMPUTATIONAL-2", without editing
symbols. The value of <identifier-1> at the time the screen data item is presented
must be 1 or greater. Note that a "COMPUTATIONAL-1" or "COMPUTATIONAL-2"

identifier will be accepted by the compiler, but will produce unpredictable results
at run-time.

D. The screen line number upon which the data item containing this clause along
with any subordinate data items will be displayed may be stated on an absolute
basis (i.e. "LINE 5") or on a relative basis based upon the previously-displayed
line (i.e. "LINE PLUS 1").

E. The symbol "+" may be used in lieue of the word "PLUS", if desired; if "+" is used,
however, there must be at least one space separating it from <integer-1>. Failure
to include this space will cause the "+" to be simply treated as part of <integer-1>
and will treat the "LINE" clause as an absolute line specification rather than a
relative one.

F. If a screen data item’s description includes the "FROM" (see [FROM], page 144),
"TO" (see [TO], page 183), "USING" (see [USING], page 196) or "VALUE" (see
[VALUE], page 197) clause but has no LINE clause, the "current screen line" will
be assumed.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 155

5.9.28. LOWLIGHT� �
LOWLIGHT Attribute Syntax
 	

LOWLIGHT

~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "LOWLIGHT" clause controls the intensity of text ("FOREGROUND-COLOR") by setting that
intensity to its lowest of three possible settings.

1. This clause, along with "HIGHLIGHT" (see [HIGHLIGHT], page 148), are intended
to provide a three-level intensity scheme ("LOWLIGHT" . . . nothing (Normal) . . .
"HIGHLIGHT"). In environments such as a Windows console where only two levels of
intensity are supported, "LOWLIGHT" is the same as leaving this clause off altogether.

See [Color Palette and Video Attributes], page 20, for more information on screen colors
and video attributes.

3 June 2014 Chapter 5 - DATA DIVISION



156 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.29. NEXT GROUP� �
NEXT-GROUP Clause Syntax
 	

NEXT GROUP IS { [ +|PLUS ] integer-2 }

~~~~ ~~~~~ { ~~~~ }

{ NEXT|{NEXT PAGE}|PAGE }

~~~~ ~~~~ ~~~~ ~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT

This clause defines any rules for where the next group to be presented on a report will
begin, line-wise, with respect to the last line of the group in which this clause appears.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The terms "NEXT", "NEXT PAGE" and "PAGE" are interchangeable.

3. A report group must contain at least one "LINE NUMBER" clause in order to also contain
a "NEXT GROUP" clause.

4. If the "RD" (see [REPORT SECTION], page 107) in which the report group containing
a "NEXT GROUP" clause does not contain a "PAGE LIMITS" clause, only the "PLUS

integer-1" option may be specified.

5. The "NEXT PAGE" option cannot be used in a "PAGE FOOTING".

6. The "NEXT GROUP" option cannot be specified in either a "REPORT HEADING" or a "PAGE
HEADING".

7. The effects of "NEXT GROUP" will be in addition to any line spacing defined by the
next-presented group’s "LINE NUMBER" clause.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 157

5.9.30. NO-ECHO� �
NO-ECHO Attribute Syntax
 	

NO-ECHO

~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "NO-ECHO" clause will cause all data entered into the field to appear on the screen as
asterisks.

1. The "NO-ECHO" and "SECURE" (see [SECURE], page 176) clauses are interchangeable,
and may not be used together in the same data item description.

2. This clause may only be used on a field allowing data entry (a field containing either
the "USING" (see [USING], page 196) or "TO" (see [TO], page 183) clause).

See [Color Palette and Video Attributes], page 20, for more information on screen colors
and video attributes.

3 June 2014 Chapter 5 - DATA DIVISION



158 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.31. OCCURS� �
OCCURS (REPORT SECTION) Clause Syntax
 	

OCCURS [ integer-1 TO ] integer-2 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-1 ]

~~~~~~~~~

[ STEP integer-3 ]

~~~~

[ VARYING identifier-2 FROM { identifier-3 } BY { identifier-4 } ]

~~~~~~~ ~~~~ { integer-4 } ~~ { integer-5 }

————————————————————————————————————————� �
OCCURS (SCREEN SECTION) Clause Syntax
 	

OCCURS integer-2 TIMES

~~~~~~

————————————————————————————————————————� �
OCCURS (All Other Sections Clause Syntax
 	

OCCURS [ integer-1 TO ] integer-2 TIMES

~~~~~~ ~~

[ DEPENDING ON identifier-1 ]

~~~~~~~~~

[ ASCENDING|DESCENDING KEY IS identifier-5... ]...

~~~~~~~~~ ~~~~~~~~~~

[ INDEXED BY identifier-6 ]

~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

The "OCCURS" clause is used to create a data structure called a table, where entries in that
structure repeat multiple times.

1. The reserved words "BY" (INDEXED), "IS", "KEY", "ON" and "TIMES" are optional
and may be included, or not, at the discretion of the programmer. The presence or
absence of these words has no effect upon the program.

2. The value of <integer-2> specifies how many entries will be allocated in the table.

3. The following is an example of how a table might be defined:

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 159

05 QUARTERLY-REVENUE OCCURS 4 TIMES PIC 9(7)V99.

This will allocate the following:

QUARTERLY-REVENUE(1)

QUARTERLY-REVENUE(2)

QUARTERLY-REVENUE(3)

QUARTERLY-REVENUE(4)

Each occurrence is referenced using the subscript syntax (a numeric literal, arithmetic
expression or numeric identifier enclosed within parenthesis) shown above.

4. The "OCCURS" clause may be used at the group level too, in which case the entire group
structure repeats, as follows:

05 GRP OCCURS 3 TIMES.

10 A PIC X(1).

10 B PIC X(1).

10 C PIC X(1).

This would allow references to any of the following:

GRP(1) - includes A(1), B(1) and C(1)

GRP(2) - includes A(2), B(2) and C(2)

GRP(3) - includes A(3), B(3) and C(3)

or each A,B,C item could be referenced as follows:

A(1) - Character #1 of GRP(1)

B(1) - Character #2 of GRP(1)

C(1) - Character #3 of GRP(1)

A(2) - Character #1 of GRP(2)

B(2) - Character #2 of GRP(2)

C(2) - Character #3 of GRP(2)

A(3) - Character #1 of GRP(3)

B(3) - Character #2 of GRP(3)

C(3) - Character #3 of GRP(3)

5. The optional "DEPENDING ON" clause can be added to an "OCCURS" to create a variable-
length table. In such cases, the value of <integer-1> specifies what the minimum number
of entries in the table will be while <integer-2> specifies the maximum. Such tables will
be allocated out to the maximum size specified as <integer-2>. At execution time the
value of <identifier-1> will determine how many of the table elements are accessible.

6. See the documentation of the "SEARCH" (see [SEARCH], page 440), "SEARCH ALL"

(see [SEARCH ALL], page 442) and "SORT" (see [SORT], page 453) statements for
explanations of the "KEY" and "INDEXED BY" clauses.

7. The "OCCURS" clause cannot be specified in a data description entry that has a level

3 June 2014 Chapter 5 - DATA DIVISION



160 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

number of 01, 66, 77, or 88, although it is valid in data items described subordinate to
an 01-level data item.

8. The following points apply to an "OCCURS" used in the report section:

A. The optional "STEP" clause defines an incrementation value that will be added
to any absolute "LINE" (see [LINE], page 153) or "COLUMN" (see [COLUMN],
page 136) number specifications that may be part of or subordinate to this data
item’s definition.

B. The optional "VARYING" clause defines an identifier that may be used as a sub-
script for the multiple occurrences of this or any subordinate data item should the
"SOURCE" (see [SOURCE], page 178) or "SUM" (see [SUM], page 326) clause(s) on
this or subordinate data items reference entries within the table. The <identifier-
2> data item is dynamically created as needed and cannot be referenced outside
the scope of the report data item definition.

C. The following two examples illustrate two different ways a report could include
four quarters worth of sales figures in it’s detail lines — one doing things ’the hard
way’ and one using the advanced "OCCURS" capabilities of "STEP" and "VARYING".
Both assume the definition of the following table exists in working-storage:

05 SALES OCCURS 4 TIMES PIC 9(7)V99.

First, the "Hard Way":

10 COL 7 PIC $(7)9.99 SOURCE SALES(1).

10 COL 17 PIC $(7)9.99 SOURCE SALES(2).

10 COL 27 PIC $(7)9.99 SOURCE SALES(3).

10 COL 37 PIC $(7)9.99 SOURCE SALES(4).

And then using "STEP" and "VARYING":

10 COL 7 OCCURS 4 TIMES STEP 10 VARYING QTR FROM 1 BY 1

PIC $(7)9.99 SOURCE SALES(QTR).

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 161

5.9.32. OVERLINE� �
OVERLINE Attribute Syntax
 	

OVERLINE

~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "OVERLINE" clause will introduce a horizontal line at the top edge of a screen field.

1. The "LEFTLINE" (see [LEFTLINE], page 151), "OVERLINE" and "UNDERLINE" (see
[UNDERLINE], page 185) clauses may be used in any combination in a single field’s
description.

2. This clause is essentially non-functional when used within Windows command shell
(cmd.exe) environments and running programs compiled using a GNU COBOL imple-
mentation built using ’PDCurses’ (such as Windows/MinGW builds).

3. Whether or not this clause operates on Cygwin or UNIX/Linux/OSX systems will
depend upon the video attribute capabilities of the terminal output drivers and ’curses’
software being used.

See [Color Palette and Video Attributes], page 20, for more information on screen colors
and video attributes.

3 June 2014 Chapter 5 - DATA DIVISION



162 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.33. PICTURE� �
PICTURE Clause Syntax
 	

PICTURE IS picture-string

~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

The picture clause defines the class (numeric, alphabetic or alphanumeric), size and format
of the data that may be contained by the data item being defined. Sometimes this role
is assisted by the "USAGE" (see [USAGE], page 186) clause, and in a few instances will be
assumed entirely by that clause.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved word "PICTURE" may be abbreviated as "PIC". Most programmers prefer
to use the latter.

3. A picture clause may only be specified on an elementary item.

4. A <picture-string> is a sequence of the special symbols "$", "*", "+", ",", "-", ".",
"/", "0" (zero), "9", "A", "B", "CR", "DB", "S", "V", "X" and "Z".

5. In general, each picture symbol represents either a single character in storage or a single
decimal digit. There are a few exceptions, and they will be discussed as needed.

6. When a <picture-string> contains a repeated sequence of symbols — "PIC 9999/99/99"

— for example, the repetition can be specified using a parenthetic repeat count, as in
"PIC 9(4)/9(2)/9(2)". Using repeat counts is optional and their use (or not) is
entirely at the discretion of the programmer. Many programmers use repetition for
small sequences ("PIC XXX") and repeat counts for larger ones ("PIC 9(9)".

7. This first set of picture symbols defines the basic data type of a data item. Each symbol
represents a single character’s worth of storage.

"A" Defines storage reserved for a single alphabetic character ("A"-"Z", "a"-
"z").

"N" Defines storage reserved for a single character in the computer’s ’National
Characterset ’. Support for national charactersets in GNU COBOL is
currently only partially implemented, and the compile- and run-time effect
of using the "N" picture symbol is the same as if "X(2)" had been coded,
with the additional effect that such a field will qualify as a "NATIONAL"

or "NATIONAL-EDITED" field on an "INITIALIZE" (see [INITIALIZE],
page 399) statement.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 163

"X" Defines storage reserved for a single alphanumeric character (any charac-
ter).

"9" Defines storage reserved for a single numeric digit character ("0"-"9").

Typically, only one kind of each of those symbols is used in the same picture clause,
but that isn’t a requirement. Data items that, of the three symbols above, use nothing
but "A" picture symbols are known as ’Alphabetic Data Items’ while those that use
"9" picture symbols without any "A" or "X" symbols (or those that have a "USAGE"

without a "PICTURE") are known as ’Numeric Data Items’. All other data items are
referred to as ’Alphanumeric Data Items’.

If you need to allocate space for a data item whose format is two letters followed by
five digits followed by three letters, you could use the <picture-string> "AA99999AAA",
"A(2)9(5)A(3)" "XXXXXXXXXX" or "X(10)". There is absolutely no functional differ-
ence whatsoever between the four — none of them provide any functionality the others
do not. The first two probably make for better documentation of the expected field
contents, but they don’t provide any run-time enforcement capabilities.

As far as enforcement goes, however, both alphabetic and numeric picture strings do
provide for both compile-time and run-time enforcement capabilities. In the case of
compilation enforcement, the compiler can issue warning messages if you attempt to
specify a non-numeric value for a numeric data item or if you attempt to "MOVE" (see
[MOVE], page 414) a non-numeric data item to one that is numeric. Similar capabilities
exist for alphabetic data items. At run-time, you may use a special class test (see [Class
Conditions], page 219) to determine if the contents of a data item are entirely numeric
or entirely alphabetic.

8. The following picture symbols may be used with numeric data items.

"P" Defines an implied digit position that will be considered to be a zero when
the data item is referenced at run-time. This symbol is used to allow data
items that will contain very large values to be allocated using less storage
by assuming a certain number of trailing zeros (one per "P") to exist at
the end of values.

The "P" symbol is not allowed in conjunction with "N".

The "P" symbol may only be used at the beginning or end of a picture
clause.

"P" is a repeatable symbol.

All computations and "MOVE" (see [MOVE], page 414) operations involving
such a data item will behave as if the zeros were actually there.

For example, let’s say you need to allocate a data item that contains how-
ever many millions of dollars of revenue your company has in gross revenues
this year:

3 June 2014 Chapter 5 - DATA DIVISION



164 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

01 Gross-Revenue PIC 9(9).

In which case 9 characters of storage will be reserved. The values 000000000
thru 999999999 will represent the gross-revenues. But, if only the millions
are tracked (meaning the last six digits are always going to be 0), you could
define the field as:

01 Gross-Revenue PIC 9(3)P(6).

Whenever Gross-Revenue is referenced in calculations, or whenever its
value is moved to another data item, the value of Gross-Revenue will be
treated as if it is nnn000000, where ’nnn’ is the actual value in storage.

If you wanted to store the value 128 million into that field, you would do
so as if the "P"s were "9"s:

MOVE 128000000 TO Gross-Revenue

A "DISPLAY" (see [DISPLAY], page 370) of a data item containing "P"

symbols is a little strange. The value displayed will be what is actually
in storage, but the total size of the displayed value will be as if the "P"

symbols had been "9"s. Thus, after the above statement established a value
for Gross-Revenue, a "DISPLAY Gross-Revenue" would produce output of
’000000128’.

"S" This symbol, if used, must be the very first symbol in the "PICTURE" value.
A "S" indicates that the data item is "Signed", meaning that negative
values are possible for this data item. Without an "S", any negative values
stored into this data item via a "MOVE" or arithmetic statement will have
the negative sign stripped from it (in effect becoming the absolute value).

The "S" symbol is not allowed in conjunction with "N".

The "S" symbol may only occur once in a picture string. See [SIGN IS],
page 177, for further discussion of how negative values may be stored in a
numeric data item.

"V" This symbol is used to define where an implied decimal-point (if any) is
located in a numeric item. Just as there may only be a single decimal point
in a number so may there be no more than one "V" in a "PICTURE". Implied
decimal points occupy no space in storage — they just specify how values
are used. For example, if the value "1234" is in storage in a field defined
as PIC 999V9, that value would be treated as 123.4 in any statements that
referenced it.

The "V" symbol is not allowed in conjunction with "N".

The "V" symbol may only occur once in a picture string.

9. Any editing symbols introduced past this point will, if coded in the picture clause of an
otherwise numeric data item, transform that data item from a numeric to a ’Numeric

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 165

Edited ’ data item. Numeric edited data items are treated as alphanumeric and may
not serve either as table subscripts or as source arguments on an arithmetic statement.

10. The following are the fixed insertion editing symbols that may be specified in a picture
string. Each of these editing symbols will insert a special character into the field value
at the position it is specified in the picture string. These editing symbols will each
introduce one extra character into the total field size for each occurrence of the symbol
in the picture string.

"B" The "B" editing symbol introduces a blank into the field value for each
occurrence.

Multiple "B" symbols may be coded.

The following example will format a ten digit number (presumably a tele-
phone number) into a "### ### ####" layout:

...

05 Phone-Number PIC 9(3)B9(3)B9(4).

...

MOVE 5185551212 TO Phone-Number

DISPLAY Phone-Number

This code will display "518 555 1212".

"0" The "0" (zero) editing symbol introduces one "0" character into the field
value for each occurrence in the picture string.

Multiple "0" symbols may be coded.

Here’s an example:

...

05 Output-Item PIC 909090909.

...

MOVE 12345 TO Output-Item

DISPLAY Output-Item

The above will display "102030405".

"/" The "/" editing symbol inserts one "/" character into the field value for
each occurrence in the picture string.

Multiple "/" symbols may be coded.

This editing symbol is most-frequently used to format dates, as follows:

...

05 Year-Month-Day PIC 9(4)/9(2)/9(2).

...

MOVE 20140207 TO Year-Month-Day

3 June 2014 Chapter 5 - DATA DIVISION



166 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

DISPLAY Year-Month-Day

This example displays "2014/02/07".

11. The following are the numeric formatting symbols that may be specified in a picture
string. Each of these editing symbols will insert special characters into the field value to
present numbers in a "friendly" format. These editing symbols will each introduce one
extra character into the total field size for each occurrence of the symbol in the picture
string. Numeric fields whose picture clause contains these characters may neither be
used as source fields in any calculation nor may they serve as source fields for the
transfer of data values to any data item other than an alphanumeric field.

"." The "." symbol inserts a decimal point into a numeric field value. When
the contents of a numeric data item sending field are moved into a receiving
data item whose picture clause contains the "." editing symbol, implied
("V") or actual decimal point in the sending data item or literal, respec-
tively, will be aligned with the "." symbol in the receiving field. Digits are
then transferred from the sending to the receiving field outward from the
sending field’s "V" or ".", truncating sending digits if there aren’t enough
positions in the receiving field. Any digit positions in the receiving field
that don’t receive digits from the sending field, if any, will be set to 0.

The "." symbol is not allowed in conjunction with "N".

An example will probably help:

...

05 Source-Field PIC 9(2)V9 VALUE 7.2.

05 Dest-Field PIC 9(5).9(2).

...

MOVE 1234567.89 TO Dest-Field

DISPLAY Dest-Field

MOVE 19 TO Dest-Field

DISPLAY Dest-Field

MOVE Source-Field TO Dest-Field

DISPLAY Dest-Field

The example will display three results — "34567.89", "00019.00" and
"00007.20".

Both data item definitions appear to have two decimal points in their pic-
ture clauses. They actually don’t, because the last character of every data
item definition is always a period — the period that ends the definition.

"," The "," symbol serves as a thousands separator. Many times, you’ll see
large numbers formatted with these symbols — for example, 123,456,789.
This can be accomplished easily by adding thousands separator symbols
to a picture string. Thousands separator symbols that aren’t needed will
behave as if they were "9"s.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 167

The "," symbol is not allowed in conjunction with "N".

Here’s an example:

...

05 My-Lottery-Winnings PIC 9(3),9(3),9(3).

...

MOVE 12345 TO My-Lottery-Winnings

DISPLAY My-Lottery-Winnings

The value "0000012,345" (a very disappointing one for my retirement
plans, but a good thousands separator demo) will be displayed. Notice
how, since the first comma wasn’t needed due to the meager amount I
won, it behaved like another "9".

If desired, you may reverse the roles of the "." and "," editing symbols by speci-
fying "DECIMAL POINT IS COMMA" in the "SPECIAL-NAMES" (see [SPECIAL-NAMES],
page 62) paragraph.

12. The following are insertion symbols. They are used to insert an extra character (two
in the case of "CR" and "DB") to signify the sign (positive or negative) of the numeric
value that is moved into the field whose picture string contains one of these symbols,
or the fact that the data item represents a currency (money) amount. Only one of
the "+", "-", "CR" or "DB" symbols may be used in a picture clause. In this context,
when any of these symbols are used in a <picture-string>, they must be at the end.
The "+", "-" and/or currency symbols may also be used as floating editing symbols
at the beginning of the <picture-string> — a subject that will be covered in the next
numbered paragraph.

"+" If the value of the numeric value moved into the field is positive (0 or
greater), a "+" character will be inserted. If the value is negative (less
than 0), a "-" character is inserted.

The "+" symbol is not allowed in conjunction with "N".

"-" If the value of the numeric value moved into the field is positive (0 or
greater), a space will be inserted. If the value is negative (less than 0), a
"-" character is inserted.

The "-" symbol is not allowed in conjunction with "N".

"CR" This symbol is coded as the two characters "C" and "R". If the value of
the numeric value moved into the field is positive (0 or greater), two spaces
will be inserted. If the value is negative (less than 0), the characters "CR"
(credit) are inserted.

The "CR" symbol is not allowed in conjunction with "N".

3 June 2014 Chapter 5 - DATA DIVISION



168 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

"DB" This symbol is coded as the two characters "D" and "B". If the value of
the numeric value moved into the field is positive (0 or greater), two spaces
will be inserted. If the value is negative (less than 0), the characters "DB"
(debit) are inserted.

The "DB" symbol is not allowed in conjunction with "N".

"$" Regardless of the value moved into the field, this symbol will insert the
currency symbol into the data item’s value in the position where it occurs
in the <picture-string> (see [SPECIAL-NAMES], page 62).

The "$" symbol is not allowed in conjunction with "N".

13. These editing symbols are known as floating replacement symbols. These symbols may
occur in sequences before any "9" editing symbols in the <picture-string> of a numeric
data item. Using these symbols transforms that numeric data item into a numerid
edited data item, which can no longer be used in calculations or subscripts.

14. Each of the following symbols behave like a "9", until such point as all digits in the
numeric value are exhausted and leading zeros are about to be inserted. In effect, these
editing symbols define what should happen to those leading zero.

"$" Of those currency symbols that correspond to character positions in which
leading zeros reside, the right-most will have its "0" value replaced by
the currency symbol in-effect for the program (see [SPECIAL-NAMES],
page 62). Any remaining leading zero values occupying positions described
by this symbol will be replaced by spaces.

The "$" symbol is not allowed in conjunction with "N".

Any currency symbol coded to the right of a "." will be treated exactly
like a "9".

"*" This symbol is referred to as a check protection symbol. All check-
protection symbols that correspond to character positions in which
leading zeros reside will have their "0" values replaced by "*".

The "*" symbol is not allowed in conjunction with "N".

Any check-suppression symbol coded to the right of a "." will be treated
exactly like a "9".

"+" Of those "+" symbols that correspond to character positions in which lead-
ing zeros reside, the right-most will have its "0" value replaced by a "+" if
the value in the data item is zero or greater or a "-" otherwise. Any re-
maining leading zero values occupying positions described by this symbol
will be replaced by spaces. You cannot use both "+" and "-" in the same
<picture-string>.

The "+" symbol is not allowed in conjunction with "N".

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 169

Any "+" symbol coded to the right of a "." will be treated exactly like a
"9".

"-" Of those "-" symbols that correspond to character positions in which lead-
ing zeros reside, the right-most will have its "0" value replaced by a space
if the value in the data item is zero or greater or a "-" otherwise. Any re-
maining leading zero values occupying positions described by this symbol
will be replaced by spaces. You cannot use both "+" and "-" in the same
<picture-string>.

The "-" symbol is not allowed in conjunction with "N".

Any "-" symbol coded to the right of a "." will be treated exactly like a
"9".

"Z" All "Z" symbols that correspond to character positions in which leading
zeros reside will have their "0" values replaced by spaces.

Any zero-suppression symbol coded to the right of a "." will be treated
exactly like a "9".

"Z" and "*" should not be coded in the same <picture-string>

"+" and "-" should not be coded in the same <picture-string>

When multiple floating symbols are coded, even if there is only one of them used they
will all be considered floating and will all be able to assume each other’s properties.
For example, if a data item has a "PIC +$ZZZZ9.99" <picture-string>, and a value
of 1 is moved to that field at run-time, the resulting value will be (the b symbol
represents a space) "bbbb+$1.00". This is not consistent with many other COBOL
implementations, where the result would have been "+$bbbb1.00".

Most other COBOL implementations reject the use of multiple occurrences of multiple
floating editing symbols. For example, they would reject <picture-string>s such as
"+++$$$9.99", "$$$ZZZ9.99" and so on. GNU COBOL accepts these. Programmers
creating GNU COBOL programs should avoid such <picture-string>s if there is any
liklihood that those programs may be used with other COBOL implementations.

3 June 2014 Chapter 5 - DATA DIVISION



170 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.34. PRESENT WHEN� �
PRESENT-WHEN Clause Syntax
 	

PRESENT WHEN condition-name

~~~~~~~ ~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT

This clause names an existing "Condition Name" (see [Condition Names], page 218) that
will serve as a switch controlling the presentation or suppression of a report group.

1. If the specified condition-name has a value of FALSE when a "GENERATE" statement
(see [GENERATE], page 391) causes a report group to be presented, the presentation
of that group will be suppressed.

2. If the condition-name has a value of TRUE, the group will be presented.

3. See [Condition Names], page 218, for more information.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 171

5.9.35. PROMPT� �
PROMPT Clause Syntax
 	

PROMPT [ CHARACTER IS literal-1 | identifier-1 ]

~~~~~~ ~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause defines the character that will be used as the fill-character for any input fields
on the screen.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The default prompt character, should no "CHARACTER" specification be coded, or should
the "PROMPT" clause be absent altogether, is an underscore (" ").

3. Prompt characters will be automatically transformed into spaces upon input.

See [Color Palette and Video Attributes], page 20, for more information on screen colors
and video attributes.

3 June 2014 Chapter 5 - DATA DIVISION



172 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.36. REDEFINES� �
REDEFINES Clause Syntax
 	

REDEFINES identifier-1

~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

The "REDEFINES" clause causes the data item in who’s definition the "REDEFINES" clause is
specified (hereafter referred to as the redefines object) to occupy the same physical storage
space as <identifier-1> (hereafter referred to as the redefines subject).

1. The following rules must all be followed in order to use REDEFINES:

A. The level number of both the subject and object data items must be the same.

B. The level numbers of both the subject and object data items cannot be 66, 78 or
88.

C. If "n" represents the level number of the object, then no other data items with
level number "n" may be defined between the subject and object data items unless
they too are "REDEFINES" of the subject.

D. If "n" represents the level number of the object, then no other data items with a
level number numerically less than "n" may be defined between the subject and
object data items.

E. The total allocated size of the subject data item must be the same as the total
allocated size of the object data item.

F. No "OCCURS" (see [OCCURS], page 158) clause may be part of the definition of
either the subject or object data items. Either or both, however, may be group
items that contain data items with "OCCURS" clauses.

G. No "VALUE" (see [VALUE], page 197) clause may be defined on the object data
item, and no data items subordinate to the object data item may have "VALUE"

clauses, with the exception of level-88 condition names.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 173

5.9.37. RENAMES� �
RENAMES Clause Syntax
 	

RENAMES identifier-1 [ THRU|THROUGH identifier-2

~~~~~~~ ~~~~ ~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

The "RENAMES" clause regroups previously defined items by specifying alternative, possibly
overlapping, groupings of elementary data items.

1. The reserved words "THRU" and "THROUGH" are interchangeable.

2. You must use the level number 66 for data description entries that contain the
"RENAMES" clause.

3. The <identifier-1> and <identifier-2> data items, along with all data items defined
between those two data items in the program source, must all be contained within the
same 01-level record description.

4. See [66-Level Data Items], page 121, for additional information on the RENAMES
clause.

3 June 2014 Chapter 5 - DATA DIVISION



174 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.38. REQUIRED� �
REQUIRED Attribute Syntax
 	

REQUIRED

~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause forces the user to enter data into the field it is specified on (or into all subordinate
input-capable fields if "REQUIRED" is specified on a group item).

1. The "EMPTY-CHECK" (see [EMPTY-CHECK], page 139) and "REQUIRED" clauses are
interchangeable, and may not be used together in the same data item description.

2. In order to take effect, the user must first move the cursor into the field having this
clause in its definition.

3. The "ACCEPT screen-data-item" statement (see [ACCEPT screen-data-item],
page 342) will ignore the Enter key and any other cursor-moving keystrokes that
would cause the cursor to move to another screen item unless data has been entered
into the field. Function keys will still be allowed to terminate the "ACCEPT".

4. In order to be functional, this attribute must be supported by the underlying ’curses’
package your GNU COBOL implementation was built with. As of this time, the
’PDCurses’ package (used for native Windows or MinGW builds) does not support
"REQUIRED".

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 175

5.9.39. REVERSE-VIDEO� �
REVERSE-VIDEO Attribute Syntax
 	

REVERSE-VIDEO

~~~~~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "REVERSE-VIDEO" attribute swaps the specified or implied "FOREGROUND-COLOR" (see
[FOREGROUND-COLOR], page 143) and "BACKGROUND-COLOR" (see [BACKGROUND-
COLOR], page 129) attributes for the field whose definition contains this clause (or all
subordinate fields if used on a group item).

See [Color Palette and Video Attributes], page 20, for more information on screen colors
and video attributes.

3 June 2014 Chapter 5 - DATA DIVISION



176 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.40. SECURE� �
SECURE Attribute Syntax
 	

SECURE

~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause will cause all data entered into the field to appear on the screen as asterisks.

1. The "NO-ECHO" (see [NO-ECHO], page 157) and "SECURE" clauses are interchangeable,
and may not be used together in the same data item description.

2. This clause may only be used on a field allowing data entry (a field containing either
the "USING" (see [USING], page 196) or "TO" (see [TO], page 183) clause).

See [Color Palette and Video Attributes], page 20, for more information on screen colors
and video attributes.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 177

5.9.41. SIGN IS� �
SIGN-IS Clause Syntax
 	

SIGN IS LEADING|TRAILING [ SEPARATE CHARACTER ]

~~~~ ~~~~~~~ ~~~~~~~~ ~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

This clause, allowable only for "USAGE DISPLAY" numeric data items, specifies how an "S"

symbol will be interpreted in a data item’s picture clause.

1. The reserved words "CHARACTER" and "IS" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. Without the "SEPARATE CHARACTER" option, the sign of the data item’s value will be
encoded by transforming the last ("TRAILING") or first ("LEADING") digit as follows:

First/Last Digit Value For Positive Value for Negative
0 0 p
1 1 q
2 2 r
3 3 s
4 4 t
5 5 u
6 6 v
7 7 w
8 8 x
9 9 y

3. If the "SEPARATE CHARACTER" clause is used, then an actual "+" or "-" character will
be inserted into the field’s value as the first ("LEADING") or last ("TRAILING") character.
Note that having this character imbedded within the data item’s storage does not
prevent the data item from being used as a source field in arithmetic operations.

4. When "SEPARATE CHARACTER" is specified, the "S" symbol in the data item’s
"PICTURE" must be counted when determining the data item’s size.

5. Neither the presence of an encoded digit (see above) nor an actual "+" or "-" character
imbedded within the data item’s storage prevents the data item from being used as a
source field in arithmetic operations.

3 June 2014 Chapter 5 - DATA DIVISION



178 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.42. SOURCE� �
SOURCE Clause Syntax
 	

SOURCE IS literal-1 | identifier-1 [ ROUNDED ]

~~~~~~ ~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT

This clause logically attaches a report section data item to another data item defined else-
where in the data division.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. When the report group containing this clause is presented, the value of the specified
numeric literal or identifier will be automatically moved to the report data item prior
to presentation.

3. The specified identifier may be defined anywhere in the data division, but if it is defined
in the report section it may only be "PAGE-COUNTER", "LINE-COUNTER" or a "SUM" (see
[SUM], page 326) counter.

4. The "PICTURE" (see [PICTURE], page 162) of the report data item must be such that
it would be legal to "MOVE" (see [MOVE], page 414) the specified literal or identifier to
a data item with that "PICTURE".

5. The "ROUNDED" option comes into play should the number of digits to the right of an
actual or assumed decimal point be different between the specified literal or identifier
value (the "source value") and the "PICTURE" specified for the field in whose definition
the "SOURCE" clause appears (the "target field"). Without "ROUNDED", excess digits in
the source value will simply be truncated to fit the target field. With "ROUNDED", the
source value will be arithmetically rounded to fit the target field. See [ROUNDED],
page 240, for information on the "NEAREST-AWAY-FROM-ZERO" rounding rule, which is
the one that will apply.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 179

5.9.43. SUM OF� �
SUM-OF Clause Syntax
 	

SUM OF { identifier-7 }... [ { RESET ON FINAL|identifier-8 } ]

~~~ { literal-2 } { ~~~~~ ~~~~~ }

{ UPON identifier-9 }

~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT

The "SUM" clause establishes a summation counter whose value will be arithmetically cal-
culated whenever the field is presented.

1. The reserved words "OF" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The "SUM" clause may only appear in a "CONTROL FOOTING" report group.

3. If the data item in which the "SUM" clause appears has been assigned it’s own identifier
name, and that name is not "FILLER", then that data item is referred to as a sum
counter.

4. All <identifier-7> data items must be non-edited numeric in nature.

5. If any <identifier-7> data item is defined in the report section, it must be a sum counter.

6. Any <identifier-7> data items that are sum counters must either be defined in the
same report group as the data item in which this "SUM" clause appears or they must
be defined in a report data item that exists at a lower level in this report’s control
hierarchy. See [Control Hierarchy], page 488, for additional information.

7. The "PICTURE" of the report data item in who’s description this "SUM" clause appears
in must be such that it would be legal to "MOVE" (see [MOVE], page 414) the specified
<identifier-7> or <literal-2> value to a data item with that "PICTURE".

8. The following points apply to the "UPON" option:

A. The data item <identifier-9> must be the name of a detail group specified in the
same report as the control footing group in which this "SUM" clause appears.

B. The presence of an "UPON" clause limits the "SUM" clause to adding the specified
numeric literal or identifier value into the sum counter only when a "GENERATE

<identifier-9>" statement is executed.

C. If there is no "UPON" clause specified, the value of <identifier-7> or <literal-2>
will be added into the sum counter whenever a "GENERATE" (see [GENERATE],
page 391) of any detail report group in the report is executed.

3 June 2014 Chapter 5 - DATA DIVISION



180 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

D. If there is only a single detail group in the report’s definition, the "UPON" clause
is meaningless.

9. The following points apply to the "RESET" option:

A. If the "RESET" option is coded, "FINAL" or <identifier-8> (whichever is coded
on the "RESET") must be one of the report’s control breaks specified on the
"CONTROLS" clause.

B. If there is no "RESET" option coded, the sum counter will be reset back to zero
after each time the control footing containing the "SUM" clause is presented. This
is the typical behavior that would be expected.

C. If, however, you want to reset the "SUM" counter only when the control footing
for a control break higher in the control hierarchy is presented, specify that higher
control break on the "RESET" option.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 181

5.9.44. SYNCRONIZED� �
SYNCRONIZED Syntax
 	

SYNCRONIZED|SYNCHRONISED [ LEFT|RIGHT ]

~~~~ ~~~~ ~~~~ ~~~~~

The "LEFT" and "RIGHT" (SYNCRONIZED) clauses are syntactically recognized but are
otherwise non-functional.

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE

This optional clause optimizes the storage of binary numeric items to store them in such a
manner as to make it as fast as possible for the CPU to fetch them.

1. The reserved words "SYNCRONIZED" and "SYNCHRONISED" are interchangeable, and may
be abbreviated as "SYNC".

2. If the "SYNCRONIZED" clause is coded on anything but a numeric data item with a
"USAGE" (see [USAGE], page 186) that specifies storage of data in a binary form, the
"SYNCRONIZED" clause will be ignored.

3. Synchronization is performed (by the compiler) as follows:

A. If the binary item occupies one byte of storage, no synchronization is performed.

B. If the binary item occupies two bytes of storage, the binary item is allocated at
the next half-word boundary.

C. If the binary item occupies four bytes of storage, the binary item is allocated at
the next word boundary.

D. If the binary item occupies four bytes of storage, the binary item is allocated at
the next word boundary.

The following illustrates the allocation of a group of data items both without and with the
"SYNCRONIZED" option. The grey blocks represent the unused bytes that are allocated in
the Group-Item-2 structure because of the "SYNC" clauses.

3 June 2014 Chapter 5 - DATA DIVISION



182 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 183

5.9.45. TO� �
TO Clause Syntax
 	

TO identifier-5

~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause logically attaches a screen section data item to another data item defined else-
where in the data division.

1. The "TO" clause is used to define a data-entry field with no initial value; when a value
is entered, it will be saved to the specified identifier.

2. The "FROM" (see [FROM], page 144), "TO", "USING" (see [USING], page 196) and
"VALUE" (see [VALUE], page 197) clauses are mutually-exclusive in any screen section
data itsm’s definition.

3 June 2014 Chapter 5 - DATA DIVISION



184 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.46. TYPE� �
TYPE Clause Syntax
 	

[ TYPE IS { RH|{REPORT HEADING} } ]

~~~~ { ~~ ~~~~~~ ~~~~~~~ }

{ PH|{PAGE HEADING} }

{ ~~ ~~~~ ~~~~~~~ }

{ CH|{CONTROL HEADING} FINAL|identifier-2 }

{ ~~ ~~~~~~~ ~~~~~~~ ~~~~~ }

{ DE|DETAIL }

{ ~~ ~~~~~~ }

{ CF|{CONTROL FOOTING} FINAL|identifier-2 }

{ ~~ ~~~~~~~ ~~~~~~~ ~~~~~ }

{ PF|{PAGE FOOTING} }

{ ~~ ~~~~ ~~~~~~~ }

{ RF|{REPORT FOOTING} }

~~ ~~~~~~ ~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

REPORT

This clause defines the type of report group that is being defined for a report.

1. This clause is required on any 01-level data item definitions (other than 01-level con-
stants) in the report section. This clause is invalid on any other report section data
item definitions.

2. There may be a maximum of one (1) report group per "RD" defined with a "TYPE" of
"REPORT HEADING", "PAGE HEADING", "PAGE FOOTING" and "REPORT FOOTING".

3. There must be either a "CONTROL HEADING" or a "CONTROL FOOTING" or both specified
for each entry specified on the "CONTROLS ARE" clause of the "RD".

4. The various report groups that constitute a report may be defined in any order.

5. See [RWCS Lexicon], page 483, for a description of the seven different types of report
groups.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 185

5.9.47. UNDERLINE� �
UNDERLINE Attribute Syntax
 	

UNDERLINE

~~~~~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

The "UNDERLINE" clause will introduce a horizontal line at the bottom edge of a screen
field.

1. The "LEFTLINE" (see [LEFTLINE], page 151), "OVERLINE" (see [OVERLINE],
page 161) and "UNDERLINE" clauses may be used in any combination in a single field’s
description.

2. This clause is essentially non-functional when used within Windows command shell
(cmd.exe) environments and running programs compiled using a GNU COBOL imple-
mentation built using ’PDCurses’ (such as Windows/MinGW builds).

3. Whether or not this clause operates on Cygwin or UNIX/Linux/OSX systems will
depend upon the video attribute capabilities of the terminal output drivers and ’curses’
software being used.

See [Color Palette and Video Attributes], page 20, for more information on screen colors
and video attributes.

3 June 2014 Chapter 5 - DATA DIVISION



186 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.48. USAGE� �
USAGE Clause Syntax
 	

USAGE IS data-item-usage

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT

The "USAGE" clause defines the format that will be used to store the value of a data item.

1. The reserved word "IS" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The following table summarizes the various USAGE specifications available in GNU
COBOL.

BINARY

~~~~~~

Range of Values: Defined by the quantity of "9"s and the presence
or absence of an "S" in the "PICTURE"

Storage Format: Compatible Binary Integer

Negative Values Allowed?: If "PICTURE" contains "S"

"PICTURE" Used?: Yes

BINARY-C-LONG [ SIGNED ]

~~~~~~~~~~~~~

Same as "BINARY-DOUBLE SIGNED"

BINARY-C-LONG UNSIGNED

~~~~~~~~~~~~~ ~~~~~~~~

Range of Values: Typically 0 to 4,294,967,295

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 187

BINARY-CHAR [ SIGNED ]

~~~~~~~~~~~

Range of Values: -128 to 127

Storage Format: Native Binary Integer

Negative Values Allowed?: Yes

"PICTURE" Used?: No

BINARY-CHAR UNSIGNED

~~~~~~~~~~~ ~~~~~~~~

Range of Values: 0 to 255

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

BINARY-DOUBLE [ SIGNED ]

~~~~~~~~~~~~~

Range of Values: -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Storage Format: Native Binary Integer

Negative Values Allowed?: Yes

"PICTURE" Used?: No

BINARY-DOUBLE UNSIGNED

~~~~~~~~~~~~~ ~~~~~~~~

Range of Values: 0 to 18,446,744,073,709,551,615

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

3 June 2014 Chapter 5 - DATA DIVISION



188 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

BINARY-INT

~~~~~~~~~~

Same as "BINARY-LONG SIGNED"

BINARY-LONG [ SIGNED ]

~~~~~~~~~~~

Range of Values: -2,147,483,648 2,147,483,647

Storage Format: Native Binary Integer

Negative Values Allowed?: Yes

"PICTURE" Used?: No

BINARY-LONG UNSIGNED

~~~~~~~~~~~ ~~~~~~~~

Range of Values: 0 to 4,294,967,295

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

BINARY-LONG-LONG

~~~~~~~~~~~~~~~~

Same as "BINARY-DOUBLE SIGNED"

BINARY-SHORT [ SIGNED ]

~~~~~~~~~~~~

Range of Values: -32,768 to 32,767

Storage Format: Native Binary Integer

Negative Values Allowed?: Yes

"PICTURE" Used?: No

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 189

BINARY-SHORT UNSIGNED

~~~~~~~~~~~~ ~~~~~~~~

Range of Values: 0 to 65,535

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

COMPUTATIONAL

~~~~

Same as "BINARY"

COMP[UTATIONAL]-1

~~~~ ~~

Same as "FLOAT-SHORT"

COMP[UTATIONAL]-2

~~~~ ~~

Same as "FLOAT-LONG"

COMP[UTATIONAL]-3

~~~~ ~~

Same as "PACKED-DECIMAL"

COMP[UTATIONAL]-4

~~~~ ~~

Same as "BINARY"

COMP[UTATIONAL]-5

~~~~ ~~

Range of Values: Depends on number of "9"s in the "PICTURE"

and the "binary-size" setting of the configu-
ration file used to compile the program

3 June 2014 Chapter 5 - DATA DIVISION



190 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Storage Format: Native Binary Integer

Negative Values Allowed?: If "PICTURE" contains "S"

"PICTURE" Used?: Yes

COMP[UTATIONAL]-6

~~~~ ~~

Range of Values: Defined by the quantity of "9"s and the presence
or absence of an "S" in the "PICTURE"

Storage Format: Unsigned Packed Decimal

Negative Values Allowed?: No

"PICTURE" Used?: Yes

COMP[UTATIONAL]-X

~~~~ ~~

Range of Values: If used with "PIC X", allocates one byte of stor-
age per "X"; range of values is 0 to max storable
in that many bytes. If used with "PIC 9", range
of values depends on number of "9"s in PIC-
TURE

Storage Format: Native unsigned (X) or signed (9) Binary

Negative Values Allowed?: If "PICTURE" 9 and contains "S"

"PICTURE" Used?: Yes

DISPLAY

~~~~~~~

Range of Values: Depends on "PICTURE" One character per
X, A, 9, period, $, Z, 0, *, S (if "SEPARATE

CHARACTER" specified), +, - or B symbol in
"PICTURE"; Add 2 more bytes if the "DB" or
"CR" editing symbol is used

Storage Format: Characters

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 191

Negative Values Allowed?: If "PICTURE" contains "S"

"PICTURE" Used?: Yes

FLOAT-DECIMAL-16

~~~~~~~~~~~~~~~~

Range of Values: 9.99999999999999910^384 to
9.99999999999999910^384

Storage Format: Native IEEE 754 Decimal64 Floating-point

Negative Values Allowed?: Yes

"PICTURE" Used?: No

FLOAT-DECIMAL-34

~~~~~~~~~~~~~~~~

Range of Values: -9.99999...10^6144 to 9.99999...10^6144

Storage Format: Native IEEE 754 Decimal128 Floating-point

Negative Values Allowed?: Yes

"PICTURE" Used?: No

FLOAT-LONG

~~~~~~~~~~

Range of Values: Approximately -1.79769313486231610^308 to
1.79769313486231610^308

Storage Format: Native IEEE 754 Binary64 Floating-point

Negative Values Allowed?: Yes

"PICTURE" Used?: No

FLOAT-SHORT

~~~~~~~~~~~

Range of Values: Approximately -3.402823510^38 to
3.402823510^38

3 June 2014 Chapter 5 - DATA DIVISION



192 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Storage Format: Native IEEE 754 Binary32

Negative Values Allowed?: Yes

"PICTURE" Used?: No

INDEX

~~~~~

Range of Values: 0 to maximum address possible (32 or 64 bits)

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

NATIONAL

~~~~~~~~

"USAGE NATIONAL", while syntactically recognized, is not supported by GNU
COBOL

PACKED-DECIMAL

~~~~~~~~~~~~~~

Range of Values: Defined by the quantity of "9"s and the presence
or absence of an "S" in the PICTURE

Storage Format: Signed Packed Decimal

Negative Values Allowed?: If "PICTURE" contains "S"

"PICTURE" Used?: No

POINTER

~~~~~~~

Range of Values: 0 to maximum address possible (32 or 64 bits)

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 193

PROCEDURE-POINTER

~~~~~~~~~~~~~~~~~

Same as "PROGRAM-POINTER"

PROGRAM-POINTER

~~~~~~~~~~~~~~~

Range of Values: 0 to maximum address possible (32 or 64 bits)

Storage Format: Native Binary Integer

Negative Values Allowed?: No

"PICTURE" Used?: No

SIGNED-INT

~~~~~~~~~~

Same as "BINARY-LONG SIGNED"

SIGNED-LONG

~~~~~~~~~~~

Same as "BINARY-DOUBLE SIGNED"

SIGNED-SHORT

~~~~~~~~~~~~

Same as "BINARY-SHORT SIGNED"

UNSIGNED-INT

~~~~~~~~~~~~

Same as "BINARY-LONG UNSIGNED"

UNSIGNED-LONG

~~~~~~~~~~~~~

Same as "BINARY-DOUBLE UNSIGNED"

UNSIGNED-SHORT

~~~~~~~~~~~~~~

3 June 2014 Chapter 5 - DATA DIVISION



194 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Same as "BINARY-SHORT UNSIGNED"

3. Binary data (integer or floating-point) can be stored in either a Big-Endian or Little-
Endian form.

Big-endian data allocation calls for the bytes that comprise a binary item to be allocated
such that the least-significant byte is the right-most byte. For example, a four-byte
binary item having a value of decimal 20 would be big-endian allocated as 00000014
(shown in hexadecimal notation).

Little-endian data allocation calls for the bytes that comprise a binary item to be
allocated such that the least-significant byte is the left-most byte. For example, a
four-byte binary item having a value of decimal 20 would be little-endian allocated as
14000000 (shown in hexadecimal notation).

All CPUs are capable of "understanding" big-endian format, which makes it the
"most-compatible" form of binary storage across computer systems.

Some CPUs such as the Intel/AMD i386/x64 architecture processors used in most
Windows PCs prefer to process binary data stored in a little-endian format. Since
that format is more efficient on those systems, it is referred to as the "native" binary
format.

On a system supporting only one format of binary storage (generally, that would be
big-endian), the terms ’most-efficient’ and ’native format’ are synonymous.

4. Data items that have the "UNSIGNED" attribute explicitly coded, or "DISPLAY",
"PACKED-DECIMAL", "COMP-5", "COMP-X" items that do not have an "S" symbol in
their picture clause cannot preserve negative values that may be stored into them.
Storing a negative value into such a field will actually result in the sign being stripped,
essentially saving the absolute value in the data item.

5. Packed-decimal (i.e. "USAGE PACKED-DECIMAL", "USAGE COMP-3" or "USAGE COMP-6")
data is stored as a series of bytes such that each byte contains two 4-bit fields, referred
to as ’nibbles’ (since they comprise half a "byte", they’re just "nibbles" — don’t groan,
I don’t just make this stuff up!). Each nibble represents a "9" in the "PICTURE" and
each holds a single decimal digit encoded as its binary value (0 = 0000, 1 = 0001, . . .
, 9 = 1001).

The last byte of a "PACKED-DECIMAL" or "COMP-3" data item will always have its left
nibble corresponding to the last "9" in the "PICTURE" and its right nibble reserved as
a sign indicator. This sign indicator is always present regardless of whether or not the
"PICTURE" included an "S" symbol.

The first byte of the data item will contain an unused left nibble if the "PICTURE" had
an even number of "9" symbols in it.

The sign indicator will have a value of a hexadecimal A thru F. Traditional packed
decimal encoding rules call for hecadecimal values of F, A, C or E ("FACE") in the

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 195

sign nibble to indicate a positive value and B or D to represent a negative value (hex-
adecimal digits 0-9 are undefined). Testing with a Windows MinGW/GNU COBOL
implementation shows that – in fact – hex digit D represents a negative number and any
other hexadecimal digit denotes a positive number. Therefore, a "PIC S9(3) COMP-3"

packed-decimal field with a value of -15 would be stored internally as a hexadecimal
015D in GNU COBOL.

If you attempt to store a negative number into a packed decimal field that has no "S"

in its "PICTURE", the absolute value of the negative number will actually be stored.

"USAGE COMP-6" does not allow for negative values, therefore no sign nibble will be
allocated. A "USAGE COMP-6" data item containing an odd number of "9" symbols in
its "PICTURE" will leave its leftmost nibble unused.

6. The "USAGE" specifications "FLOAT-DECIMAL-16" and "FLOAT-DECIMAL-34" will en-
code data using IEEE 754 "Decimal64" and "Decimal128" format, respectively. The
former allows for up to 16 digits of exact precision while the latter offers 34. The
phrase "exact precision" is used because the traditional binary renderings of decimal
real numbers in a floating-point format ("FLOAT-LONG" and "FLOAT-SHORT", for exam-
ple) only yield an approximation of the actual value because many decimal fractions
cannot be precisely rendered in binary. The Decimal64 and Decimal128 renderings,
however, render decimal real numbers in encoded decimal form in much the same way
that "PACKED-DECIMAL" renders a decimal integer in digit-by-digit decimal form. The
exact manner in which this rendering is performed is complex (Wikipedia has an ex-
cellent article on the subject just search for "Decimal64").

7. GNU COBOL stores "FLOAT-DECIMAL-16" and "FLOAT-DECIMAL-34" data items using
either Big-Endian or Little-Endian form, whichever is native to the system.

8. The "USAGE" specifications "FLOAT-LONG" and "FLOAT-SHORT" use the IEEE 754
"Binary64" and "Binary32" formats, respectively. These are binary encodings of
real decimal numbers, and as such cannot represent every possible value between
the minimum and maximum values in the range for those usages. Wikipedia has
an excellent article on the Binary64 and Binary32 encoding schemes just search on
"Binary32" or "Binary64".

GNU COBOL stores "FLOAT-LONG" and "FLOAT-SHORT" data items using either Big-
Endian or Little-Endian form, whichever is native to the system.

9. A "USAGE" clause specified at the group item level will apply that "USAGE" to all
subordinate data items, except those that themselves have a "USAGE" clause.

10. The only "USAGE" that is allowed in the report section is "USAGE DISPLAY".

3 June 2014 Chapter 5 - DATA DIVISION



196 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5.9.49. USING� �
USING Clause Syntax
 	

USING identifier-1

~~~~~

————————————————————————————————————————
This syntax is valid in the following sections:

SCREEN

This clause logically attaches a screen section data item to another data item defined else-
where in the data division.

1. When the screen item whose definition this clause is part of is displayed, the value
currently in <identifier-1> will be automatically moved into the screen item first.

2. When the screen item whose definition this clause is part of (or its parent) is accepted,
the current contents of the screen item will be saved back to <identifier-1> at the
conclusion of the "ACCEPT".

3. The "FROM" (see [FROM], page 144), "TO" (see [TO], page 183), "USING" and "VALUE"

(see [VALUE], page 197) clauses are mutually-exclusive in any screen section data
itsm’s definition.

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 197

5.9.50. VALUE� �
VALUE (Condition Names) Clause Syntax
 	

{ VALUE IS } {literal-1 [ THRU|THROUGH literal-2 ]}...

{ ~~~~~ } ~~~~ ~~~~~~~

{ VALUES ARE }

~~~~~~

————————————————————————————————————————� �
VALUE (Other Data Items) Syntax
 	

VALUE IS [ ALL ] literal-1

~~~~~ ~~~

————————————————————————————————————————
This syntax is valid in the following sections:

FILE, WORKING-STORAGE, LOCAL-STORAGE, LINKAGE, REPORT, SCREEN

The "VALUE" clause is used to define condition names or to assign values (at compilation
time) to data items.

1. The reserved words "ARE" and "IS" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. This clause cannot be specified on the same data item as a "FROM" (see [FROM],
page 144), "TO" (see [TO], page 183) or "USING" (see [USING], page 196) clause.

3. The following points apply to using the "VALUE" clause in the definition of a condition
name:

A. The clauses "VALUE IS" and "VALUES ARE" are interchangeable.

B. The reserved words "THRU" and "THROUGH" are interchangeable.

C. See [88-Level Data Items], page 124, for a discussion of how this format of "VALUE"
is used to create condition names.

D. See [Condition Names], page 218, for a discussion of how condition names are used.

4. The following points apply to using the "VALUE" clause in the definition of any other
data item:

A. In this context, "VALUE" specifies an initial compilation-time value that will be
assigned to the storage occupied by the data item in the program object code
generated by the compiler.

3 June 2014 Chapter 5 - DATA DIVISION



198 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

B. The "VALUE" clause is ignored on "EXTERNAL" (see [EXTERNAL], page 141) data
items or on any data items defines as subordinate to an "EXTERNAL" data item.

C. This format of the "VALUE" clause may not be used anywhere in the description
of an 01 item (or any of it’s subordinate items) serving as an "FD" or "SD" record
description.

D. If the optional "ALL" clause is used, it may only be used with an alphanumeric
literal value; the value will be repeated as needed to completely fill the data item.
Here are some examples with and without "ALL" (the symbol b denotes a space):

PIC X(5) VALUE "A" *> Abbbb

PIC X(5) VALUE ALL "A" *> AAAAA

PIC 9(3) VALUE 1 *> 001

PIC 9(3) VALUE ALL "1" *> 111

E. When used in the definition of a screen data item:

a. A figurative constant may not be supplied as <literal-1>.

b. Any "FROM" (see [FROM], page 144), "TO" (see [TO], page 183) or "USING"
(see [USING], page 196) clause in the same data item’s definition will be
ignored.

c. If there is no picture clause specified, the size of the screen data item will be
the length of the <literal-1> value.

d. If there is no picture clause and the "ALL" option is specified, the "ALL" option
will be ignored.

F. Giving a table an initial, compile-time value is one of the trickier aspects of COBOL
data definition. There are basically three standard techniques and a fourth that
people familiar with other COBOL implementations but new to GNU COBOL
may find interesting. So, here are the three standard approaches:

a. Don’t bother worrying about it at compile-time. Use the "INITIALIZE" (see
[INITIALIZE], page 399) to initialize all data item occurrences in a table (at
run-time) to their data-type-specific default values (numerics: 0, alphabetic
and alphanumerics: spaces).

b. Initialize small tables at compile time by including a "VALUE" clause on the
group item that serves as a parent to the table, as follows:

05 SHIRT-SIZES VALUE "S 14M 15L 16XL17".

10 SHIRT-SIZE-TBL OCCURS 4 TIMES.

15 SST-SIZE PIC X(2).

15 SST-NECK PIC 9(2).

c. Initialize tables of almost any size at compilation time by utilizing the
"REDEFINES" (see [REDEFINES], page 172) clause:

05 SHIRT-SIZE-VALUES.

10 PIC X(4) VALUE "S 14".

Chapter 5 - DATA DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 199

10 PIC X(4) VALUE "M 15".

10 PIC X(4) VALUE "L 16".

10 PIC X(4) VALUE "XL17"

.

05 SHIRT-SIZES REDEFINES SHIRT-SIZE-VALUES.

10 SHIRT-SIZE-TBL OCCURS 4 TIMES.

15 SST-SIZE PIC X(2).

15 SST-NECK PIC 9(2).

Admittedly, this table is much more verbose than the one shown with a group
"VALUE". What is good about this initialization technique, however, is that
you can have as many "FILLER" and "VALUE" items as you need for a larger
table, and those values can be as long as necessary!

G. Many COBOL compilers do not allow the use of "VALUE" and "OCCURS" (see
[OCCURS], page 158) on the same data item; additionally, they don’t allow a
"VALUE" clause on a data item subordinate to an "OCCURS". GNU COBOL, how-
ever, has neither of these restrictions!

Observe the following example, which illustrates a fourth manner in which tables
may be initialized in GNU COBOL:

05 X OCCURS 6 TIMES.

10 A PIC X(1) VALUE ’?’.

10 B PIC X(1) VALUE ’%’.

10 N PIC 9(2) VALUE 10.

In this example, all six "A" items will be initialized to "?", all six "B" items will
be initialized to "%" and all six "N" items will be initialized to 10. It’s not clear
exactly how many times this sort of initialization will be useful, but it’s there if
you need it.

5. The "FROM" (see [FROM], page 144), "TO" (see [TO], page 183), "USING" (see [USING],
page 196) and "VALUE" clauses are mutually-exclusive in any screen section data itsm’s
definition.

————————————————————
End of Chapter 5 — DATA DIVISION

3 June 2014 Chapter 5 - DATA DIVISION





GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 201

6. PROCEDURE DIVISION� �
PROCEDURE DIVISION Syntax
 	

PROCEDURE DIVISION [ { USING Subprogram-Argument ... } ]

~~~~~~~~~ ~~~~~~~~ { ~~~~~ }

{ CHAINING Main-Program-Argument...}

~~~~~~~~

[ RETURNING identifier-1 ] .

[ DECLARATIVES. ] ~~~~~~~~~

~~~~~~~~~~~~

[ Event-Handler-Routine... . ]

[ END DECLARATIVES. ]

~~~ ~~~~~~~~~~~~

General-Program-Logic

[ Nested-Subprogram... ]

[ END PROGRAM|FUNCTION name-1 ]

~~~ ~~~~~~~ ~~~~~~~~

————————————————————————————————————————

The PROCEDURE DIVISION of any GNU COBOL program marks the point where all
executable code is written.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



202 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.1. PROCEDURE DIVISION USING� �
PROCEDURE DIVISION Subprogram-Argument Syntax
 	

[ BY { REFERENCE [ OPTIONAL ] } ] identifier-1

{ ~~~~~~~~~ ~~~~~~~~ }

{ VALUE [ [ UNSIGNED ] SIZE IS { AUTO } ] }

~~~~~ ~~~~~~~~ ~~~~ { ~~~~ }

{ DEFAULT }

{ ~~~~~~~ }

{ integer-1 }

————————————————————————————————————————

The "USING" clause defines the arguments that will be passed to a GNU COBOL program
which is serving as a subprogram.

1. The reserved words "BY" and "IS" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words have no effect
upon the program.

2. The "USING" clause should only be used on the procedure division header of subpro-
grams (subroutines or user-defined functions).

3. The calling program will pass zero or more data items, known as arguments, to this
subprogram — there must be exactly as many <identifier-1> data items specified on
the USING clause as the maximum number of arguments the subprogram will ever be
passed.

4. If a subprogram does not expect any arguments, it should not have a "USING" clause
specified on it’s procedure division header.

5. The order in which arguments are defined on the "USING" clause must correspond to
the order in which those arguments will be passed to the subprogram by the calling
program.

6. The identifiers specified on the "USING" clause must be defined in the linkage section of
the subprogram. No storage is actually allocated for those identifiers in the subprogram
as the actual storage for them will exist in the calling program.

7. A GNU COBOL subprogram expects that all arguments to it will be one of two things:

• The memory address of the actual data item (allocated in the calling program)
that is being passed to the subprogram.

• A numeric, full-word, binary value (i.e. "USAGE BINARY-LONG" (see [USAGE],
page 186)) which is the actual argument being passed to the subprogram.

In the case of the former, the "USING" clause on the procedure division header should
describe the argument via the "BY REFERENCE" clause — in the latter case, a "BY

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 203

VALUE" specification should be coded. This allows the code generated by the compiler
to properly reference the subprogram arguments at run-time.

8. "BY REFERENCE" is the assumed default for the first "USING" argument should no "BY"
clause be specified for it. Subsequent arguments will assume the "BY" specification of
the argument prior to them should they lack a "BY" clause of their own.

9. Changes made by a subprogram to the value of an argument specified on the "USING"
clause will "be visible" to the calling program only if "BY REFERENCE" was explicitly
specified or implicitly assumed for the argument on the subprogram’s procedure division
header and the argument was passed to the subprogram "BY REFERENCE" by the calling
program. See [Subprogram Arguments], page 565, for additional information on the
mechanics of how arguments are passed to subprograms.

10. The optional "SIZE" clause allows you to specify the number of bytes a "BY VALUE"

argument will occupy, with "SIZE DEFAULT" specifying 4 bytes (this is the default if no
"SIZE" clause is used), "SIZE AUTO" specifying the size of the argument in the calling
program and "SIZE <integer-1>" specifying a specific byte count.

11. The optional "UNSIGNED" keyword, legal only if "SIZE AUTO" or "SIZE <integer-1>"

are coded, will add the "unsigned" attribute to the argument’s specification in the C-
language function header code generated for the subprogram. While not of any benefit
when the calling program is a GNU COBOL program, this can improve compatibility
with a C-language calling program.

12. The "OPTIONAL" keyword, legal only on "BY REFERENCE" arguments, allows calling
programs to code "OMITTED" for that corresponding argument when they call this
subprogram. See [CALL], page 359. for additional information on this feature.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



204 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.2. PROCEDURE DIVISION CHAINING� �
PROCEDURE DIVISION Main-Program-Argument Syntax
 	

[ BY REFERENCE ] [ OPTIONAL ] identifier-1

~~~~~~~~~ ~~~~~~~~

————————————————————————————————————————

The "CHAINING" term provides one mechanism a programmer may use to retrieve command-
line arguments passed to a program at execution time.

1. "PROCEDURE DIVISION CHAINING" may only be coded in a main program (that is, the
first program executed when a compiled GNU COBOL compilation unit is executed).
It cannot be used in any form of subprogram.

2. The "CHAINING" clause defines arguments that will be passed to a main program from
the operating system. The argument identifiers specified on the CHAINING clause will
be populated by character strings comprised of the parameters specified to the program
on the command line that executed it, as follows:

A. When a GNU COBOL program is excecuted from a command-line, the complete
command line text will be broken into a series of "tokens", where each token is
identified as being a word separated from the others in the command text by
at least one space. For example, if the command line was /usr/local/myprog

THIS IS A TEST, there will be five tokens identified by the operating system —
"/usr/local/myprog", "THIS", "IS", "A" and "TEST".

B. Multiple space-delimited tokens may be treated as a single token by enclosing them
in quotes. For example, there are only three tokens generated from the command
line C:\Pgms\myprog.exe "THIS IS A" TEST — "C:\Pgms\myprog.exe", "THIS
IS A" and "TEST". When quote characters are used to create multi-word tokens,
the quote characters themselves are stripped from the token’s value.

C. Once tokens have been identified, the first (the command) will be discarded; the
rest will be stored into the "CHAINING" arguments when the program begins
execution, with the 2nd token going to the 1st argument, the 3rd token going to
the 2nd argument and so forth.

D. If there are more tokens than there are arguments, the excess tokens will be dis-
carded.

E. If there are fewer tokens than there are arguments, the excess arguments will be
initialized as if the "INITIALIZE <identifier-1>" (see [INITIALIZE], page 399)
statement were executed.

F. All identifiers specified on the CHAINING clause should be defined as PIC X,
PIC A, group items (which are treated implicitly as PIC X) or as PIC 9 USAGE
DISPLAY. The use of USAGE BINARY (or the like) data items as CHAINING

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 205

arguments is not recommended as all command-line tokens will be retained in their
original character form as they are moved into the argument data items.

G. If an argument identifier is smaller in storage size than the token value to be stored
in it, the right-most excess characters of the token value will be truncated as the
value is moved in. Any JUSTIFIED RIGHT clause on such an argument identifier
will be ignored.

H. If an argument is larger in storage size than the token value to be stored in it, the
token value will be moved into the argument identifier in a left-justified manner.
Un-modified byte positions in the identifier will be space filled, unless the argument
identifier is defined as PIC 9 USAGE DISPLAY, in which case unmodified bytes
will be filled with "0" characters from the systems native characterset.

This behavior when the argument is defined as "PIC 9" may be unacceptable, as
an argument defined as "PIC 9(3)" but passed in a value of "1" from the command
line will receive a value of "100", not "001". Consider defining "numeric" command
line arguments as "PIC X" and then using the "NUMVAL" intrinsic function (see
[NUMVAL], page 304) function to determine the proper numeric value.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



206 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.3. PROCEDURE DIVISION RETURNING� �
PROCEDURE DIVISION RETURNING Syntax
 	

RETURNING identifier-1

~~~~~~~~~

————————————————————————————————————————

The RETURNING clause on the PROCEDURE DIVISION header documents that the
subprogram in which the clause appears will be returning a numeric value back to the
program that called it.

1. The "RETURNING" clause is optional within a subroutine, as not all subroutines return
a value to their caller.

2. The "RETURNING" clause is mandatory within a user-defined function, as all such must
return a numeric result.

3. The <identifier-1> data item should be defined as a USAGE BINARY-LONG data
item.

4. Main programs that wish to "pass back" a return code value to the operating system
when they exit do not use RETURNING - they do so simply by MOVEing a value to
the "RETURN-CODE" special register.

5. This is not the only mechanism that a subprogram may use to pass a value back to it’s
caller. Other possibilities are:

A. The subprogram may modify any argument that is specified as "BY REFER-
ENCE" on it’s PROCEDURE DIVISION header. Whether the calling program
can actually "see" any modifications depends upon how the calling program passed
the argument to the subprogram. See [CALL], page 359, for more information.

B. A data item with the "GLOBAL" (see [GLOBAL], page 146) attribute specified in
it’s description in the calling program is automatically visible to and updatable by
a subprogram nested with the calling program. See [Independent vs Contained vs
Nested Subprograms], page 557, for more information on subprogram nesting.

C. A data item defined with the "EXTERNAL" (see [EXTERNAL], page 141) attribute
in a subprogram and the calling program (same name in both programs) is auto-
matically visible to and updatable by both programs, even if those programs are
compiled separately from ona another.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 207

6.4. PROCEDURE DIVISION Sections and Paragraphs

The procedure division is the only one of the COBOL divisions that allows you to create
your own sections and paragraphs. These are collectively referred to as ’Procedures’, and
the names you create for those sections and paragraphs are called ’Procedure Names’.

Procedure names are optional in the procedure division and — when used — are named
entirely according to the needs and whims of the programmer.

Procedure names may be up to thirty one (31) characters long and may consist of letters,
numbers, dashes and underscores. A procedure name may neither begin nor end with a
dash (-) or underscore ( ) character. This means that "Main", "0100-Read-Transaction"
and "17" are all perfectly valid procedure names.

There are three circumstances under which the use of certain GNU COBOL statements or
options will require the specification of procedures. These situations are:

1. When "DECLARATIVES" (see [DECLARATIVES], page 208) are specified.

2. When the "ENTRY" statement (see [ENTRY], page 382) is being used.

3. When any procedure division statement that references procedures is used. These
statements are:

• "ALTER <procedure-name>"

• "GO TO <procedure-name>"

• "MERGE ... OUTPUT PROCEDURE <procedure-name>"

• "PERFORM <procedure-name>"

• "SORT ... INPUT PROCEDURE <procedure-name>" and/or "SORT ... INPUT

PROCEDURE <procedure-name>"

3 June 2014 Chapter 6 - PROCEDURE DIVISION



208 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.5. DECLARATIVES� �
DECLARATIVES Syntax
 	

section-name-1 SECTION.

USE { [ GLOBAL ] AFTER STANDARD { EXCEPTION } PROCEDURE ON { INPUT } }

~~~ { ~~~~~~ { ~~~~~~~~~ } { ~~~~~ } }

{ { ERROR } { OUTPUT } }

{ ~~~~~ { ~~~~~~ } }

{ { I-O } }

{ FOR DEBUGGING ON { procedure-name-1 } { ~~~ } }

{ ~~~~~~~~~ { ALL PROCEDURES } { EXTEND } }

{ { ~~~ ~~~~~~~~~~ } { ~~~~~~ } }

{ { REFERENCES OF identifier-1 } { file-name-1 } }

{ }

{ [ GLOBAL ] BEFORE REPORTING identifier-2 }

{ ~~~~~~ ~~~~~~ ~~~~~~~~~ }

{ }

{ AFTER EC|{EXCEPTION CONDITION} }

~~ ~~~~~~~~~ ~~~~~~~~~

The "AFTER EXCEPTION CONDITION" and "AFTER EC" clauses are syntactically recognized
but are otherwise non-functional.

————————————————————————————————————————

The "DECLARATIVES" area of the procedure division allows the programmer to define a
series of "trap" procedures (referred to as declarative procedures) capable of intercepting
certain events that may occur at program execution time. The syntax diagram above shows
the format of a single such procedure.

1. The reserved words "AFTER", "FOR", "ON", "PROCEDURE" and "STANDARD" are optional
and may be included, or not, at the discretion of the programmer. The presence or
absence of these words has no effect upon the program.

2. "EC" and "EXCEPTION CONDITION" are interchangeable.

3. The declaratives area may contain any number of declarative procedures, but no two
declarative procedures should be coded to trap the same event.

4. The following points apply to the "USE BEFORE REPORTING" clause:

A. <identifier-2> must be a report group.

B. At run-time, the declaratives procedure will be executed prior to the processing
of the specified report group’s presentation; within the procedure you may take
either of the following actions:

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 209

• You may adjust the value(s) of any items referenced in "SUM" (see [SUM],
page 326) or "SOURCE" (see [SOURCE], page 178) clauses in the report group.

• You may execute the "SUPPRESS" (see [SUPPRESS], page 471) statement to
squelch the presentation of the specified report group altogether. Note that
you will be suppressing this one specific instance of that group’s presentation
and not all of them.

5. The following points apply to the "USE FOR DEBUGGING" clause:

A. This clause allows you to define a declarative procedure that will be invoked
whenever. . .

• . . .<identifier-1> is referenced on any statement.

• . . .<procedure-name-1> is executed.

• . . . any procedure is executed ("ALL PROCEDURES").

B. A "USE FOR DEBUGGING" declarative procedure will be ignored at compilation
time unless "WITH DEBUGGING MODE" is specified in the "SOURCE-COMPUTER"

(see [SOURCE-COMPUTER], page 57) paragraph. Neither the compiler’s
"-fdebugging-line" switch nor "-debug" switch will activate this feature.

C. Any "USE FOR DEBUGGING" declarative procedures will be ignored at execution
time unless the "COB_SET_DEBUG" run-time environment variable (see [Run Time
Environment Variables], page 522) has been set to a value of "Y", "y" or "1".

D. The typical use of a "USE FOR DEBUGGING" declarative procedure is to display the
"DEBUG-ITEM" special register, which will be implicitly and automatically created
in your program for you if "WITH DEBUGGING MODE" is active.

The structure of DEBUG-ITEM will be as follows:

01 DEBUG-ITEM.

05 DEBUG-LINE PIC X(6).

05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-NAME PIC X(31).

05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-SUB-1 PIC S9(4) SIGN LEADING SEPARATE.

05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-SUB-2 PIC S9(4) SIGN LEADING SEPARATE.

05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-SUB-3 PIC S9(4) SIGN LEADING SEPARATE.

05 FILLER PIC X(1) VALUE SPACE.

05 DEBUG-CONTENTS PIC X(31).

where. . .

3 June 2014 Chapter 6 - PROCEDURE DIVISION



210 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

"DEBUG-LINE"

. . . is the program line number of the statement that triggered the
declaratives procedure.

"DEBUG-NAME"

. . . is the procedure name or identifier name that triggered the declar-
atives procedure.

"DEBUG-SUB-1"

. . . is the first subscript value (if any) for the reference of the identifier
that triggered the declaratives procedure.

"DEBUG-SUB-2"

. . . is the second subscript value (if any) for the reference of the iden-
tifier that triggered the declaratives procedure.

"DEBUG-SUB-3"

. . . is the third subscript value (if any) for the reference of the identifier
that triggered the declaratives procedure.

"DEBUG-CONTENTS"

. . . is a (brief) statement of the manner in which the procedure that
triggered the declaratives procedure was executed or the first 31 char-
acters of the value of the identifier whose reference triggered the declar-
atives procedure (the value after the statement was executed).

6. The "USE AFTER STANDARD ERROR PROCEDURE" clause defines a declarative procedure
invoked any time a failure is encountered with the specified I/O type (or against the
specified file(s)).

7. The "GLOBAL" (see [GLOBAL], page 146) option, if used, allows a declarative procedure
to be used across the program containing the "USE" statement and any subprograms
nested within that program.

8. Declarative procedures may not reference any other procedures defined outside the
scope of DECLARATIVES.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 211

6.6. Table References

COBOL uses parenthesis to specify the subscripts used to reference table entries (tables in
COBOL are what other programming languages refer to as arrays).

For example, observe the following data structure which defines a 4 column by 3 row grid
of characters:

01 GRID.

05 GRID-ROW OCCURS 3 TIMES.

10 GRID-COLUMN OCCURS 4 TIMES.

15 GRID-CHARACTER PIC X(1).

If the structure contains the following grid of characters:

A B C D

E F G H

I J K L

Then "GRID-CHARACTER (2, 3)" references the "G" and "GRID-CHARACTER (3, 2)" ref-
erences the "J".

Subscripts may be specified as numeric (integer) literals, numeric (integer) data items,
data items created with any of the picture-less integer "USAGE" (see [USAGE], page 186)
specifications, "USAGE INDEX" data items or arithmetic expressions resulting in a non-zero
integer value.

In the above examples, a comma is used as a separator character between the two subscript
values; semicolons (";") are also valid subscript separator characters, as are spaces! The
use of a comma or semicolon separator in such a situation is technically optional, but by
convention most COBOL programmers use one or the other. The use of no separator
character (other than a space) is not recommended, even though it is syntactically correct,
as this practice can lead to programmer-unfriendly code. It isn’t too difficult to read
and understand "GRID-CHARACTER(2 3)", but it’s another story entirely when trying to
comprehend "GRID-CHARACTER(I + 1 J / 3)" (instead of "GRID-CHARACTER(I + 1, J /

3)"). The compiler accepts it, but too much of this would make my head hurt.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



212 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.7. Qualification of Data Names

COBOL allows data names to be duplicated within a program, provided references to those
data names may be made in such a manner as to make those references unique through a
process known as qualification.

To see qualification at work, observe the following segments of two data records defined in
a COBOL program:

01 EMPLOYEE. 01 CUSTOMER.

05 MAILING-ADDRESS. 05 MAILING-ADDRESS.

10 STREET PIC X(35). 10 STREET PIC X(35).

10 CITY PIC X(15). 10 CITY PIC X(15).

10 STATE PIC X(2). 10 STATE PIC X(2).

10 ZIP-CODE. 10 ZIP-CODE.

15 ZIP-CODE-5 PIC 9(5). 15 ZIP-CODE-5 PIC 9(5).

15 FILLER PIC X(4). 15 FILLER PIC X(4).

Now, let’s deal with the problem of setting the CITY portion of an EMPLOYEEs
MAILING-ADDRESS to "Philadelphia". Clearly, "MOVE ’Philadelphia’ TO CITY"

cannot work because the compiler will be unable to determine which of the two CITY
fields you are referring to.

In an attempt to correct the problem, we could qualify the reference to CITY as "MOVE

’Philadelphia’ TO CITY OF MAILING-ADDRESS".

Unfortunately that too is insufficient because it still insufficiently specifies which CITY is
being referenced. To truly identify which specific CITY you want, you’d have to code "MOVE
’Philadelphia’ TO CITY OF MAILING-ADDRESS OF EMPLOYEE".

Now there can be no confusion as to which CITY is being changed. Fortunately, you don’t
need to be quite so specific; COBOL allows intermediate and unnecessary qualification levels
to be omitted. This allows "MOVE ’Philadelphia’ TO CITY OF EMPLOYEE" to do the job
nicely.

If you need to qualify a reference to a table, do so by coding something like "<identifier-
1> OF <identifier-2> ( subscript(s) )".

The reserved word "IN" may be used in lieu of "OF".

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 213

6.8. Reference Modifiers� �
Reference Modifier (Format 1) Syntax
 	

identifier-1 [ OF|IN identifier-2 ] [ (subscript...) ] (start:[ length ])

~~ ~~

————————————————————————————————————————� �
Reference Modifier (Format 2) Syntax
 	

intrinsic-function-reference (start:[ length ])

————————————————————————————————————————

The COBOL ’85 standard introduced the concept of a reference modifier to facilitate refer-
ences to only a portion of a data item; GNU COBOL fully supports reference modification.

The <start> value indicates the starting character position being referenced (character posi-
tion values start with 1, not 0 as is the case in some programming languages) and <length>
specifies how many characters are wanted.

If no <length> is specified, a value equivalent to the remaining character positions from
<start> to the end of <identifier-1> or to the end of the value returned by the function will
be assumed.

Both <start> and <length> may be specified as integer numeric literals, integer numeric data
items or arithmetic expressions with an integer value.

Here are a few examples:

"CUSTOMER-LAST-NAME (1:3)"

References the first three characters of CUSTOMER-LAST-NAME.

"CUSTOMER-LAST-NAME (4:)"

References all character positions of CUSTOMER-LAST-NAME from the
fourth onward.

"FUNCTION CURRENT-DATE (5:2)"

References the current month as a 2-digit number in character form. See
[CURRENT-DATE], page 257, for more information.

"Hex-Digits (Nibble + 1:1)"

Assuming that "Nibble" is a numeric data item with a value in the range 0-15,
and Hex-Digits is a "PIC X(16)" item with a value of "0123456789ABCDEF",
this converts that numeric value to a hexadecimal digit.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



214 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

"Table-Entry (6) (7:5)"

References characters 7 through 11 (5 characters in total) in the 6th occurrence
of Table-Entry.

Reference modification may be used anywhere an identifier is legal, including serving as the
receiving field of statements like "MOVE" (see [MOVE], page 414), "STRING" (see [STRING],
page 463) and "ACCEPT" (see [ACCEPT], page 338), to name a few.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 215

6.9. Arithmetic Expressions� �
Arithmetic-Expression Syntax
 	

Unary-Expression-1 { **|^ } Unary-Expression-2

{ *|/ }

{ +|- }

————————————————————————————————————————� �
Unary-Expression Syntax
 	

{ [ +|- ] { ( Arithmetic-Expression-1 ) } }

{ { [ LENGTH OF ] { identifier-1 } } }

{ { ~~~~~~ ~~ { literal-1 } } }

{ { { Function-Reference } } }

{ Arithmetic-Expression-2 }

————————————————————————————————————————

Arithmetic expressions are formed using four categories of operations — exponentiation,
multiplication & division, addition & subtraction, and sign specification.

In complex expressions composed of multiple operators and operands, a precedence of op-
eration applies whereby those operations having a higher precedence are computed first
before operations with a lower precedence.

As is the case in almost any other programming language, the programmer is always free
to use pairs of parenthesis to enclose sub-expressions of complex expressions that are to
be evaluated before other sub-expressions rather than let operator precedence dictate the
sequence of evaluation.

In highest to lowest order of precedence, here is a discussion of each category of operation:

Level 1 (Highest) — Unary Sign Specification ("+" and "-" with a single argument)

The unary "minus" (-) operator returns the arithmetic negation of its single
argument, effectively returning as its value the product of its argument and -1.

The unary "plus" (+) operator returns the value of its single argument, effec-
tively returning as its value the product of its argument and +1.

Level 2 — Exponentiation ("**" or "^")

The value of the left argument is raised to the power indicated by the right ar-
gument. Non-integer powers are allowed. The "^" and "**" operators are both
supported to provide compatibility with programs written for other COBOL
implementations.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



216 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Level 3 — Multiplication ("*") and division ("/")

The "*" operator computes the product of the left and right arguments while
the "/" operator computes the value of the left argument divided by the value
of the right argument. If the right argument has a value of zero, expression
evaluation will be prematurely terminated before a value is generated. This
may cause program failure at run-time.

A sequence of multiple 3rd-level operations ("A * B / C", for example) will
evaluate in strict left-to-right sequence if no parenthesis are used to control the
order of evaluation.

Level 4 — Addition ("+") or subtraction ("+")

The "+" operator calculates the sum of the left and right arguments while the
"-" operator computes the value of the right argument subtracted from that of
the left argument.

A sequence of multiple 4th-level operations ("A - B + C", for example) will
evaluate in strict left-to-right sequence if no parenthesis are used to control the
order of evaluation.

The syntactical rules of COBOL, allowing a dash (-) character in data item names, can lead
to some ambiguity.

01 C PIC 9 VALUE 5.

01 D PIC 9 VALUE 2.

01 C-D PIC 9 VALUE 7.

01 I PIC 9 VALUE 0.

...

COMPUTE I=C-D+1

The "COMPUTE" (see [COMPUTE], page 366) statement will evaluate the arithmetic expres-
sion "C-D+1" and then save that result in "I".

What value will be stored in "I"? The number 4, which is the result of subtracting the
value of "D" (2) from the value of "C" (5) and then adding 1? Or, will it be the number 8,
which is the value of adding 1 to the value of data item "C-D" (7)?

The right answer is 8 — the value of data item "C-D" plus 1! Hopefully, that was the
intended result.

The GNU COBOL compiler actually went through the following decision-making logic when
generating code for the "COMPUTE" Statement:

1. Is there a data item named "C-D" defined? If so, use its value for the character sequence
"C-D".

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 217

2. If there is no "C-D" data item, then are there "C" and "D" data items? If not, the
"COMPUTE" statement is in error. If there are, however, then code will be generated to
subtract the value of "D" from "C" and add 1 to the result.

Had there been at least one space to the left and/or the right of the "-", there would have
been no ambiguity — the compiler would have been forced to use the individual "C" and
"D" data items.

To avoid any possible ambiguity, as well as to improve program readability, it’s considered
good COBOL programming practice to always code at least one space to both the left and
right of every operator in arithmetic expressions as well as the "=" sign on a COMPUTE.

Here are some examples of how the precedence of operations affects the results of arithmetic
expressions (all examples use numeric literals, to simplify the discussion).

Expression Result Notes

3 * 4 + 1 13 * has precedence over +

4 * 2 ^ 3 - 10 22 2^3 is 8 (^ has precedence over *), times 4 is 32,
minus 10 is 22.

(4 * 2) ^ 3 - 10 502 Parenthesis provide for a recursive application of the
arithmetic expression rules, effectively allowing you
to alter the precedence of operations. 4 times 2 is
8 (the use of parenthesis "trumps" the exponention
operator, so the multiplication happens first); 8 ^ 3
is 512, minus 10 is 502.

5 / 2.5 + 7 * 2 - 1.15 15.35 Integer and non-integer operands may be freely
intermixed

Of course, arithmetic expression operands may be numeric data items (any USAGE except
POINTER or PROGRAM POINTER) as well as numeric literals.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



218 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.10. Conditional Expressions

Conditional expressions are expressions which identify the circumstances under which a
program may take an action or cease taking an action. As such, conditional expressions
produce a value of TRUE or FALSE.

There are seven types of conditional expressions, as discussed in the following sections.

6.10.1. Condition Names

These are the simplest of all conditions. Observe the following code:

05 SHIRT-SIZE PIC 99V9.

88 TINY VALUE 0 THRU 12.5

88 XS VALUE 13 THRU 13.5.

88 S VALUE 14, 14.5.

88 M VALUE 15, 15.5.

88 L VALUE 16, 16.5.

88 XL VALUE 17, 17.5.

88 XXL VALUE 18, 18.5.

88 XXXL VALUE 19, 19.5.

88 VERY-LARGE VALUE 20 THRU 99.9.

The condition names "TINY", "XS", "S", "M", "L", "XL", "XXL", "XXXL" and "VERY-LARGE"

will have TRUE or FALSE values based upon the values within their parent data item
(SHIRT-SIZE).

A program wanting to test whether or not the current "SHIRT-SIZE" value can be classified
as "XL" could have that decision coded as a combined condition (the most complex type of
conditional expression), as either:

IF SHIRT-SIZE = 17 OR SHIRT-SIZE = 17.5

- or -

IF SHIRT-SIZE = 17 OR 17.5

Or it could simply utilize the condition name XL as follows:

IF XL

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 219

6.10.2. Class Conditions� �
Class-Condition Syntax
 	

identifier-1 IS [ NOT ] { NUMERIC }

~~~ { ~~~~~~~ }

{ ALPHABETIC }

{ ~~~~~~~~~~ }

{ ALPHABETIC-LOWER }

{ ~~~~~~~~~~~~~~~~ }

{ ALPHABETIC-UPPER }

{ ~~~~~~~~~~~~~~~~ }

{ OMITTED }

{ ~~~~~~~ }

{ class-name-1 }

————————————————————————————————————————

Class conditions evaluate the type of data that is currently stored in a data item.

1. The "NUMERIC" class test considers only the characters "0", "1", . . . , "9" to be
numeric; only a data item containing nothing but digits will pass a "NUMERIC" class
test. Spaces, decimal points, commas, currency signs, plus signs, minus signs and any
other characters except the digit characters will all fail "NUMERIC" class tests.

2. The "ALPHABETIC" class test considers only upper-case letters, lower-case letters and
spaces to be alphabetic in nature.

3. The "ALPHABETIC-LOWER" and "ALPHABETIC-UPPER" class conditions consider only
spaces and the respective type of letters to be acceptable in order to pass such a
class test.

4. The "NOT" option reverses the TRUE/FALSE value of the condition.

5. Note that what constitutes a "letter" (or upper/lower case too, for that manner) may
be influenced through the use of "CHARACTER CLASSIFICATION" specifications in the
"OBJECT-COMPUTER" (see [OBJECT-COMPUTER], page 58) paragraph.

6. Only data items whose "USAGE" (see [USAGE], page 186) is either explicitly or implic-
itly defined as "DISPLAY" may be used in "NUMERIC" or any of the "ALPHABETIC" class
conditions.

7. Some COBOL implementations disallow the use of group items or "PIC A" items with
"NUMERIC" class conditions and the use of "PIC 9" items with "ALPHABETIC" class
conditions. GNU COBOL has no such restrictions.

8. The "OMITTED" class condition is used when it is necessary for a subprogram to deter-
mine whether or not a particular argument was passed to it. In such class conditions,
<identifier-1> must be a linkage section item defined on the "USING" clause of the sub-

3 June 2014 Chapter 6 - PROCEDURE DIVISION



220 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

programs "PROCEDURE DIVISION" header. See [PROCEDURE DIVISION USING],
page 202, for additional information.

The <class-name-1> option allows you to test for a user-defined class. Here’s an example.
First, assume the following "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 62) definition
of the user-defined class "Hexadecimal":

SPECIAL-NAMES.

CLASS Hexadecimal IS ’0’ THRU ’9’, ’A’ THRU ’F’, ’a’ THRU ’f’.

Now observe the following code, which will execute the "150-Process-Hex-Value" proce-
dure if "Entered-Value" contains nothing but valid hexadecimal digits:

IF Entered-Value IS Hexadecimal

PERFORM 150-Process-Hex-Value

END-IF

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 221

6.10.3. Sign Conditions� �
Sign-Condition Syntax
 	

identifier-1 IS [ NOT ] { POSITIVE }

~~~ { ~~~~~~~~ }

{ NEGATIVE }

{ ~~~~~~~~ }

{ ZERO }

~~~~

————————————————————————————————————————

Sign conditions evaluate the numeric state of a data item defined with a "PICTURE" (see
[PICTURE], page 162) and/or "USAGE" (see [USAGE], page 186) that supports numeric
values.

1. A "POSITIVE" or "NEGATIVE" class condition will be TRUE only if the value of
<identifier-1> is strictly greater than or less than zero, respectively.

2. A "ZERO" class condition can be passed only if the value of <identifier-1> is exactly
zero.

3. The "NOT" option reverses the TRUE/FALSE value of the condition.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



222 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.10.4. Switch-Status Conditions

In the "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 62) paragraph, an external switch
name can be associated with one or more condition names. These condition names may
then be used to test the ON/OFF status of the external switch.

Here are the relevant sections of code in a program named "testprog", which is designed to
simply announce if SWITCH-1 is on:

...

ENVIRONMENT DIVISION.

SPECIAL-NAMES.

SWITCH-1 ON STATUS IS Switch-1-Is-ON.

...

PROCEDURE DIVISION.

...

IF Switch-1-Is-ON

DISPLAY "Switch 1 Is On"

END-IF

...

the following are two different command window sessions — the left on a Unix/Cygwin/OSX
system and the right on a windows system — that will set the switch on and then execute
the "testprog" program. Notice how the message indicating that the program detected the
switch was set is displayed in both examples:

$ COB_SWITCH_1=ON C:>SET COB_SWITCH_1=ON

$ export COB_SWITCH_1 C:>testprog

$ ./testprog Switch 1 Is On

Switch 1 Is On C:>

$

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 223

6.10.5. Relation Conditions� �
Relation-Condition Syntax
 	

{ identifier-1 } IS [ NOT ] RelOp { identifier-2 }

{ literal-1 } ~~~ { literal-2 }

{ arithmetic-expression-1 } { arithmetic-expression-2 }

{ index-name-1 } { index-name-2 }

————————————————————————————————————————� �
RelOp Syntax
 	

{ EQUAL TO }

{ ~~~~~ }

{ EQUALS }

{ ~~~~~~ }

{ GREATER THAN }

{ ~~~~~~~ }

{ GREATER THAN OR EQUAL TO }

{ ~~~~~~~ ~~ ~~~~~ }

{ LESS THAN }

{ ~~~~ }

{ LESS THAN OR EQUAL TO }

{ ~~~~ ~~ ~~~~~ }

{ = }

{ > }

{ >= }

{ < }

{ <= }

————————————————————————————————————————

These conditions evaluate how two different values "relate" to each other.

1. When comparing one numeric value to another, the "USAGE" (see [USAGE], page 186)
and number of significant digits in either value are irrelevant as the comparison is
performed using the actual algebraic values.

2. When comparing strings, the comparison is made based upon the program’s collating
sequence. When the two string arguments are of unequal length, the shorter is assumed
to be padded (on the right) with a sufficient number of spaces as to make the two
strings of equal length. String comparisons take place on a corresponding character-
by-character basis, left to right, until the TRUE/FALSE value for the relation test can
be established. Characters are compared according to their relative position in the
program’s "COLLATING SEQUENCE" (as defined in "SPECIAL-NAMES" (see [SPECIAL-

3 June 2014 Chapter 6 - PROCEDURE DIVISION



224 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

NAMES], page 62)), not according to the bit-pattern values the characters have in
storage.

3. By default, the program’s "COLLATING SEQUENCE" will, however, be based entirely on
the bit-pattern values of the various characters.

4. There is no functional difference between using the wordy version ("IS EQUAL TO", "IS
LESS THAN", . . . ) versus the symbolic version ("=", "<", . . . ) of the actual relation
operators.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 225

6.10.6. Combined Conditions� �
Combined Condition Syntax
 	

[ ( ] Condition-1 [ ) ] { AND } [ ( ] Condition-2 [ ) ]

{ ~~~ }

{ OR }

{ ~~ }

————————————————————————————————————————

A combined condition is one that computes a TRUE/FALSE value from the TRUE/FALSE
values of two other conditions (which could themselves be combined conditions).

1. If either condition has a value of TRUE, the result of "OR"ing the two together will
result in a value of TRUE. "OR"ing two FALSE conditions will result in a value of
FALSE.

2. In order for "AND" to yield a value of TRUE, both conditions must have a value of
TRUE. In all other circumstances, "AND" produces a FALSE value.

3. When chaining multiple, similar conditions together with the same operator
(OR/AND), and left or right arguments have common subjects, it is possible to
abbreviate the program code. For example:

IF ACCOUNT-STATUS = 1 OR ACCOUNT-STATUS = 2 OR ACCOUNT-STATUS = 7

Could be abbreviated as:

IF ACCOUNT-STATUS = 1 OR 2 OR 7

4. Just as multiplication takes precedence over addition in arithmetic expressions, so does
"AND" take precedence over "OR" in combined conditions. Use parenthesis to change
this precedence, if necessary. For example:

"FALSE AND FALSE OR TRUE AND TRUE"

Evaluates to TRUE

"(FALSE AND FALSE) OR (TRUE AND TRUE)"

Evaluates to TRUE (since AND has precedence over OR) - this is identical
to the previous example

"(FALSE AND (FALSE OR TRUE)) AND TRUE"

Evaluates to FALSE

3 June 2014 Chapter 6 - PROCEDURE DIVISION



226 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.10.7. Negated Conditions� �
Negated Condition Syntax
 	

NOT Condition-1

~~~

————————————————————————————————————————

A condition may be negated by prefixing it with the "NOT" operator.

1. The "NOT" operator has the highest precedence of all logical operators, just as a unary
minus sign (which "negates" a numeric value) is the highest precedence arithmetic
operator.

2. Parenthesis must be used to explicitly signify the sequence in which conditions are
evaluated and processed if the default precedence isn’t desired. For example:

"NOT TRUE AND FALSE AND NOT FALSE"

Evaluates to FALSE AND FALSE AND TRUE which evaluates to FALSE

"NOT (TRUE AND FALSE AND NOT FALSE)"

Evaluates to NOT (FALSE) which evaluates to TRUE

"NOT TRUE AND (FALSE AND NOT FALSE)"

Evaluates to FALSE AND (FALSE AND TRUE) which evaluates to
FALSE

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 227

6.11. Use of Periods

All COBOL implementations distinguish between sentences and statements in the procedure
division. A ’Statement ’ is a single executable COBOL instruction. For example, these are
all statements:

MOVE SPACES TO Employee-Address

ADD 1 TO Record-Counter

DISPLAY "Record-Counter=" Record-Counter

Some COBOL statements have a "scope of applicability" associated with them where one
or more other statements can be considered to be part of or related to the statement in
question. An example of such a situation might be the following, where the interest on a
loan is being calculated and displayed — 4% interest if the loan balance is under $10000
and 4.5% otherwise (WARNING – the following code has an error!):

IF Loan-Balance < 10000

MULTIPLY Loan-Balance BY 0.04 GIVING Interest

ELSE

MULTIPLY Loan-Balance BY 0.045 GIVING Interest

DISPLAY "Interest Amount = " Interest

In this example, the IF statement actually has a scope that can include two sets of associated
statements – one set to be executed when the "IF" (see [IF], page 397) condition is TRUE
and another if it is FALSE.

Unfortunately, there’s a problem with the above. A human being looking at that code
would probably infer that the "DISPLAY" (see [DISPLAY], page 370) statement, because
of its lack of indentation, is to be executed regardless of the TRUE/FALSE value of the
"IF" condition. Unfortunately, the GNU COBOL compiler (or any other COBOL compiler
for that matter) won’t see it that way because it really couldn’t care less what sort of
indentation, if any, is used. In fact, any COBOL compiler would be just as happy to see
the code written like this:

IF Loan-Balance < 10000 MULTIPLY Loan-balance

BY 0.04 GIVING Interest ELSE MULTIPLY

Loan-Balance BY 0.045 GIVING Interest DISPLAY

"Interest Amount = " Interest

So how then do we inform the compiler that the "DISPLAY" statement is outside the scope
of the "IF"?

That’s where sentences come in.

A COBOL ’Sentence’ is defined as any arbitrarily long sequence of statements, followed
by a period (.) character. The period character is what terminates the scope of a set of
statements. Therefore, our example should have been coded like this:

IF Loan-Balance < 10000

3 June 2014 Chapter 6 - PROCEDURE DIVISION



228 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

MULTIPLY Loan-Balance BY 0.04 GIVING Interest

ELSE

MULTIPLY Loan-Balance BY 0.045 GIVING Interest.

DISPLAY "Interest Amount = " Interest

See the period at the end of the second "MULTIPLY" (see [MULTIPLY], page 416)? That is
what terminates the scope of the "IF", thus making the "DISPLAY" statement’s execution
completely independent of the TRUE/FALSE status of the "IF".

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 229

6.12. Use of VERB/END-VERB Constructs

Prior to the 1985 COBOL standard, using a period character was the only way to signal
the end of a statement’s scope.

Unfortunately, this caused some problems. Take a look at this code:

IF A = 1

IF B = 1

DISPLAY "A & B = 1"

ELSE *> This ELSE has a problem!

IF B = 1

DISPLAY "A NOT = 1 BUT B = 1"

ELSE

DISPLAY "NEITHER A NOR B = 1".

The problem with this code is that indentation — so critical to improving the human-
readability of a program — can provide an erroneous view of the logical flow. An "ELSE"

is always associated with the most-recently encountered "IF"; this means the emphasized
"ELSE" will be associated with the "IF B = 1" statement, not the "IF A = 1" statement
as the indentation would appear to imply.

This sort of problem led to a band-aid solution — the "NEXT SENTENCE" clause — being
added to the COBOL language.

IF A = 1

IF B = 1

DISPLAY "A & B = 1"

ELSE

NEXT SENTENCE

ELSE

IF B = 1

DISPLAY "A NOT = 1 BUT B = 1"

ELSE

DISPLAY "NEITHER A NOR B = 1".

The "NEXT SENTENCE" clause informs the compiler that if the "B = 1" condition is false,
control should fall into the first statement that follows the next period.

With the 1985 standard for COBOL, a much more elegant solution was introduced. Any
COBOL ’Verb’ (the first reserved word of a statement) that needed such a thing was allowed
to use an "END-verb" construct to end it’s scope without disrupting the scope of any other
statement it might have been in. Any COBOL 85 compiler would have allowed the following
solution to our problem:

IF A = 1

IF B = 1

DISPLAY "A & B = 1"

3 June 2014 Chapter 6 - PROCEDURE DIVISION



230 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

END-IF

ELSE

IF B = 1

DISPLAY "A NOT = 1 BUT B = 1"

ELSE

DISPLAY "NEITHER A NOR B = 1".

This new facility made the period almost obsolete, as our program segment would probably
be coded like this today:

IF A = 1

IF B = 1

DISPLAY "A & B = 1"

END-IF

ELSE

IF B = 1

DISPLAY "A NOT = 1 BUT B = 1"

ELSE

DISPLAY "NEITHER A NOR B = 1"

END-IF

END-IF

COBOL (GNU COBOL included) still requires that each procedure division paragraph
contain at least one sentence if there is any executable code in that paragraph, but a
popular coding style is now to simply code a single period right before the end of each
paragraph.

The standard for the COBOL language shows the various "END-verb" clauses are optional
because using a period as a scope-terminator remains legal.

If you will be porting existing code over to GNU COBOL, you’ll find it an accommodating
facility capable of conforming to whatever language and coding standards that code is likely
to use. If you are creating new GNU COBOL programs, however, I would strongly counsel
you to use the "END-verb" structures in those programs.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 231

6.13. Concurrent Access to Files

The manipulation of data files is one of the COBOL language’s great strengths. There
are features built into COBOL to deal with the possibility that multiple programs may be
attempting to access the same file concurrently. Multiple program concurrent access is dealt
with in two ways — file sharing and record locking.

Not all GNU COBOL implementations support file sharing and record-locking options.
Whether they do or not depends upon the operating system they were built for and the
build options that were used when the specific GNU COBOL implementation was generated.

6.13.1. File Sharing

GNU COBOL controls concurrent-file access at the highest level through the concept of
file sharing, enforced when a program attempts to open a file. This is accomplished via a
UNIX operating-system routine called "fcntl()". That module is not currently supported by
Windows and is not present in the MinGW Unix-emulation package. GNU COBOL builds
created using a MinGW environment will be incapable of supporting file-sharing controls —
files will always be shared in such environments. A GNU COBOL build created using the
Cygwin environment on Windows would have access to "fcntl()" and therefore will support
file sharing. Of course, actual Unix builds of GNU COBOL, as well as OSX builds, should
have no issues because "fcntl()" should be available.

Any limitations imposed on a successful "OPEN" (see [OPEN], page 420) will remain in place
until your program either issues a "CLOSE" (see [CLOSE], page 364) against the file or the
program terminates.

File sharing is controlled through the use of a "SHARING" clause:

SHARING WITH { ALL OTHER }

~~~~~~~ { ~~~ }

{ NO OTHER }

{ ~~ }

{ READ ONLY }

~~~~ ~~~~

This clause may be used either in the file’s "SELECT" statement (see [SELECT], page 73),
on the "OPEN" statement (see [OPEN], page 420) which initiates your program’s use of the
file, or both. If a "SHARING" option is specified in both places, the specifications made on
the "OPEN" statement will take precedence over those from the "SELECT" statement.

Here are the meanings of the three options:

"ALL OTHER"

When your program opens a file with this sharing option in effect, no restric-
tions will be placed on other programs attempting to "OPEN" the file after your
program did. This is the default sharing mode.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



232 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

"NO OTHER"

When your program opens a file with this sharing option in effect, your program
announces that it is unwilling to allow any other program to have any access
to the file as long as you are using that file; "OPEN" attempts made in other
programs will fail with a file status of 37 ("PERMISSION DENIED") until
such time as you "CLOSE" (see [CLOSE], page 364) the file.

"READ ONLY"

Opening a file with this sharing option indicates you are willing to allow other
programs to "OPEN" the file for input while you have it open. If they attempt any
other "OPEN", theirs will fail with a file status of 37. Of course, your program
may fail if someone else got to the file first and opened it with a sharing option
that imposed file-sharing limitations.

If the "SELECT" of a file is coded with a "FILE STATUS" clause, "OPEN" failures — including
those induced by sharing failures — will be detectable by the program and a graceful
recovery (or at least a graceful termination) will be possible. If no such clause was coded,
however, a runtime message will be issued and the program will be terminated.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 233

6.13.2. Record Locking

Record-locking is supported by advanced file-management software built-in to the GNU
COBOL implementation you are using. This software provides a single point-of-control for
access to files — usually "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED],
page 84) files. One such runtime package capable of doing this is the Berkely Database
(BDB) package — a package frequently used in GNU COBOL builds to support indexed
files.

The various I/O statements your program can execute are capable of imposing limitations
on access by other concurrently-executing programs to the file record they just accessed.
These limitations are syntactically imposed by placing a lock on the record using a "LOCK"

clause. Other records in the file remain available, assuming that file-sharing limitations
imposed at the time the file was opened didn’t prevent access to the entire file.

1. If the GNU COBOL build you are using was configured to use the Berkely Data-
base (BDB) package for indexed file I/O, record locking will be available by using
the "DB_HOME" run-time environment variable (see [Run Time Environment Variables],
page 522).

2. If the "SELECT" (see [SELECT], page 73) statement or file "OPEN" (see [OPEN],
page 420) specifies "SHARING WITH NO OTHER", record locking will be disabled.

3. If the file’s "SELECT" contains a "LOCK MODE IS AUTOMATIC" clause, every time a
record is read from the file, that record is automatically locked. Other programs may
access other records within the file, but not a locked record.

4. If the file’s "SELECT" contains a "LOCK MODE IS MANUAL" clause, locks are placed on
records only when a "READ" statement executed against the file includes a "LOCK"

clause (this clause will be discussed shortly).

5. If the "LOCK ON" clause is specified in the file’s "SELECT", locks (either automatically
or manually acquired) will continue to accumulate as more and more records are read,
until they are explicitly released. This is referred to as ’multiple record locking ’.

Locks acquired vie multiple record locking remain in-effect until the program holding
the lock. . .

• . . . terminates, or . . .

• . . . executes a "CLOSE" statement (see [CLOSE], page 364) against the file, or . . .

• . . . executes an "UNLOCK" statement (see [UNLOCK], page 474) against the file, or
. . .

• . . . executes a "COMMIT" statement (see [COMMIT], page 365) or . . .

• . . . executes a "ROLLBACK" statement (see [ROLLBACK], page 439).

6. If the "LOCK ON" clause is not specified, then the next I/O statement your program
executes, except for "START" (see [START], page 459), will release the lock. This is
referred to as ’single record locking ’.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



234 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

7. A "LOCK" clause, which may be coded on a "READ" (see [READ], page 428), "REWRITE"
(see [REWRITE], page 437) or "WRITE" statement (see [WRITE], page 479) looks like
this:

{ IGNORING LOCK }

{ ~~~~~~~~ ~~~~ }

{ WITH [ NO ] LOCK }

{ ~~ ~~~~ }

{ WITH KEPT LOCK }

{ ~~~~ ~~~~ }

{ WITH IGNORE LOCK }

{ ~~~~~~ ~~~~ }

{ WITH WAIT }

~~~~

The "WITH [ NO ] LOCK" option is the only one available to "REWRITE" or "WRITE"

statements.

The meanings of the various record locking options are as follows:

"IGNORING LOCK"

"WITH IGNORE LOCK"

These options (which are synonymous) inform GNU COBOL that any locks
held by other programs should be ignored.

"WITH LOCK"

Access to the record by other programs will be denied.

"WITH NO LOCK"

The record will not be locked. This is the default locking option in effect
for all statements.

"WITH KEPT LOCK"

When single record locking is in-effect, as a new record is accessed, locks
held for previous records are released. By using this option, not only is
the newly-accessed record locked (as WITH LOCK would do), but prior
record locks will be retained as well. A subsequent "READ" without the
"KEPT LOCK" option will release all "kept" locks, as will the "UNLOCK"

statement.

"WITH WAIT"

This option informs GNU COBOL that the program is willing to wait for
a lock held (by another program) on the record being read to be released.

Without this option, an attempt to read a locked record will be immediately
aborted and a file status of 47 will be returned.

With this option, the program will wait for a pre-configured time for the
lock to be released. If the lock is released within the preconfigured wait

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 235

time, the read will be successful. If the pre-configured wait time expires
before the lock is released, the read attempt will be aborted and a 47 file
status will be issued.

6.14. Common Clauses on Executable Statements

6.14.1. AT END + NOT AT END� �
AT END Syntax
 	

[ AT END imperative-statement-1 ]

~~~

[ NOT AT END imperative-statement-2 ]

~~~ ~~~

————————————————————————————————————————

"AT END" clauses may be specified on "READ" (see [READ], page 428), "RETURN" (see
[RETURN], page 436), "SEARCH" (see [SEARCH], page 440) and "SEARCH ALL" (see
[SEARCH ALL], page 442) statements.

1. The following points pertain to the use of these clauses on "READ" (see [READ],
page 428) and "RETURN" (see [RETURN], page 436) statements:

A. The "AT END" clause will — if present — cause <imperative-statement-1> (see
[Imperative Statement], page 593) to be executed if the statement fails due to a
file status of 10 (end-of-file). See [File Status Codes], page 76, for a list of possible
File Status codes.

An "AT END" clause will not detect other non-zero file-status values.

Use a "DECLARATIVES" (see [DECLARATIVES], page 208) routine or an explicitly-
declared file status field tested after the "READ" or "RETURN" to detect error con-
ditions other than end-of-file.

B. A "NOT AT END" clause will cause <imperative-statement-2> to be executed if the
"READ" or "RETURN" attempt is successful.

2. The following points pertain to the use of these clauses on "SEARCH" (see [SEARCH],
page 440) and "SEARCH ALL" (see [SEARCH ALL], page 442) statements:

A. An "AT END" clause detects and handles the case where either form of table search
has failed to locate an entry that satisfies the search conditions being used.

B. The "NOT AT END" clause is not allowed on either form of table search.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



236 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.14.2. CORRESPONDING

Three GNU COBOL statements — "ADD" (see [ADD CORRESPONDING], page 354),
"MOVE" (see [MOVE CORRESPONDING], page 415) and "SUBTRACT" (see [SUBTRACT
CORRESPONDING], page 469) support the use of a "CORRESPONDING" option:

ADD CORRESPONDING group-item-1 TO group-item-2

MOVE CORRESPONDING group-item-1 TO group-item-2

SUBTRACT CORRESPONDING group-item-1 FROM group-item-2

This option allows one or more data items within one group item (<group-item-1> — the
first named on the statement) to be paired with correspondingly-named (hence the name) in
a second group item (<group-item-2> — the second named on the statement). The contents
of <group-item-1> will remain unaffected by the statement while one or more data items
within <group-item-2> will be changed.

In order for <data-item-1>, defined subordinate to group item <group-item-1> to be a
"corresponding" match to <data-item-2> which is subordinate to <group-item-2>, each of
the following must be true:

1. Both <data-item-1> and <data-item-2> must have the same name, and that name may
not explicitly or implicitly be "FILLER".

2. Both <data-item-1> and <data-item-2>. . .

A. . . .must exist at the same relative structural "depth" of definition within <group-
item-1> and <group-item-2>, respectively

B. . . . and all "parent" data items defined within each group item must have identical
(but non-"FILLER") names.

3. When used with a "MOVE" verb. . .

A. . . . one of <data-item-1> or <data-item-2> (but not both) is allowed to be a group
item

B. . . . and it must be valid to move <data-item-1> TO <data-item-2>.

4. When used with "ADD" or "SUBTRACT" verbs, both <data-item-1> and <data-item-2>
must be numeric, elementary, unedited items.

5. Neither <data-item-1> nor <data-item-2> may be a "REDEFINES" (see [REDEFINES],
page 172) or "RENAMES" (see [RENAMES], page 173) of another data item.

6. Neither <data-item-1> nor <data-item-2> may have an "OCCURS" (see [OCCURS],
page 158) clause, although either may contain subordinate data items that do have
an "OCCURS" clause (assuming rule 3a applies)

Observe the definitions of data items "Q" and "Y". . .

01 Q. 01 Y.

03 X. 02 A PIC X(1).

05 A PIC 9(1). 02 G1.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 237

05 G1. 03 G2.

10 G2. 04 B PIC X(1).

15 B PIC X(1). 02 C PIC X(1).

05 C. 02 G3.

10 FILLER PIC X(1). 03 G5.

05 G3. 04 D PIC X(1).

10 G4. 03 G6 PIC X(1).

15 D PIC X(1). 02 E PIC 9(1).

05 E PIC X(1). 02 F PIC X(1).

05 F REDEFINES V1 02 G PIC X(4).

PIC X(1). 02 H OCCURS 4 TIMES

05 G. PIC X(1).

10 G6 OCCURS 4 TIMES 66 I RENAMES E.

PIC X(1). 02 J.

05 H PIC X(4). 03 K.

05 I PIC 9(1). 04 L.

05 J. 05 M.

10 K.

15 M PIC X(1).

The following are the valid CORRESPONDING matches, assuming the statement "MOVE

CORRESPONDING X TO Y" is being executed (there are no valid corresponding matches for
"ADD CORRESPONDING" or "SUBTRACT CORRESPONDING" because every potential matchup
violates rule #4):

A, B, C, G

The following are the CORRESPONDING matchups that passed rule #1 (but failed on
another rule), and the reasons why they failed.

Data
Item

Failure Reason

"D" Fails due to rule #2b
"E" Fails due to rule #3b
"F" Fails due to rule #5
"G1" Fails due to rule #3a
"G2" Fails due to rule #3a
"G3" Fails due to rule #3a
"G4" Fails due to rule #1
"G5" Fails due to rule #1
"G6" Fails due to rule #6
"H" Fails due to rule #6
"I" Fails due to rule #5
"J" Fails due to rule #3a
"K" Fails due to rule #3a
"L" Fails due to rule #1

3 June 2014 Chapter 6 - PROCEDURE DIVISION



238 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

"M" Fails due to rule #2a

6.14.3. INVALID KEY + NOT INVALID KEY� �
INVALID KEY Syntax
 	

[ INVALID KEY imperative-statement-1 ]

~~~~~~~

[ NOT INVALID KEY imperative-statement-2 ]

~~~ ~~~~~~~

————————————————————————————————————————

"INVALID KEY" clauses may be specified on "DELETE" (see [DELETE], page 369), "READ"
(see [Random READ], page 430), "REWRITE" (see [REWRITE], page 437), "START" (see
[START], page 459) and "WRITE" (see [WRITE], page 479) statements.

Specification of an "INVALID KEY" clause will allow your program to trap an I/O failure
condition (with an I/O error code in the file’s "FILE-STATUS" (see [SELECT], page 73)
field) that has occurred due to a record-not-found condition and handle it gracefully by
executing <imperative-statement-1> (see [Imperative Statement], page 593).

An optional "NOT INVALID KEY" clause will cause <imperative-statement-2> to be executed
if the statement’s execution was successful.

6.14.4. ON EXCEPTION + NOT ON EXCEPTION� �
ON EXCEPTION Syntax
 	

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

————————————————————————————————————————

"EXCEPTION" clauses may be specified on "ACCEPT" (see [ACCEPT], page 338), "CALL" (see
[CALL], page 359) and "DISPLAY" (see [DISPLAY], page 370) statements.

Specification of an exception clause will allow your program to trap a failure condition
that has occurred and handle it gracefully by executing <imperative-statement-1> (see
[Imperative Statement], page 593). If such a condition occurs at runtime without hav-
ing one of these clauses specified, an error message will be generated (by the GNU COBOL
runtime library) to the SYSERR device (pipe 2). The program may also be terminated,
depending upon the type and severity of the error.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 239

An optional "NOT ON EXCEPTION" clause will cause <imperative-statement-2> to be exe-
cuted if the statement’s execution was successful.

6.14.5. ON OVERFLOW + NOT ON OVERFLOW� �
ON OVERFLOW Syntax
 	

[ ON OVERFLOW imperative-statement-1 ]

~~~~~~~~

[ NOT ON OVERFLOW imperative-statement-2 ]

~~~ ~~~~~~~~

————————————————————————————————————————

"OVERFLOW" clauses may be specified on "CALL" (see [CALL], page 359), "STRING" (see
[STRING], page 463) and "UNSTRING" (see [UNSTRING], page 475) statements.

An "ON OVERFLOW" clause will allow your program to trap a failure condition that has
occurred and handle it gracefully by executing <imperative-statement-1> (see [Imperative
Statement], page 593). If such a condition occurs at runtime without having one of these
clauses specified, an error message will be generated (by the GNU COBOL runtime library)
to the SYSERR device (pipe 2). The program may also be terminated, depending upon the
type and severity of the error.

An optional "NOT ON OVERFLOW" clause will cause <imperative-statement-2> to be executed
if the statement’s execution was successful.

6.14.6. ON SIZE ERROR + NOT ON SIZE ERROR� �
ON SIZE ERROR Syntax
 	

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

————————————————————————————————————————

"SIZE ERROR" clauses may be included on "ADD" (see [ADD], page 350), "COMPUTE"

(see [COMPUTE], page 366), "DIVIDE" (see [DIVIDE], page 376), "MULTIPLY" (see
[MULTIPLY], page 416) and "SUBTRACT" (see [SUBTRACT], page 465) statements.

Including an "ON SIZE ERROR" clause on an arithmetic statement will allow your program to
trap a failure of an arithmetic statement (either generating a result too large for the receiving
field, or attempting to divide by zero) and handle it gracefully by executing <imperative-
statement-1> (see [Imperative Statement], page 593). Field size overflow conditions occur

3 June 2014 Chapter 6 - PROCEDURE DIVISION



240 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

silently, usually without any runtime messages being generated, even though such events
rarely lend themselves to generating correct results. Division by zero errors, when no "ON

SIZE ERROR" clause exists, will produce an error message (by the GNU COBOL runtime
library) to the SYSERR device (pipe 2) and will also abort the program.

An optional "NOT ON SIZE ERROR" clause will cause <imperative-statement-2> to be exe-
cuted if the arithmetic statement’s execution was successful.

6.14.7. ROUNDED� �
ROUNDED Syntax
 	

ROUNDED [ MODE IS { AWAY-FROM-ZERO }

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

————————————————————————————————————————

GNU COBOL provides for control over the final rounding process applied to the receiv-
ing fields on all arithmetic verbs. Each of the arithmetic statements ("ADD" (see [ADD],
page 350), "COMPUTE" (see [COMPUTE], page 366), "DIVIDE" (see [DIVIDE], page 376),
"MULTIPLY" (see [MULTIPLY], page 416) and "SUBTRACT" (see [SUBTRACT], page 465))
statements allow an optional "ROUNDED" clause to be applied to each receiving data item.

The following rules apply to the rounding behavior induced by this clause.

1. Rounding only applies when the result being saved to a receiving field with a "ROUNDED"
clause is a non-integer value.

2. Absence of a "ROUNDED" clause is the same as specifying "ROUNDED MODE IS

TRUNCATION".

3. Use of a "ROUNDED" clause without a "MODE" specification is the same as specifying
"ROUNDED MODE IS NEAREST-AWAY-FROM-ZERO".

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 241

The behavior of the eight different rounding modes is defined in the following table. Note
that a ". . ." indicates the last digit repeats. The examples assume an integer receiving
field.

"AWAY-FROM-ZERO"

Rounding is to the nearest value of larger magnitude.

-3.510 ⇒ -4 +3.510 ⇒ +4
-3.500 ⇒ -4 +3.500 ⇒ +4
-3.499. . . ⇒ -4 +3.499. . . ⇒ +4
-2.500 ⇒ -3 +2.500 ⇒ +3
-2.499. . . ⇒ -3 +2.499. . . ⇒ +3

"NEAREST-AWAY-FROM-ZERO"

Rounding is to the nearest value (larger or smaller). If two values are equally
near, the value with the larger absolute value is selected.

-3.510 ⇒ -4 +3.510 ⇒ +4
-3.500 ⇒ -4 +3.500 ⇒ +4
-3.499. . . ⇒ -3 +3.499. . . ⇒ +3
-2.500 ⇒ -3 +2.500 ⇒ +3
-2.499. . . ⇒ -2 +2.499. . . ⇒ +2

"NEAREST-EVEN"

Rounding is to the nearest value (larger or smaller). If two values are equally
near, the value whose rightmost digit is even is selected. This mode is sometimes
called "Banker’s rounding".

-3.510 ⇒ -4 +3.510 ⇒ +4
-3.500 ⇒ -4 +3.500 ⇒ +4
-3.499. . . ⇒ -3 +3.499. . . ⇒ +3
-2.500 ⇒ -2 +2.500 ⇒ +2
-2.499. . . ⇒ -2 +2.499. . . ⇒ +2

"NEAREST-TOWARD-ZERO"

Rounding is to the nearest value (larger or smaller). If two values are equally
near, the value with the smaller absolute value is selected.

-3.510 ⇒ -4 +3.510 ⇒ +4
-3.500 ⇒ -3 +3.500 ⇒ +3
-3.499. . . ⇒ -3 +3.499. . . ⇒ +3
-2.500 ⇒ -2 +2.500 ⇒ +2
-2.499. . . ⇒ -2 +2.499. . . ⇒ +2

"PROHIBITED"

No rounding is performed. If the value cannot be represented exactly in the
desired format, the EC-SIZE-TRUNCATION condition (exception code 1005)

3 June 2014 Chapter 6 - PROCEDURE DIVISION



242 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

is set (and may be retrieved via the "ACCEPT" (see [ACCEPT FROM Runtime-
Info], page 349) statement) and the results of the operation are undefined.

-3.510 ⇒ Undefined +3.510 ⇒ Undefined
-3.500 ⇒ Undefined +3.500 ⇒ Undefined
-3.499. . . ⇒ Undefined +3.499. . . ⇒ Undefined
-2.500 ⇒ Undefined +2.500 ⇒ Undefined
-2.499. . . ⇒ Undefined +2.499. . . ⇒ Undefined

"TOWARD-GREATER"

Rounding is toward the nearest value whose algebraic value is larger.

-3.510 ⇒ -3 +3.510 ⇒ +4
-3.500 ⇒ -3 +3.500 ⇒ +4
-3.499. . . ⇒ -3 +3.499. . . ⇒ +4
-2.500 ⇒ -2 +2.500 ⇒ +3
-2.499. . . ⇒ -2 +2.499. . . ⇒ +3

"TOWARD-LESSER"

Rounding is toward the nearest value whose algebraic value is smaller.

-3.510 ⇒ -4 +3.510 ⇒ +3
-3.500 ⇒ -4 +3.500 ⇒ +3
-3.499. . . ⇒ -4 +3.499. . . ⇒ +3
-2.500 ⇒ -3 +2.500 ⇒ +2
-2.499. . . ⇒ -3 +2.499. . . ⇒ +2

"TRUNCATION"

Rounding is to the nearest value whose magnitude is smaller.

-3.510 ⇒ -3 +3.510 ⇒ +3
-3.500 ⇒ -3 +3.500 ⇒ +3
-3.499. . . ⇒ -3 +3.499. . . ⇒ +3
-2.500 ⇒ -2 +2.500 ⇒ +2
-2.499. . . ⇒ -2 +2.499. . . ⇒ +2

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 243

6.15. Special Registers

GNU COBOL, like other COBOL dialects, includes a number of data items that are auto-
matically available to a programmer without the need to actually define them in the data
division. COBOL refers to such items as registers or special registers. The special registers
available to a GNU COBOL program are as follows:

"COB-CRT-STATUS"

PIC 9(4) — This is the default data item allocated for use by the "ACCEPT

<screen-data-item>" statement (see [ACCEPT screen-data-item], page 342),
if no "CRT STATUS" (see [SPECIAL-NAMES], page 62) clause was specified..

"DEBUG-ITEM"

Group Item — A group item in which debugging information generated by a
"USE FOR DEBUGGING" section in the declaratives area of the procedure division
will place information documenting why the "USE FOR DEBUGGING" procedure
was invoked. Consult the "DECLARATIVES" (see [DECLARATIVES], page 208)
documentation for information on the structure of this register.

"LINAGE-COUNTER"

BINARY-LONG SIGNED — An occurrence of this register exists for each
selected file having a "LINAGE" (see [File/Sort-Description], page 94) clause.
If there are multiple files whose file descriptions have "LINAGE" clauses,
any explicit references to this register will require qualification (using "OF

file-name"). The value of this register will be the current logical line number
within the page body. The value of this register cannot be modified.

"LINE-COUNTER"

BINARY-LONG SIGNED — An occurrence of this register exists for each re-
port defined in the program (via an "RD" (see [REPORT SECTION], page 107)).
If there are multiple reports, any explicit references to this register not made
in the report section will require qualification ("OF report-name"). The value
of this register will be the current logical line number on the current page. The
value of this register cannot be modified.

"NUMBER-OF-CALL-PARAMETERS"

BINARY-LONG SIGNED — This register contains the number of arguments
passed to a subroutine — the same value that would be returned by the
"C$NARG" built-in system subroutine (see [C$NARG], page 529). Its value will
be zero when referenced in a main program. This register, when referenced
from within a user-defined function, returns a value of one (1) if the function
has any number of arguments and a zero if it has no arguments.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



244 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

"PAGE-COUNTER"

BINARY-LONG SIGNED — An occurrence of this register exists for each re-
port having an "RD" (see [REPORT SECTION], page 107). If there are multiple
such reports, any explicit references to this register not made in the report sec-
tion will require qualification ( "OF report-name"). The value of this register
will be the current report page number. The value of this register cannot be
modified.

"RETURN-CODE"

BINARY-LONG SIGNED — This register provides a numeric data item into
which a subroutine may "MOVE" (see [MOVE], page 414) a value (which will
then be available to the calling program) prior to transferring control back to
the program that called it, or into which a main program may "MOVE" a value
before returning control to the operating system. Many built-in subroutines will
return a value using this register. These values are — by convention — used
to signify success (usually with a value of 0) or failure (usually with a non-zero
value) of the process the program was attempting to perform. This register
may also be modified by a subprogram as a result of that subprogram’s use
of the "RETURNING" (see [PROCEDURE DIVISION RETURNING], page 206)
clause.

"SORT-RETURN"

BINARY-LONG SIGNED — This register is used to report the success/fail
status of a "RELEASE" (see [RELEASE], page 434) or "RETURN" (see [RETURN],
page 436) statement. A value of 0 is reported on success. A value of 16 denotes
failure. An "AT END" (see [AT END + NOT AT END], page 235) condition on
a "RETURN" is not considered a failure.

"WHEN-COMPILED"

PIC X(16) — This register contains the date and time the program was com-
piled in the format "mm/dd/yyhh.mm.ss". Note that only a two-digit year is
provided.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 245

6.16. Intrinsic Functions

GNU COBOL supports a wide variety of "intrinsic functions" that may be used anywhere
in the PROCEDURE DIVISION where a literal is allowed. For example:

MOVE FUNCTION LENGTH(Employee-Last-Name) TO Employee-LN-Len

Note how the word "FUNCTION" is part of the syntax when you use an intrinsic function.
You can use intrinsic functions without having to include the reserved word "FUNCTION"

via settings in the "REPOSITORY" (see [REPOSITORY], page 60) paragraph. You may
accomplish the same thing by specifying the "-fintrinsics" switch to the GNU COBOL
compiler when you compile your programs.

User-written functions (see [Subprogram Types], page 557) never require the "FUNCTION"

keyword when they are executed, because each user-written function a program uses
must be included in that program’s "REPOSITORY" paragraph, which therefore makes the
"FUNCTION" keyword optional.

The following intrinsic functions, known to other "dialects" of COBOL, are defined to GNU
COBOL as reserved words but are not otherwise implemented currently. Any attempts to
use these functions will result in a compile-time error message.

BOOLEAN-OF-INTEGER

FORMATTED-CURRENT-DATE

INTEGER-OF-FORMATTED-DATE

CHAR-NATIONAL

FORMATTED-DATE

NATIONAL-OF

DISPLAY-OF

FORMATTED-DATETIME

STANDARD-COMPARE

EXCEPTION-FILE-N

FORMATTED-TIME

TEST-FORMATTED-DATETIME

EXCEPTION-LOCATION-N

INTEGER-OF-BOOLEAN

The supported intrinsic functions are listed in the following sections, along with their syntax
and usage notes.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



246 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.1. ABS� �
ABS Function Syntax
 	

ABS(number)

~~~

————————————————————————————————————————

This function determines and returns the absolute value of the <number> (a numeric literal
or data item) supplied as an argument.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 247

6.16.2. ACOS� �
ACOS Function Syntax
 	

ACOS(cosine)

~~~~

————————————————————————————————————————

The "ACOS" function determines and returns the trigonometric arc-cosine, or inverse cosine,
of the <cosine> value (a numeric literal or data item) supplied as an argument.

The result will be an angle, expressed in radians. You may convert this to an angle measured
in degrees, as follows:

"COMPUTE <degrees> = ( <radians> * 180 ) / FUNCTION PI"

3 June 2014 Chapter 6 - PROCEDURE DIVISION



248 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.3. ANNUITY� �
ANNUITY Function Syntax
 	

ANNUITY(interest-rate, number-of-periods)

~~~~~~~

————————————————————————————————————————

This function returns a numeric value approximating the ratio of an annuity paid at the
specified <interest-rate> (numeric data item or literal) for each of the specified <number-of-
periods> (numeric data items or literals).

The <interest-rate> is the rate of interest paid at each payment. If you only have an annual
interest rate and you wish to compute monthly annuity payments, divide the annual interest
rate by 12 and use that value for <interest-rate> on this function.

Multiply the result uf this function times the desired principal amount to determine the
amount of each period’s payment.

A note for the financially challenged: an annuity is basically a reverse loan; an accountant
would take the result of this function multiplied by -1 times the principal amount to compute
a loan payment you are making.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 249

6.16.4. ASIN� �
ASIN Function Syntax
 	

ASIN(sine)

~~~~

————————————————————————————————————————

The "ASIN" function determines and returns the trigonometric arc-sine, or inverse sine, of
the <sine> value (a numeric literal or data item) supplied as an argument.

The result will be an angle, expressed in radians. You may convert this to an angle measured
in degrees, as follows:

"COMPUTE <degrees> = ( <radians> * 180 ) / FUNCTION PI"

3 June 2014 Chapter 6 - PROCEDURE DIVISION



250 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.5. ATAN� �
ATAN Function Syntax
 	

ATAN(tangent)

~~~~

————————————————————————————————————————

Use this function to determine and return the trigonometric arc-tangent, or inverse tangent,
of the <tangent> value (a numeric literal or data item) supplied as an argument.

The result will be an angle, expressed in radians. You may convert this to an angle measured
in degrees, as follows:

"COMPUTE <degrees> = ( <radians> * 180 ) / FUNCTION PI"

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 251

6.16.6. BYTE-LENGTH� �
BYTE-LENGTH Function Syntax
 	

BYTE-LENGTH(string)

~~~~~~~~~~~

————————————————————————————————————————

"BYTE-LENGTH" returns the length — in bytes — of the specified <string> (a group item,
"USAGE DISPLAY" elementary item or alphanumeric literal). This intrinsic function is iden-
tical to the "LENGTH-AN" (see [LENGTH-AN], page 278) function. Note that the value
returned by this function is not necessarily the number of characters comprising <string>,
but rather the number of actual bytes required to store it.

For example, if <string> is encoded using a double-byte characterset such as UNICODE
(where each character is represented by 16 bits of storage, not the 8-bits inherent to charac-
tersets like ASCII or EBCDIC), then calling this function with a <string> argument whose
"PICTURE" (see [PICTURE], page 162) is "X(4)" would return a value of 8 rather than the
value 4.

Contrast this with the "LENGTH" (see [LENGTH], page 277) function.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



252 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.7. CHAR� �
CHAR Function Syntax
 	

CHAR(integer)

~~~~

————————————————————————————————————————

This function returns the character in the ordinal position specified by the <integer> ar-
gument (a numeric integer literal or data item with a value of 1 or greater) from the
"COLLATING SEQUENCE" (see [OBJECT-COMPUTER], page 58) being used by the pro-
gram.

For example, if the program is using the (default) ASCII characterset, CHAR(34) returns
the 34th character in the ASCII characterset — an exclamation-point ("!"). If you are using
this function to convert a numeric value to its corresponding ASCII character, you must
use an argument value one greater than the numeric value.

If an argument whose value is less than 1 or greater than 256 is specified, the character in
the program collating sequence corresponding to a value of all zero bits is returned.

The following code is an alternative approach when you just wish to convert a number to
its ASCII equivalent:

01 Char-Value.

05 Numeric-Value USAGE BINARY-CHAR.

...

MOVE numeric-character-value TO Numeric-Value

The "Char-Value" item now has the corresponding ASCII character value.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 253

6.16.8. COMBINED-DATETIME� �
COMBINED-DATETIME Function Syntax
 	

COMBINED-DATETIME(days, seconds)

~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns a 12-digit numeric result, the first seven digits of which are the integer
value of the <days> argument (a numeric data item or literal) and the last five of which are
the integer value of the <seconds> argument (also a numeric data item or literal).

If a <days> value less than 1 or greater than 3067671 is specified, or if a <seconds> value
less than 1 or greater than 86400 is specified, a value of 0 is returned and a runtime error
will result.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



254 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.9. CONCATENATE� �
CONCATENATE Function Syntax
 	

CONCATENATE(string-1 [, string-2 ]...)

~~~~~~~~~~~

————————————————————————————————————————

This function concatenates the <string-1>, <string-2>, . . . (group items, "USAGE DISPLAY"

elementary items and/or alphanumeric literals) together into a single string result.

If a numeric literal or "PIC 9" identifier is specified as an argument, decimal points, if any,
will be removed and negative signs in "PIC S9" fields or numeric literals will be inserted as
defined by the "SIGN IS" (see [SIGN IS], page 177) clause (or absence thereof) of the field.
Numeric literals are processed as if "SIGN IS TRAILING SEPARATE" were in effect.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 255

6.16.10. COS� �
COS Function Syntax
 	

COS(angle)

~~~

————————————————————————————————————————

The "COS" function determines and returns the trigonometric cosine of the <angle> (a
numeric literal or data item) supplied as an argument.

The <angle> is assumed to be a value expressed in radians. If you need to determine the
cosine of an angle measured in degrees, you first need to convert that angle to radians as
follows:

"COMPUTE <radians> = ( <degrees> * FUNCTION PI) / 180"

3 June 2014 Chapter 6 - PROCEDURE DIVISION



256 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.11. CURRENCY-SYMBOL� �
CURRENCY-SYMBOL Function Syntax
 	

CURRENCY-SYMBOL

~~~~~~~~~~~~~~~

————————————————————————————————————————

The "CURRENCY-SYMBOL" function returns the currency symbol character currently in effect
for the locale under which your program is running. On UNIX systems, your locale is
established via the "LANG" run-time environment variable (see [Run Time Environment
Variables], page 522) environment variable. On Windows, the Control Panel’s "Regional
and Language Options" define the locale.

Changing the currency symbol via the "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 62)
paragraph’s "CURRENCY SYMBOL" setting will not affect the value returned by this function.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 257

6.16.12. CURRENT-DATE� �
CURRENT-DATE Function Syntax
 	

CURRENT-DATE

~~~~~~~~~~~~

————————————————————————————————————————

Returns the current date and time as the following 21-character structure:

01 CURRENT-DATE-AND-TIME.

05 CDT-Year PIC 9(4).

05 CDT-Month PIC 9(2). *> 01-12

05 CDT-Day PIC 9(2). *> 01-31

05 CDT-Hour PIC 9(2). *> 00-23

05 CDT-Minutes PIC 9(2). *> 00-59

05 CDT-Seconds PIC 9(2). *> 00-59

05 CDT-Hundredths-Of-Secs PIC 9(2). *> 00-99

05 CDT-GMT-Diff-Hours PIC S9(2)

SIGN LEADING SEPARATE.

05 CDT-GMT-Diff-Minutes PIC 9(2). *> 00 or 30

Since this function has no arguments, no parenthesis should be specified.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



258 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.13. DATE-OF-INTEGER� �
DATE-OF-INTEGER Function Syntax
 	

DATE-OF-INTEGER(integer)

~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns a numeric calendar date in yyyymmdd (i.e. Gregorian) format. The
date is determined by adding the number of days specified as <integer> (a numeric integer
data item or literal) to the date December 31, 1600. For example, "DATE-OF-INTEGER(1)"
returns 16010101 while "DATE-OF-INTEGER(150000)" returns 20110908.

A value less than 1 or greater than 3067671 (9999/12/31) will return a result of 0.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 259

6.16.14. DATE-TO-YYYYMMDD� �
DATE-TO-YYYYMMDD Function Syntax
 	

DATE-TO-YYYYMMDD(yymmdd [, yy-cutoff ])

~~~~~~~~~~~~~~~~

————————————————————————————————————————

You can use this function to convert the six-digit Gregorian date specified as <yymmdd> (a
numeric integer data item or literal) to an eight-digit format (yyyymmdd).

The optional <yy-cutoff > (a numeric integer data item or literal) argument is the year cutoff
used to delineate centuries; if the year component of the date meets or exceeds this cutoff
value, the result will be 19yymmdd; if the year component of the date is less than the cutoff
value, the result will be 20yymmdd. The default cutoff value if no second argument is given
will be 50.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



260 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.15. DAY-OF-INTEGER� �
DAY-OF-INTEGER Function Syntax
 	

DAY-OF-INTEGER(integer)

~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns a calendar date in yyyyddd (i.e. Julian) format. The date is deter-
mined by adding the number of days specified as integer (a numeric integer data item or
literal) to December 31, 1600. For example, "DAY-OF-INTEGER(1)" returns 1601001 while
"DAY-OF-INTEGER(250000)" returns 2011251.

A value less than 1 or greater than 3067671 (9999/12/31) will return a result of 0.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 261

6.16.16. DAY-TO-YYYYDDD� �
DAY-TO-YYYYDDD Function Syntax
 	

DAY-TO-YYYYDDD(yyddd [, yy-cutoff])

~~~~~~~~~~~~~~

————————————————————————————————————————

You can use this function to convert the five-digit Julian date specified as <yyddd> (a
numeric integer data item or literal) to a seven-digit numeric Julian format (yyyyddd).

The optional <yy-cutoff > argument (a numeric integer data item or literal) is the year cutoff
used to delineate centuries; if the year component of the date meets or exceeds this cutoff
value, the result will be 19yyddd; if the year component of the date is less than the cutoff,
the result will be 20yyddd. The default cutoff value if no second argument is given will be
50.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



262 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.17. E� �
E Function Syntax
 	

E

~

————————————————————————————————————————

This function returns the mathematical constant "E" (the base of natural log-
arithms). The maximum precision with which this value may be returned is
2.7182818284590452353602874713526625.

Since this function has no arguments, no parenthesis should be specified.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 263

6.16.18. EXCEPTION-FILE� �
EXCEPTION-FILE Function Syntax
 	

EXCEPTION-FILE

~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns I/O exception information from the most-recently executed input or
output statement. The information is returned as a 34-character string, where the first
two characters are the two-digit file status value (see [File Status Codes], page 76) and the
remaining 32 are the <file-name-1> specification from the file’s "SELECT" (see [SELECT],
page 73) statement.

The name returned after the file status information will be returned only if the returned
file status value is not 00.

Since this function has no arguments, no parenthesis should be specified.

The documentation of the "CBL_ERROR_PROC" built-in system subroutine (see
[CBL ERROR PROC], page 536) built-in subroutine illustrates the use of this function.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



264 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.19. EXCEPTION-LOCATION� �
EXCEPTION-LOCATION Function Syntax
 	

EXCEPTION-LOCATION

~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns exception information from the most-recently failing statement. The
information is returned to a 1023 character string in one of the following formats, depending
on the nature of the failure:

• primary-entry-point-name; paragraph OF section; statement-number

• primary-entry-point-name; section; statement-number

• primary-entry-point-name; paragraph; statement-number

• primary-entry-point-name; statement-number

Since this function has no arguments, no parenthesis should be specified.

The program must be compiled with the "-debug" switch, "-ftraceall" switch or "-g"
switch for this function to return any meaningful information.

The documentation of the "CBL_ERROR_PROC" built-in system subroutine (see
[CBL ERROR PROC], page 536) built-in subroutine illustrates the use of this function.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 265

6.16.20. EXCEPTION-STATEMENT� �
EXCEPTION-STATEMENT Function Syntax
 	

EXCEPTION-STATEMENT

~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the most-recent COBOL statement that generated an exception con-
dition.

Since this function has no arguments, no parenthesis should be specified.

The program must be compiled with the "-debug" switch, "-ftraceall" switch or "-g"
switch for this function to return any meaningful information.

The documentation of the "CBL_ERROR_PROC" built-in system subroutine (see
[CBL ERROR PROC], page 536) built-in subroutine illustrates the use of this function.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



266 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.21. EXCEPTION-STATUS� �
EXCEPTION-STATUS Function Syntax
 	

EXCEPTION-STATUS

~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the error type (a text string — see column 2 of the upcoming table for
the possible values) from the most-recent COBOL statement that generated an exception
condition.

Since this function has no arguments, no parenthesis should be specified.

The documentation of the "CBL_ERROR_PROC" built-in system subroutine (see
[CBL ERROR PROC], page 536) built-in subroutine illustrates the use of this function.

The following are the error type strings, and their corresponding exception codes and de-
scriptions.

Code Error Type Description

0101 EC-ARGUMENT-
FUNCTION

Function argument error

0202 EC-BOUND-ODO OCCURS . . . DEPENDING ON data item out of
bounds

0204 EC-BOUND-PTR Data-pointer contains an address that is out of
bounds

0205 EC-BOUND-REF-MOD Reference modifier out of bounds

0207 EC-BOUND-SUBSCRIPT Subscript out of bounds

0303 EC-DATA-INCOMPATIBLE Incompatible data exception

0500 EC-I-O input-output exception

0501 EC-I-O-AT-END I-O status "1x"

0502 EC-I-O-EOP An end of page condition occurred

0504 EC-I-O-FILE-SHARING I-O status "6x"

0505 EC-I-O-IMP I-O status "9x"

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 267

0506 EC-I-O-INVALID-KEY I-O status "2x"

0508 EC-I-O-LOGIC-ERROR I-O status "4x"

0509 EC-I-O-PERMANENT-
ERROR

I-O status "3x"

050A EC-I-O-RECORD-
OPERATION

I-O status "5x"

0601 EC-IMP-ACCEPT Implementation-defined accept condition

0602 EC-IMP-DISPLAY Implementation-defined display condition

0A00 EC-OVERFLOW Overflow condition

0A02 EC-OVERFLOW-STRING STRING overflow condition

0A03 EC-OVERFLOW-
UNSTRING

UNSTRING overflow condition

0B05 EC-PROGRAM-NOT-
FOUND

Called program not found

0D03 EC-RANGE-INSPECT-
SIZE

Size of replace item in inspect differs

1000 EC-SIZE Size error exception

1004 EC-SIZE-OVERFLOW Arithmetic overflow in calculation

1005 EC-SIZE-TRUNCATION Significant digits truncated in store

1007 EC-SIZE-ZERO-DIVIDE Division by zero

1202 EC-STORAGE-NOT-
ALLOC

The data-pointer specified in a FREE statement
does not identify currently allocated storage

1203 EC-STORAGE-NOT-AVAIL The amount of storage requested by an ALLO-
CATE statement is not available

3 June 2014 Chapter 6 - PROCEDURE DIVISION



268 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.22. EXP� �
EXP Function Syntax
 	

EXP(number)

~~~

————————————————————————————————————————

Computes and returns the value of the mathematical constant "e" raised to the power
specified by <number> (a numeric literal or data item).

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 269

6.16.23. EXP10� �
EXP10 Function Syntax
 	

EXP10(number)

~~~~~

————————————————————————————————————————

Computes and returns the value of 10 raised to the power specified by <number> (a numeric
literal or data item).

3 June 2014 Chapter 6 - PROCEDURE DIVISION



270 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.24. FACTORIAL� �
FACTORIAL Function Syntax
 	

FACTORIAL(number)

~~~~~~~~~

————————————————————————————————————————

This function computes and returns the factorial value of <number> (a numeric literal or
data item).

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 271

6.16.25. FRACTION-PART� �
FRACTION-PART Function Syntax
 	

FRACTION-PART(number)

~~~~~~~~~~~~~

————————————————————————————————————————

This function returns that portion of <number> (a numeric data item or a numeric literal)
that occurs to the right of the decimal point. "FRACTION-PART(3.1415)", for example,
returns a value of 0.1415. This function is equivalent to the expression:

<number> -- FUNCTION INTEGER-PART(<number>)

3 June 2014 Chapter 6 - PROCEDURE DIVISION



272 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.26. HIGHEST-ALGEBRAIC� �
HIGHEST-ALGEBRAIC Function Syntax
 	

HIGHEST-ALGEBRAIC(numeric-identifier)

~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the highest (i.e. largest or farthest away from 0 in a positive direction if
<numeric-identifier> is signed) value that could possibly be stored in the specified <numeric-
identifier>.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 273

6.16.27. INTEGER� �
INTEGER Function Syntax
 	

INTEGER(number)

~~~~~~~

————————————————————————————————————————

The "INTEGER" function returns the greatest integer value that is less than or equal to
<number> (a numeric literal or data item).

3 June 2014 Chapter 6 - PROCEDURE DIVISION



274 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.28. INTEGER-OF-DATE� �
INTEGER-OF-DATE Function Syntax
 	

INTEGER-OF-DATE(date)

~~~~~~~~~~~~~~~

————————————————————————————————————————

This function converts <date> (a numeric integer data item or literal) — presumed to be
a Gregorian calendar form standard date (YYYYMMDD) — to internal date form (the
number of days that have transpired since 1600/12/31).

Once in that form, mathematical operations may be performed against the internal date
before it is transformed back into a date using the "DATE-OF-INTEGER" (see [DATE-OF-
INTEGER], page 258) or "DAY-OF-INTEGER" (see [DAY-OF-INTEGER], page 260) func-
tion.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 275

6.16.29. INTEGER-OF-DAY� �
INTEGER-OF-DAY Function Syntax
 	

INTEGER-OF-DAY(date)

~~~~~~~~~~~~~~

————————————————————————————————————————

This function converts <date> (a numeric integer data item or literal) — presumed to be a
Julian calendar form standard date (YYYYDDD) — to internal date form (the number of
days that have transpired since 1600/12/31).

Once in that form, mathematical operations may be performed against the internal date
before it is transformed back into a date using the "DATE-OF-INTEGER" (see [DATE-OF-
INTEGER], page 258) or "DAY-OF-INTEGER" (see [DAY-OF-INTEGER], page 260) func-
tion.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



276 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.30. INTEGER-PART� �
INTEGER-PART Function Syntax
 	

INTEGER-PART(number)

~~~~~~~~~~~~

————————————————————————————————————————

Returns the integer portion of the value of <number> (a numeric literal or data item).

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 277

6.16.31. LENGTH� �
LENGTH Function Syntax
 	

LENGTH(string)

~~~~~~

————————————————————————————————————————

Returns the length — in characters — of <string> (a group item, "USAGE DISPLAY" ele-
mentary item or alphanumeric literal).

The value returned by this function is not the number of bytes of storage occupied by string,
but rather the number of actual characters making up the string. For example, if <string>
is encoded using a double-byte characterset such as UNICODE (where each character is
represented by 16 bits of storage, not the 8-bits inherent to charactersets like ASCII or
EBCDIC), then calling this function with a <string> argument whose "PICTURE is X(4)"

would return a value of 4 rather than the value 8 (the actual number of bytes of storage
occupied by that item).

Comtrast this function with the "BYTE-LENGTH" (see [BYTE-LENGTH], page 251) and
"LENGTH-AN" (see [LENGTH-AN], page 278) functions.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



278 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.32. LENGTH-AN� �
LENGTH-AN Function Syntax
 	

LENGTH-AN(string)

~~~~~~~~~

————————————————————————————————————————

This function returns the length — in bytes of storage — of <string> (a group item, "USAGE
DISPLAY" elementary item or alphanumeric literal).

This intrinsic function is identical to the "BYTE-LENGTH" (see [BYTE-LENGTH], page 251)
function.

Note that the value returned by this function is not the number of characters making up
the <string>, but rather the number of actual bytes of storage required to store <string>.
For example, if <string> is encoded using a double-byte characterset such as UNICODE
(where each character is represented by 16 bits of storage, not the 8-bits inherent to charac-
tersets like ASCII or EBCDIC), then calling this function with a <string> argument whose
"PICTURE is X(4)" would return a value of 8 rather than the value 4.

Contrast this with the "LENGTH" (see [LENGTH], page 277) function.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 279

6.16.33. LOCALE-COMPARE� �
LOCALE-COMPARE Function Syntax
 	

LOCALE-COMPARE(argument-1, argument-2 [ , locale ])

~~~~~~~~~~~~~~

————————————————————————————————————————

The "LOCALE-COMPARE" function returns a character indicating the result of comparing
<argument-1> and <argument-2> using a culturally-preferred ordering defined by a <locale>.

Either or both of the 1st two arguments may be an alphanumeric literal, a group item or
an elementary item appropriate to storing alphabetic or alphanumeric data. If the lengths
of the two arguments are unequal, the shorter will be assumed to be padded to the right
with spaces.

The two arguments will be compared, character by character, against each other until their
relationship to each other can be determined. The comparison is made according to the
cultural rules in effect for the specified <locale> name or for the current locale if no <locale>
argument is specified. Once that relationship is determined, a one-character alphanumeric
value will be returned as follows:

• "<" — If <argument-1> is determined to be less than <argument-2>

• "=" — If the two arguments are equal to each other

• ">" — If <argument-1> is determined to be greater than <argument-2>

See [LOCALE Names], page 64, for a list of typically-available locale names.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



280 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.34. LOCALE-DATE� �
LOCALE-DATE Function Syntax
 	

LOCALE-DATE(date [, locale ])

~~~~~~~~~~~

————————————————————————————————————————

Converts the eight-digit Gregorian <date> (a numeric integer data item or literal) from
yyyymmdd format to the format appropriate to the current locale. On a Windows system,
this will be the "short date" format as set using Control Panel.

You may include an optional second argument to specify the <locale> name (group item
or "PIC X" identifier) you’d like to use for date formatting. If used, this second argument
must be an identifier. Locale names are specified using UNIX-standard names.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 281

6.16.35. LOCALE-TIME� �
LOCALE-TIME Function Syntax
 	

LOCALE-TIME(time [, locale ])

~~~~~~~~~~~

————————————————————————————————————————

Converts the four- (hhmm) or six-digit (hhmmss) <time> (a numeric integer data item or
literal) to a format appropriate to the current locale. On a Windows system, this will be
the "time" format as set using Control Panel.

You may include an optional <locale> name (a group item or "PIC X" identifier) you’d like
to use for time formatting. If used, this second argument must be an identifier. Locale
names are specified using UNIX-standard names.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



282 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.36. LOCALE-TIME-FROM-SECONDS� �
LOCALE-TIME-FROM-SECONDS Function Syntax
 	

LOCALE-TIME-FROM-SECONDS(seconds [, locale ])

~~~~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

Converts the number of <seconds> since midnight (a numeric integer data item or literal) to
a format appropriate to the current locale. On a Windows system, this will be the "time"
format as set using Control Panel.

You may include an optional <locale> name (a group item or "PIC X" identifier) you’d like
to use for time formatting. If used, this second argument must be an identifier. Locale
names are specified using UNIX-standard names.

See [LOCALE Names], page 64, for a list of typically-available locale names.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 283

6.16.37. LOG� �
LOG Function Syntax
 	

LOG(number)

~~~

————————————————————————————————————————

Computes and returns the natural logarithm (base "e") of <number> (a numeric literal or
data item).

3 June 2014 Chapter 6 - PROCEDURE DIVISION



284 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.38. LOG10� �
LOG10 Function Syntax
 	

LOG10(number)

~~~~~

————————————————————————————————————————

Computes and returns the base 10 logarithm of <number> (a numeric literal or data item).

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 285

6.16.39. LOWER-CASE� �
LOWER-CASE Function Syntax
 	

LOWER-CASE(string)

~~~~~~~~~~

————————————————————————————————————————

This function returns the value of <string> (a group item, "USAGE DISPLAY" elementary
item or alphanumeric literal), converted entirely to lower case.

What constitutes a "letter" (or upper/lower case too, for that manner) may be influ-
enced through the use of a "CHARACTER CLASSIFICATION" (see [OBJECT-COMPUTER],
page 58).

3 June 2014 Chapter 6 - PROCEDURE DIVISION



286 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.40. LOWEST-ALGEBRAIC� �
LOWEST-ALGEBRAIC Function Syntax
 	

LOWEST-ALGEBRAIC(numeric-identifier)

~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the lowest (i.e. smallest or farthest away from 0 in a negative direc-
tion if <numeric-identifier> is signed) value that could possibly be stored in the specified
<numeric-identifier>.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 287

6.16.41. MAX� �
MAX Function Syntax
 	

MAX(number-1 [, number-2 ]...)

~~~

————————————————————————————————————————

This function returns the maximum value from the specified list of numbers (each <number-
n> may be a numeric data item or a numeric literal).

3 June 2014 Chapter 6 - PROCEDURE DIVISION



288 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.42. MEAN� �
MEAN Function Syntax
 	

MEAN(number-1 [, number-2 ]...)

~~~~

————————————————————————————————————————

This function returns the statistical mean value of the specified list of numbers (each
<number-n> may be a numeric data item or a numeric literal).

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 289

6.16.43. MEDIAN� �
MEDIAN Function Syntax
 	

MEDIAN(number-1 [, number-2 ]...)

~~~~~~

————————————————————————————————————————

This function returns the statistical median value of the specified list of numbers (each
<number-n> may be a numeric data item or a numeric literal).

3 June 2014 Chapter 6 - PROCEDURE DIVISION



290 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.44. MIDRANGE� �
MIDRANGE Function Syntax
 	

MIDRANGE(number-1 [, number-2 ]...)

~~~~~~~~

————————————————————————————————————————

The "MIDRANGE" (middle range) function returns a numeric value that is the arithmetic
mean (average) of the values of the minimum and maximum numbers from the supplied
list. Each <number-n> may be a numeric data items or a numeric literal.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 291

6.16.45. MIN� �
MIN Function Syntax
 	

MIN(number-1 [, number-2 ]...)

~~~

————————————————————————————————————————

This function returns the minimum value from the specified list of numbers (each <number-
n> may be a numeric data item or a numeric literal).

3 June 2014 Chapter 6 - PROCEDURE DIVISION



292 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.46. MOD� �
MOD Function Syntax
 	

MOD(value, modulus)

~~~

————————————————————————————————————————

This function returns the value of <value> modulo <modulus> (essentially the remainder
from the division of <value> by <modulus>). Both arguments may be numeric data items
or numeric literals. Either (or both) may have a non-integer value.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 293

6.16.47. MODULE-CALLER-ID� �
MODULE-CALLER-ID Function Syntax
 	

MODULE-CALLER-ID

~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the null string if it is executed within a main program. When exe-
cuted with a subprogram, it returns the entry-point name of the program that called the
subprogram.

The discussion of the "MODULE-TIME" (see [MODULE-TIME], page 299) function includes
a sample program that uses this function.

Since this function has no arguments, no parenthesis should be specified.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



294 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.48. MODULE-DATE� �
MODULE-DATE Function Syntax
 	

MODULE-DATE

~~~~~~~~~~~

————————————————————————————————————————

This function Returns the date the GNU COBOL program that is executing the function
was compiled, in the form yyyymmdd.

The discussion of the "MODULE-TIME" (see [MODULE-TIME], page 299) function includes
a sample program that uses this function.

Since this function has no arguments, no parenthesis should be specified.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 295

6.16.49. MODULE-FORMATTED-DATE� �
MODULE-FORMATTED-DATE Function Syntax
 	

MODULE-FORMATTED-DATE

~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the fully-formatted date and time when the program executing the
function was compiled. The exact format of this returned string value may vary depending
on the operating system and GNU COBOL build type.

The discussion of the "MODULE-TIME" (see [MODULE-TIME], page 299) function includes
a sample program that uses this function.

Since this function has no arguments, no parenthesis should be specified.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



296 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.50. MODULE-ID� �
MODULE-ID Function Syntax
 	

MODULE-ID

~~~~~~~~~

————————————————————————————————————————

This function returmns the primary entry-point name (i.e. the "PROGRAM-ID" or
"FUNCTION-ID" of the program. See [IDENTIFICATION DIVISION], page 53, for
information on those clauses.

The discussion of the "MODULE-TIME" (see [MODULE-TIME], page 299) function includes
a sample program that uses this function.

Since this function has no arguments, no parenthesis should be specified.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 297

6.16.55. MODULE-PATH� �
MODULE-PATH Function Syntax
 	

MODULE-PATH

~~~~~~~~~~~

————————————————————————————————————————

This function returns the full path to the executable version of this GNU COBOL program.
The filename component of this value will be exactly as typed on the command line, down
to the use of upper- and lowercase letters and presence (or absence) of any extension.

The discussion of the "MODULE-TIME" (see [MODULE-TIME], page 299) function includes
a sample program that uses this function.

Since this function has no arguments, no parenthesis should be specified.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



298 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.52. MODULE-SOURCE� �
MODULE-SOURCE Function Syntax
 	

MODULE-SOURCE

~~~~~~~~~~~~~

————————————————————————————————————————

The filename of the source code of the program (as specified on the "cobc" command when
the program was compiled) is returned by this function.

The discussion of the "MODULE-TIME" (see [MODULE-TIME], page 299) function includes
a sample program that uses this function.

Since this function has no arguments, no parenthesis should be specified.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 299

6.16.53. MODULE-TIME� �
MODULE-TIME Function Syntax
 	

MODULE-TIME

~~~~~~~~~~~

————————————————————————————————————————

This function returns the time the GNU COBOL program was compiled, in the form hh-
mmss.

Since this function has no arguments, no parenthesis should be specified.

The following sample program uses all the MODULE- Functions:

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMOMODULE.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

REPOSITORY.

FUNCTION ALL INTRINSIC.

PROCEDURE DIVISION.

000-Main.

DISPLAY "MODULE-CALLER-ID = [" MODULE-CALLER-ID "]"

DISPLAY "MODULE-DATE = [" MODULE-DATE "]"

DISPLAY "MODULE-FORMATTED-DATE = [" MODULE-FORMATTED-DATE "]"

DISPLAY "MODULE-ID = [" MODULE-ID "]"

DISPLAY "MODULE-PATH = [" MODULE-PATH "]"

DISPLAY "MODULE-SOURCE = [" MODULE-SOURCE "]"

DISPLAY "MODULE-TIME = [" MODULE-TIME "]"

STOP RUN

.

The program produces this output when executed:

MODULE-CALLER-ID = []

MODULE-DATE = [20120614]

MODULE-FORMATTED-DATE = [Jun 14 2012 15:07:45]

MODULE-ID = [DEMOMODULE]

MODULE-PATH = [E:\Programs\Demos\DEMOMODULE.exe]

MODULE-SOURCE = [DEMOMODULE.cbl]

MODULE-TIME = [150745]

3 June 2014 Chapter 6 - PROCEDURE DIVISION



300 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.54. MONETARY-DECIMAL-POINT� �
MONETARY-DECIMAL-POINT Function Syntax
 	

MONETARY-DECIMAL-POINT

~~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

"MONETARY-DECIMAL-POINT" returns the character used to separate the integer portion from
the fractional part of a monetary currency value according to the rules currently in effect
for the locale under which your program is running.

On UNIX (including OSX, Windows/Cygwin and Windows/MinGW) systems, your locale
is established via the "LANG" run-time environment variable (see [Run Time Environment
Variables], page 522) environment variable. On Windows, the Control Panel’s Regional and
Language Options define the locale.

Using the "DECIMAL-POINT IS COMMA" (see [SPECIAL-NAMES], page 62) clause in your
program will not affect the value returned by this function.

Since this function has no arguments, no parenthesis should be specified.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 301

6.16.55. MONETARY-THOUSANDS-SEPARATOR� �
MONETARY-THOUSANDS-SEPARATOR Function Syntax
 	

MONETARY-THOUSANDS-SEPARATOR

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the character used to separate the thousands digit groupings of mon-
etary currency values according to the rules currently in effect for the locale under which
your program is running.

On UNIX (including OSX, Windows/Cygwin and Windows/MinGW) systems, your locale
is established via the "LANG" run-time environment variable (see [Run Time Environment
Variables], page 522) environment variable. On Windows, the Control Panel’s Regional and
Language Options define the locale.

Using the "DECIMAL-POINT IS COMMA" (see [SPECIAL-NAMES], page 62) clause in your
program will not affect the value returned by this function.

Since this function has no arguments, no parenthesis should be specified.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



302 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.56. NUMERIC-DECIMAL-POINT� �
NUMERIC-DECIMAL-POINT Function Syntax
 	

NUMERIC-DECIMAL-POINT

~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the character used to separate the integer portion of a non-integer
numeric item from the fractional part according to the rules currently in effect for the locale
under which your program is running.

On UNIX (including OSX, Windows/Cygwin and Windows/MinGW) systems, your locale
is established via the "LANG" run-time environment variable (see [Run Time Environment
Variables], page 522) environment variable. On Windows, the Control Panel’s Regional and
Language Options define the locale.

Using the "DECIMAL-POINT IS COMMA" (see [SPECIAL-NAMES], page 62) clause in your
program will not affect the value returned by this function.

Since this function has no arguments, no parenthesis should be specified.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 303

6.16.57. NUMERIC-THOUSANDS-SEPARATOR� �
NUMERIC-THOUSANDS-SEPARATOR Function Syntax
 	

NUMERIC-THOUSANDS-SEPARATOR

~~~~~~~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the character used to separate the thousands digit groupings of nu-
meric values according to the rules currently in effect for the locale under which your
program is running.

On UNIX (including OSX, Windows/Cygwin and Windows/MinGW) systems, your locale
is established via the "LANG" run-time environment variable (see [Run Time Environment
Variables], page 522) environment variable. On Windows, the Control Panel’s Regional and
Language Options define the locale.

Using the "DECIMAL-POINT IS COMMA" (see [SPECIAL-NAMES], page 62) clause in your
program will not affect the value returned by this function.

Since this function has no arguments, no parenthesis should be specified.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



304 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.58. NUMVAL� �
NUMVAL Function Syntax
 	

NUMVAL(string)

~~~~~~

————————————————————————————————————————

The "NUMVAL" function converts a <string> (a group item, "USAGE DISPLAY" elementary
item or alphanumeric literal) to its corresponding numeric value.

The <string> must have any of the following formats, where ’#’ represents a sequence of
one or more decimal digits:

# -# +# #- #+ #CR #DB #CR

#.# -#.# +#.# #.#- #.#+ #.#CR #.#DB

There must be at least one digit character in the string.

Leading and/or trailing spaces are allowed, as are spaces before and/or after the sign, CR
and DB characters.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 305

6.16.59. NUMVAL-C� �
NUMVAL-C Function Syntax
 	

NUMVAL-C(string[,symbol])

~~~~~~~~

————————————————————————————————————————

This function converts a <string> (a group item, "USAGE DISPLAY" elementary item or
alphanumeric literal) representing a currency value to its corresponding numeric value.

The optional <symbol> character represents the currency symbol (a single-character group
item, "USAGE DISPLAY" elementary item or alphanumeric literal) that may be used as the
currency character in <string>. If no <symbol> is specified, the value that would be returned
by the "CURRENCY-SYMBOL" intrinsic function (see [CURRENCY-SYMBOL], page 256) will
be used.

<string> may have any of the following formats, where ’#’ represents a sequence of one or
more decimal digits and ’$’ represents the <symbol> character:

# -# +# #- #+ #CR #DB #CR

#.# -#.# +#.# #.#- #.#+ #.#CR #.#DB

$# -$# +$# $#- $#+ $#CR $#DB $#CR

$#.# -$#.# +$#.# $#.#- $#.#+ $#.#CR $#.#DB

There must be at least one digit character in the string.

Leading and/or trailing spaces are allowed, as are spaces before and/or after the currency
symbol, sign, CR and DB characters.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



306 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.60. NUMVAL-F� �
NUMVAL-F Function Syntax
 	

NUMVAL-F(char)

~~~~~~~~

————————————————————————————————————————

This function converts a <string> (a group item, "USAGE DISPLAY" elementary item or
alphanumeric literal) representing a floating-point value to its corresponding numeric value.

# -# +# #E# -#E# +#E#

#E+# -#E+# +#E+# #E-# -#E-# +#E-#

#.# -#.# +#.# #.#E# -#.#E# +#.#E#

#.#E+# -#.#E+# +#.#E+# #.#E-# -#.#E-# +#.#E-#

There must be at least one digit character both before and after the "E" in the string.

Leading and/or trailing spaces are allowed, as are spaces before and/or after any sign
characters.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 307

6.16.61. ORD� �
ORD Function Syntax
 	

ORD(char)

~~~

————————————————————————————————————————

This function returns the ordinal position in the program characterset (usually ASCII)
corresponding to the 1st character of the <char> argument (a group item, "USAGE DISPLAY"

elementary item or alphanumeric literal).

For example, assuming the program is using the standard ASCII collating sequence,
"ORD(’!’)" returns 34 because "!" is the 34th ASCII character. If you are using this
function to convert an ASCII character to its numeric value, you must subtract one from
the result.

The following code is an alternative approach when you just wish to convert an ASCII
character to its numeric equivalent:

01 Char-Value.

05 Numeric-Value USAGE BINARY-CHAR.

...

MOVE "character" TO Char-Value

"Numeric-Value" now has the numeric value of "character".

3 June 2014 Chapter 6 - PROCEDURE DIVISION



308 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.62. ORD-MAX� �
ORD-MAX Function Syntax
 	

ORD-MAX(char-1 [, char-2 ]...)

~~~~~~~

————————————————————————————————————————

This function returns the ordinal position in the argument list corresponding to the <char-
n> whose 1st character has the highest position in the program collating sequence (usually
ASCII).

For example, assuming the program is using the standard ASCII collating sequence,
"ORD-MAX(’Z’, ’z’, ’!’)" returns 2 because the 2nd character in the argument list
(the ASCII character ’z’) occurs after ’Z’ and ’ !’ in the program collating sequence.
Each <char-n> argument may be a group item, "USAGE DISPLAY" elementary item or
alphanumeric literal.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 309

6.16.63. ORD-MIN� �
ORD-MIN Function Syntax
 	

ORD-MIN(char-1 [, char-2 ]...)

~~~~~~~

————————————————————————————————————————

This function returns the ordinal position in the argument list corresponding to the <char-
n> whose 1st character has the lowest position in the program collating sequence (usually
ASCII).

For example, assuming the program is using the standard ASCII collating sequence,
"ORD-MIN(’Z’, ’z’, ’!’)" returns 3 because the 3rd character in the argument list
(the ASCII character ’ !’) occurs before ’Z’ and ’z’ in the program collating sequence.
Each <char-n> argument may be a group item, "USAGE DISPLAY" elementary item or
alphanumeric literal.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



310 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.64. PI� �
PI Function Syntax
 	

PI

~~

————————————————————————————————————————

This function returns the mathematical constant "PI". The maximum precision with which
this value may be returned is 3.1415926535897932384626433832795029.

Since this function has no arguments, no parenthesis should be specified.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 311

6.16.65. PRESENT-VALUE� �
PRESENT-VALUE Function Syntax
 	

PRESENT-VALUE(rate, value-1 [, value-2 ])

~~~~~~~~~~~~~

————————————————————————————————————————

The "PRESENT-VALUE" function returns a value that approximates the present value of
a series of future period-end amounts specified by the various <value-n> arguments at a
discount rate specified by the <rate> argument.

All arguments are numeric data items and/or numeric literals.

The following equation summarizes how present value is calculated, where ’N’ is the number
of <value> arguments:

presentvalue =
N∑
i=1

(
valuei

(1 + rate)i

)

3 June 2014 Chapter 6 - PROCEDURE DIVISION



312 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.66. RANDOM� �
RANDOM Function Syntax
 	

RANDOM[(seed)]

~~~~~~

————————————————————————————————————————

This function returns a pseudo-random non-integer value in the range 0 to 1 (for example,
0.123456789).

The purpose of the optional <seed> argument, is to initialize the chain of pseudo-random
numbers that will be returned by the function. Not only will calls to this function using
the same <seed> value return the same pseudo-ranom number, but so will all subsequent
executions of the function without a <seed>. This is actually a good thing when you
are testing your program because you can rely on always receiving the same sequence of
"random" numbers if you always start uising the same <seed>.

The <seed> may be any form of literal or data item. If <seed> is numeric, its numeric value
will serve as the seed value. If <seed> is alphanumeric, a value for it will be determined as
if it were used as an argument to "NUMVAL" (see [NUMVAL], page 304).

Take, for example, the following sample program:

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMORANDOM.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Pseudo-Random-Number USAGE COMP-1.

PROCEDURE DIVISION.

000-Main.

MOVE FUNCTION RANDOM(1) TO Pseudo-Random-Number

DISPLAY Pseudo-Random-Number

PERFORM 4 TIMES

MOVE FUNCTION RANDOM TO Pseudo-Random-Number

DISPLAY Pseudo-Random-Number

END-PERFORM

STOP RUN

.

Every time this program is executed, it will produce the same output, because the same
sequence of pseudo-random numbers will be generated:

0.41

0.18467

0.63340002

0.26499999

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 313

0.19169

It is worth mentioning that if the first excecution of "RANDOM" in your program lacks a
<seed> argument, the result will be exactly as if that execution were coded with a <seed>
argument value of 1.

Once your program has been thoroughly tested, you’ll want different sequences to be gen-
erated each time the program runs. One possible way to accomplish this is to use a <seed>
that is likely to be different every time the program is executed, as is likely to be the case
if the first "MOVE" statement in the previous example were replaced by this:

MOVE RANDOM(FUNCTION CURRENT-DATE(1:16))

TO Pseudo-Random-Number

The first 16 characters returned by the "CURRENT-DATE" (see [CURRENT-DATE], page 257)
function will be a number in the format "YYYYMMDDhhmmssnn", where "YYYYM-
MDD" is the current calendar date and "hhmmssnn" is the current time of day to the one
one-hundredth of a second. Since two different executions of the program will never get
identical "CURRENT-DATE" values (unless they are executed in extremely close timeframes
to one another), using those first sixteen characters as the "RANDOM" seed will guarantee
that receiving a duplicate sequence of pseudo-random numbers in two different executions
of the program will be HIGHLY unlikely.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



314 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.67. RANGE� �
RANGE Function Syntax
 	

RANGE(number-1 [, number-2 ]...)

~~~~~

————————————————————————————————————————

The "RANGE" function returns a value that is equal to the value of the maximum <number-n>
in the argument list minus the value of the minimum <number-n> argument.

All <number-n> arguments are numeric data items and/or numeric literals.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 315

6.16.68. REM� �
REM Function Syntax
 	

REM(number,divisor)

~~~

————————————————————————————————————————

This function returns a numeric value that is the remainder of <number> divided by <divi-
sor>. Both arguments must be numeric data items or numeric literals.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



316 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.69. REVERSE� �
REVERSE Function Syntax
 	

REVERSE(string)

~~~~~~~

————————————————————————————————————————

This function returns the byte-by-byte reversed value of the specified <string> (a group
item, USAGE DISPLAY elementary item or alphanumeric literal).

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 317

6.16.70. SECONDS-FROM-FORMATTED-TIME� �
SECONDS-FROM-FORMATTED-TIME Function Syntax
 	

SECONDS-FROM-FORMATTED-TIME(format,time)

~~~~~~~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function decodes the string <time> — whose value represents a formatted time — and
returns the total number of seconds that string represents.

The <time> string must contain hours, minutes and seconds. The time argument may be
specified as a group item, "USAGE DISPLAY" elementary item or an alphanumeric literal.

The <format> argument is a string (a group item, "USAGE DISPLAY" elementary item or
an alphanumeric literal) documenting the format of <time> using "hh", "mm" and "ss" to
denote where the respective time information can be found. Any other characters found
in <format> represent character positions that will be ignored. For example, a format of
"hhmmss" indicates that <time> will be treated as a six-digit string value where the first
two characters are the number of hours, the next two represent minutes and the last two
represent seconds. A <format> of "hh:mm:ss", however, describes <time> as an eight-
character string where characters 3 and 6 will be ignored.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



318 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.71. SECONDS-PAST-MIDNIGHT� �
SECONDS-PAST-MIDNIGHT Function Syntax
 	

SECONDS-PAST-MIDNIGHT

~~~~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the current time of day expressed as the total number of elapsed
seconds since midnight.

Since this function has no arguments, no parenthesis should be specified.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 319

6.16.72. SIGN� �
SIGN Function Syntax
 	

SIGN(number)

~~~~

————————————————————————————————————————

The "SIGN" function returns a -1 if the value of <number> (a numeric literal or numeric
data item) is negative, a zero if the value of <number> is exactly zero and a 1 if the value
of <number> if greater than 0.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



320 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.73. SIN� �
SIN Function Syntax
 	

SIN(angle)

~~~

————————————————————————————————————————

This function determines and returns the trigonometric sine of the specified <angle> (a
numeric literal or numeric data item).

The <angle> is assumed to be a value expressed in radians. If you need to determine the
sine of an angle measured in degrees, you first need to convert that angle to radians as
follows:

"COMPUTE <radians> = ( <degrees> * FUNCTION PI) / 180"

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 321

6.16.74. SQRT� �
SQRT Function Syntax
 	

SQRT(number)

~~~~

————————————————————————————————————————

The "SQRT" function returns a numeric value that approximates the square root of <number>
(a numeric data item or numeric literal with a non-negative value).

The following two statements produce identical results:

01 Result PIC 9(4).9(10).

...

MOVE FUNCTION SQRT(15) TO Result

COMPUTE Result = 15 ^ 0.5

3 June 2014 Chapter 6 - PROCEDURE DIVISION



322 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.75. STANDARD-DEVIATION� �
STANDARD-DEVIATION Function Syntax
 	

STANDARD-DEVIATION(number-1 [, number-2 ]...)

~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function returns the statistical standard deviation of the list of <number-n> arguments
(numeric data items or numeric literals).

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 323

6.16.76. STORED-CHAR-LENGTH� �
STORED-CHAR-LENGTH Function Syntax
 	

STORED-CHAR-LENGTH(string)

~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

Returns the length — in bytes — of the specified "string" (a group item, "USAGE DISPLAY"

elementary item or alphanumeric literal), minus the total number of trailing spaces, if any.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



324 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.77. SUBSTITUTE� �
SUBSTITUTE Function Syntax
 	

SUBSTITUTE(string, from-1, to-1 [, from-n, to-n ]...)

~~~~~~~~~~

————————————————————————————————————————

This function parses the specified <string>, replacing all occurrences of the <from-n> strings
with the corresponding <to-n> strings.

The <from-n> strings must match sequences in <string> exactly with regard to value and
case.

A <from-n> string does not have to be the same length as its corresponding <to-n> string.

All arguments are group items, <USAGE DISPLAY > elementary items or alphanumeric
literals.

A null <to-n> string will be treated as a single space.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 325

6.16.78. SUBSTITUTE-CASE� �
SUBSTITUTE-CASE Function Syntax
 	

SUBSTITUTE-CASE(string, from-1, to-1 [, from-n, to-n ]...)

~~~~~~~~~~~~~~~

————————————————————————————————————————

The "SUBSTITUTE-CASE" function operates the same as the "SUBSTITUTE" (see
[SUBSTITUTE], page 324) function, except that <from-n> string matching is performed
without regard to case.

All arguments are group items, "USAGE DISPLAY" elementary items or alphanumeric literals.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



326 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.79. SUM� �
SUM Function Syntax
 	

SUM(number-1 [, number-2 ]...)

~~~

————————————————————————————————————————

The "SUM" function returns a value that is the sum of the <number-n> arguments (these
may be numeric data items or numeric literals).

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 327

6.16.80. TAN� �
TAN Function Syntax
 	

TAN(angle)

~~~

————————————————————————————————————————

This function determines and returns the trigonometric tangent of the specified <angle> (a
numeric literal or numeric data item).

The <angle> is assumed to be a value expressed in radians. If you need to determine the
tangent of an angle measured in degrees, you first need to convert that angle to radians as
follows:

"COMPUTE <radians> = ( <degrees> * FUNCTION PI) / 180"

3 June 2014 Chapter 6 - PROCEDURE DIVISION



328 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.81. TEST-DATE-YYYYMMDD� �
TEST-DATE-YYYYMMDD Function Syntax
 	

TEST-DATE-YYYYMMDD(date)

~~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function determines if the supplied <date> argument (a numeric integer data item or
literal) is a valid date.

A valid date is one of the form yyyymmdd in the range 1601/01/01 to 9999/12/31, with no
more than the expected maximum number of days in the month, accounting for leap year.

If the <date> is valid, a 0 value is returned. If it isn’t, a value of 1, 2 or 3 is returned
signaling the problem lies with the year, month or day, respectively.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 329

6.16.82. TEST-DAY-YYYYDDD� �
TEST-DAY-YYYYDDD Function Syntax
 	

TEST-DATE-YYYYDDD(date)

~~~~~~~~~~~~~~~~~

————————————————————————————————————————

This function determines if the supplied <date> (a numeric integer data item or literal) is
a valid date.

A valid date is one of the form yyyyddd in the range 1601001 to 9999365. Leap year is
accounted for in determining the maximum number of days in a year.

If the date is valid, a 0 value is returned. If it isn’t, a value of 1 or 2 is returned signaling
the problem lies with the year or day, respectively.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



330 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.83. TEST-NUMVAL� �
TEST-NUMVAL Function Syntax
 	

TEST-NUMVAL(string)

~~~~~~~~~~~

————————————————————————————————————————

The "TEST-NUMVAL" function evaluates the specified <string> (a group item, "USAGE

DISPLAY" elementary item or alphanumeric literal) for being appropriate for use as the
<string> argument to a "NUMVAL" (see [NUMVAL], page 304) function, returning a TRUE
value if it is appropriate and FALSE otherwise.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 331

6.16.84. TEST-NUMVAL-C� �
TEST-NUMVAL-C Function Syntax
 	

TEST-NUMVAL-C(string[,symbol])

~~~~~~~~~~~~~

————————————————————————————————————————

This function evaluates the specified <string> (a group item, "USAGE DISPLAY" elementary
item or alphanumeric literal) for being appropriate for use as the <string> argument to
a "NUMVAL-C" (see [NUMVAL-C], page 305) function, returning a TRUE value if it is
appropriate and FALSE otherwise.

The optional <symbol> argument serves the same function — and has the same default and
possible values — as the corresponding argument of the "NUMVAL-C" function.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



332 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.85. TEST-NUMVAL-F� �
TEST-NUMVAL-F Function Syntax
 	

TEST-NUMVAL-F(string)

~~~~~~~~~~~~~

————————————————————————————————————————

This function evaluates the specified <string> (a group item, "USAGE DISPLAY" elemen-
tary item or alphanumeric literal) for being appropriate for use as the <string> argument
to a "NUMVAL-F" (see [NUMVAL-F], page 306) function, returning a TRUE value if it is
appropriate and FALSE otherwise.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 333

6.16.86. TRIM� �
TRIM Function Syntax
 	

TRIM(string [, LEADING|TRAILING ])

~~~~ ~~~~~~~ ~~~~~~~~

————————————————————————————————————————

This function removes "LEADING" or "TRAILING" spaces from the specified <string> (a group
item, "USAGE DISPLAY" elementary item or alphanumeric literal).

The second argument is specified as a keyword, not a quoted string or identifier. If no
second argument is specified, both leading and trailing spaces will be removed. The case
(upper, lower or mixed) of this argument is irrelevant.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



334 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.87. UPPER-CASE� �
UPPER-CASE Function Syntax
 	

UPPER-CASE(string)

~~~~~~~~~~

————————————————————————————————————————

This function returns the value of <string> (a group item, "USAGE DISPLAY" elementary
item or alphanumeric literal), converted entirely to upper case.

What constitutes a "letter" (or upper/lower case too, for that manner) may be influ-
enced through the use of a "CHARACTER CLASSIFICATION" (see [OBJECT-COMPUTER],
page 58).

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 335

6.16.88. VARIANCE� �
VARIANCE Function Syntax
 	

VARIANCE(number-1 [, number-2 ]...)

~~~~~~~~

————————————————————————————————————————

This function returns the statistical variance of the specified list of <number-n> arguments
(these may be numeric data items or numeric literals).

3 June 2014 Chapter 6 - PROCEDURE DIVISION



336 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.16.89. WHEN-COMPILED� �
WHEN-COMPILED Function Syntax
 	

WHEN-COMPILED

~~~~~~~~~~~~~

————————————————————————————————————————

The "WHEN-COMPILED" intrinsic function, not to be confused with the "WHEN-COMPILED"

(see [Special Registers], page 243) special register, returns the date and time the program
was compiled, in ASCII.

Since this function has no arguments, no parenthesis should be specified.

Unlike the "WHEN-COMPILED" special register, which has an ASCII value of the compila-
tion date/time in the format "mm/dd/yyhh.mm.ss", the "WHEN-COMPILED" intrinsic func-
tion returns the compilation date/time as an ASCII string in the format "yyyymmddhh-
mmssnnooooo", where "yyyymmdd" is the date, "hhmmss" is the time, "nn" is the hun-
dredths of a second component of the compilation time, if available (or "00" if it isn’t) and
"ooooo" is the timezone offset from GMT.

If the "-fintrinsics=WHEN-COMPILED" switch or "-fintrinsics=ALL" switch is specified
to the compiler or the "REPOSITORY" (see [REPOSITORY], page 60) paragraph specifies
either "FUNCTION WHEN-COMPILED INTRINSIC" or "FUNCTION ALL INTRINSIC", then ref-
erences to "WHEN-COMPILED" (without a leading "FUNCTION" keyword will always reference
this intrinsic function and there will be no way to access the "WHEN-COMPILED" special
register.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 337

6.16.90. YEAR-TO-YYYY� �
YEAR-TO-YYYY Function Syntax
 	

YEAR-TO-YYYY(yy [, yy-cutoff ])

~~~~~~~~~~~~

————————————————————————————————————————

"YEAR-TO-YYYY" converts <yy> — a two-digit year — to a four-digit format (yyyy).

The optional <yy-cutoff > argument is the year cutoff used to delineate centuries; if <yy>
meets or exceeds this cutoff value, the result will be 19yy; if <yy> is less than the cutoff,
the result will be 20yy. The default cutoff value if no second argument is given will be 50.

Both arguments must be numeric data items or numeric literals.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



338 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17. GNU COBOL Statements

6.17.1. ACCEPT

6.17.1.1. ACCEPT FROM CONSOLE� �
ACCEPT FROM CONSOLE Syntax
 	

ACCEPT identifier-1

~~~~~~

[ FROM mnemonic-name-1 ]

~~~~

[ END-ACCEPT ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement is used to read a value from the console window or
the standard input device and store it into a data item (<identifier-1>).

1. If no "FROM" clause is specified, "FROM CONSOLE" is assumed.

2. The specified <mnemonic-name-1> must either be one of the built-in device names
"CONSOLE", "STDIN", "SYSIN" or "SYSIPT", or a user-defined (see [SPECIAL-NAMES],
page 62) mnemonic name attached to one of those four device names.

3. Input will be read either from the console window ("CONSOLE") or from the
system-standard input (pipe 0 = "STDIN", "SYSIN" or "SYSIPT") and will be saved in
<identifier-1>.

4. If <identifier-1> is a numeric data item, the character value read from the console or
standard-input device will be parsed according to the rules for input to the "NUMVAL"

intrinsic function (see [NUMVAL], page 304), except that none of the trailing sign
formats are honored.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 339

6.17.1.2. ACCEPT FROM COMMAND-LINE� �
ACCEPT FROM COMMAND-LINE Syntax
 	

ACCEPT identifier-1

~~~~~~

FROM { COMMAND-LINE }

~~~~ { ~~~~~~~~~~~~ }

{ ARGUMENT-NUMBER }

{ ~~~~~~~~~~~~~~~ }

{ ARGUMENT-VALUE }

{ ~~~~~~~~~~~~~~ }

{ [ ON EXCEPTION imperative-statement-1 ] }

{ ~~~~~~~~~ }

{ [ NOT ON EXCEPTION imperative-statement-2 ] }

[ END-ACCEPT ] ~~~ ~~~~~~~~~

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement is used to retrieve information from the programs
command-line.

1. The reserved word "ON" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. When you accept from the "COMMAND-LINE" option, you will retrieve the entire set of
arguments entered on the command line that executed the program, exactly as they
were specified. Parsing that returned data into its meaningful information will be your
responsibility.

3. By accepting from "ARGUMENT-NUMBER", you will be asking the GNU COBOL run-
time system to parse the arguments from the command-line and return the number of
arguments found. Parsing will be conducted according to the following rules:

A. Arguments will be separated by treating spaces and/or tab characters as the delim-
iters between arguments. The number of such delimiters separating two non-blank
argument values is irrelevant.

B. Strings enclosed in double-quote characters (") will be treated as a single argument,
regardless of how many spaces or tab characters (if any) might be imbedded within
those quotation characters.

C. On Windows systems, single-quote, or apostrophe characters (’) will be treated
just like any other data character and will NOT delineate argument strings.

4. By accepting from "ARGUMENT-VALUE", you will be asking the GNU COBOL
run-time system to parse the arguments from the command-line and return the
"current" argument. You specify which argument number is "current" via the

3 June 2014 Chapter 6 - PROCEDURE DIVISION



340 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

"ARGUMENT-NUMBER" option on the "DISPLAY" statement (see [DISPLAY UPON
COMMAND-LINE], page 372). Parsing of arguments will be conducted according to
the rules set forth above.

5. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to de-
tect and react to the failure or success, respectively, of an attempt to retrieve an
"ARGUMENT-VALUE". See [ON EXCEPTION + NOT ON EXCEPTION], page 238, for
additional information.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 341

6.17.1.3. ACCEPT FROM ENVIRONMENT� �
ACCEPT FROM ENVIRONMENT Syntax
 	

ACCEPT identifier-1

~~~~~~

FROM { ENVIRONMENT-VALUE }

~~~~ { ~~~~~~~~~~~~~~~~~ }

{ ENVIRONMENT { literal-1 } }

{ ~~~~~~~~~~~ { identifier-1 } }

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

[ END-ACCEPT ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement is used to retrieve environment variable values.

1. The reserved word "ON" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. By accepting from "ENVIRONMENT-VALUE", you will be asking the GNU COBOL
run-time system to retrieve the value of the environment variable whose name
is currently in the "ENVIRONMENT-NAME" register. A value may be placed into
the "ENVIRONMENT-NAME" register using the "ENVIRONMENT-NAME" option of the
"DISPLAY" statement (see [DISPLAY UPON ENVIRONMENT-NAME], page 373).

3. A simpler approach to retrieving an environment variables value is to use the
"ENVIRONMENT" option, where you specify the environment variable whose value is to
be retrieved right on the "ACCEPT" statement itself.

4. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to an attempt to retrieve the value of a non-existant environment variable
or the successful retrieval of an environment variable’s value, respectively. See [ON
EXCEPTION + NOT ON EXCEPTION], page 238, for additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



342 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.1.4. ACCEPT screen-data-item� �
ACCEPT screen-data-item Syntax
 	

ACCEPT identifier-1 [ FROM CRT ] [ MODE IS BLOCK ]

~~~~~~ ~~~~ ~~~ ~~~~ ~~~~~

[ AT { | LINE NUMBER { integer-1 } | } ]

~~ { | ~~~~ { identifier-2 } | }

{ | COLUMN|POSITION NUMBER { integer-2 } | }

{ | ~~~~~~ ~~~~~~~~ { identifier-3 } | }

{ }

{ { integer-3 } }

{ { identifier-4 } }

[ WITH [ Attribute-Specification ]...

~~~~

[ LOWER|UPPER ]

~~~~~ ~~~~~

[ SCROLL { UP } [ { integer-4 } LINE|LINES ] ]

~~~~~~ { ~~ } { identifier-5 }

{ DOWN }

~~~~

[ TIMEOUT|TIME-OUT AFTER { integer-5 } ]

~~~~~~~ ~~~~~~~~ { identifier-6 }

[ CONVERSION ]

~~~~~~~~~~

[ UPDATE ] ]

~~~~~~

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

[ END-ACCEPT ]

~~~~~~~~~~

The "FROM CRT", "MODE IS BLOCK", "CONVERSION" and "UPDATE" clauses are syntactically
recognized but are otherwise non-functional.

————————————————————————————————————————

This format of the "ACCEPT" statement is used to retrieve data from a formatted console
window screen.

1. The reserved words "AFTER", "IS", "NUMBER" and "ON" are optional and may be in-
cluded, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 343

2. The reserved words "COLUMN" and "POSITION" are interchangeable.

3. The reserved words "TIMEOUT" and "TIME-OUT" are interchangeable.

4. If <identifier-1> is defined in the "SCREEN SECTION" (see [SCREEN SECTION],
page 115), any "AT", <Attribute-Specification>, "LOWER", "UPPER" or "SCROLL"

clauses will be ignored. In these cases, an implied "DISPLAY" (see [DISPLAY
screen-data-item], page 374) of <identifier-1> will occur before input is accepted.
Coding an explicit "DISPLAY identifier-1" before an "ACCEPT identifier-1" is
redundant and will incur the performance penalty of painting the screen contents
twice.

5. The various "AT" clauses provide a means of positioning the cursor to a specific spot
on the screen before the screen is read. One or the other (but not both) may be used,
as follows:

A. The "LINE" and "COLUMN" clauses provide one mechanism for specifying the line
and column position to which the cursor will be positioned before allowing the user
to enter data. In the absence of one or the other, a value of 1 will be assumed for
the one that is missing. The author’s personal preference, however, is to explicitly
code both.

B. The <literal-3> or <identifier-4> value, if specified, must be a four- or six-digit
value with the 1st half of the number indicating the line where the cursor should
be positioned and the second half indicating the column. You may code only one
of each clause on any "ACCEPT".

6. "WITH" options (including the various individual <Attribute-Specifications>) should be
coded only once.

7. The following <Attribute-Specification> clauses are allowed on the "ACCEPT" statement
— these are the same as those allowed for "SCREEN SECTION" data items. A particular
<Attribute-Specification> may be used only once in any "ACCEPT":

• "AUTO" (see [AUTO], page 126), "AUTO-SKIP" (see [AUTO-SKIP], page 127),
"AUTOTERMINATE" (see [AUTOTERMINATE], page 128)

• "BACKGROUND-COLOR" (see [BACKGROUND-COLOR], page 129)

• "BEEP" (see [BEEP], page 131), "BELL" (see [BELL], page 132)

• "BLINK" (see [BLINK], page 135)

• "FOREGROUND-COLOR" (see [FOREGROUND-COLOR], page 143)

• "FULL" (see [FULL], page 145), "LENGTH-CHECK" (see [LENGTH-CHECK],
page 152)

• "HIGHLIGHT" (see [HIGHLIGHT], page 148)

• "LEFTLINE" (see [LEFTLINE], page 151)

• "LOWLIGHT" (see [LOWLIGHT], page 155)

3 June 2014 Chapter 6 - PROCEDURE DIVISION



344 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

• "OVERLINE" (see [OVERLINE], page 161)

• "PROMPT" (see [PROMPT], page 171)

• "REQUIRED" (see [REQUIRED], page 174), "EMPTY-CHECK" (see [EMPTY-
CHECK], page 139)

• "REVERSE-VIDEO" (see [REVERSE-VIDEO], page 175)

• "SECURE" (see [SECURE], page 176), "NO-ECHO" (see [NO-ECHO], page 157)

• "UNDERLINE" (see [UNDERLINE], page 185)

8. The "SCROLL" option will cause the entire contents of the screen to be scrolled "UP" or
"DOWN" by the specified number of lines before any value is displayed on the screen. It
is syntactically allowable to specify a "SCROLL UP" clause as well as a "SCROLL DOWN"

clause. In such an instance, it is the last one specified that will be honored. If no
"LINES" specification is made, "1 LINE" will be assumed.

9. The "TIMEOUT" option will cause the "ACCEPT" to wait no more than the specified
number of seconds for input. The wait count may be specified as a positive integer or
a numeric data item with a positive value.

10. This format of the "ACCEPT" statement will be terminated by any of the following
events:

A. When the ’Enter’ key is pressed.

B. Expiration of the "TIMEOUT" timer — this will be treated as if the Enter key had
been pressed with no data being entered.

C. When a function key (Fn) is pressed.

D. The pressing of the PgUp or PgDn keys, if the "COB_SCREEN_EXCEPTIONS" run-
time environment variable (see [Run Time Environment Variables], page 522) is
set to any non-blank value.

E. The pressing of the Esc key if both the "COB_SCREEN_ESC" run-time environment
variable as well as "COB_SCREEN_EXCEPTIONS" run-time environment variable are
set to any non-blank value.

F. The pressing of the Up-arrow, Down-Arrow or PrtSc (Print Screen) keys. These
keys are not detectable on Windows systems, however.

11. The following apply when <identifier-1> is defined in the "SCREEN SECTION":

A. Alphanumeric data entered into <identifier-1> or any screen data item subordinate
to it must be consistent with the "PICTURE" (see [PICTURE], page 162) clause of
that item. This will be enforced at runtime by the "ACCEPT" statement.

B. If <identifier-1> or any screen data item subordinate to it are defined as numeric,
entered data must be acceptable as "NUMVAL" intrinsic function (see [NUMVAL],
page 304) input (no decimal points are allowed, however). The value stored into
the screen data item will be as if the input were passed to that function.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 345

C. If <identifier-1> or any screen data item subordinate to it are defined as numeric
edited, entered data must be acceptable as "NUMVAL-C" intrinsic function (see
[NUMVAL-C], page 305) input (again, no decimal points are allowed). The value
stored into the screen data item will be as if the input were passed to that function.

12. The following apply when <identifier-1> is not defined in the "SCREEN SECTION":

A. Alphanumeric data entered into <identifier-1> should be consistent with the
"PICTURE" (see [PICTURE], page 162) clause of that item, although that will not
be enforced by the "ACCEPT" statement. You may use "Class Conditions" (see
[Class Conditions], page 219) after the data is accepted to enforce the data type.

B. If <identifier-1> is defined as numeric, entered data must be acceptable as
"NUMVAL" intrinsic function (see [NUMVAL], page 304) input (no decimal points
are allowed, however). The value stored into <identifier-1> will be as if the input
were passed to that function.

C. If <identifier-1> is defined as numeric edited, entered data must be acceptable
as "NUMVAL-C" intrinsic function (see [NUMVAL-C], page 305) input (again, no
decimal points are allowed). The value stored into <identifier-1> will be as if the
input were passed to that function.

13. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to the failure or success, respectively, of the screen I/O attempt. See [ON
EXCEPTION + NOT ON EXCEPTION], page 238, for additional information.

After this format of the "ACCEPT" statement is executed, the program’s "CRT STATUS"

(see [SPECIAL-NAMES], page 62) identifier will be populated with one of the following:

Code Meaning
0000 ENTER key pressed
1001–1064 F1–F64, respectively, were pressed
2001 PgUp was pressed
2002 PgDn,was pressed
2003 Up Arrow was pressed
2004 Down-Arrow was pressed
2006 PrtSc (Print Screen) was pressed
2005 Esc was pressed
8000 No data is available on screen ACCEPT
9000 Fatal screen I/O error

14. The actual key pressed to generate a function key (Fn) will depend on the type of
terminal device you’re using (PC, Macintosh, VT100, etc.) and what type of enhanced
display driver was configured with the version of GNU COBOL you’re using. For
example, on a GNU COBOL build for a Windows PC using MinGW and PDCurses,
F1-F12 are the actual F-keys on the PC keyboard, F13-F24 are entered by shifting
the F-keys, F25-F36 are entered by holding Ctrl while pressing an F-key and F37-
F48 are entered by holding Alt while pressing an F-key. On the other hand, a GNU
COBOL implementation built for Windows using Cygwin and NCurses treats the PCs

3 June 2014 Chapter 6 - PROCEDURE DIVISION



346 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

F1-F12 keys as the actual F1-F12, while shifted F-keys will enter F11-F20. With
Cygwin/NCurses, Ctrl- and Alt-modified F-keys aren’t recognized. Neither are Shift-
F11 or Shift-F12.

15. Numeric keypad keys are not recognizable on Windows MinGW/PDCurses builds of
GNU COBOL, regardless of NumLock settings. Windows Cygwin/NCurses builds
recognize numeric keypad inputs properly. Although not tested during the preparation
of this documentation, I would expect native Windows builds using PDCurses to behave
as MinGW builds do and native Unix builds using NCurses to behave as do Cygwin
builds.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 347

6.17.1.5. ACCEPT FROM DATE/TIME� �
ACCEPT FROM DATE/TIME Syntax
 	

ACCEPT identifier-1 FROM { DATE [ YYYYMMDD ] }

~~~~~~ ~~~~ { ~~~~ ~~~~~~~~ }

{ DAY [ YYYYDDD ] }

{ ~~~ ~~~~~~~ }

{ DAY-OF-WEEK }

{ ~~~~~~~~~~~ }

[ END-ACCEPT ] { TIME }

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement is used to retrieve the current system date, time or
current day of the week and store it into a data item.

1. The data retrieved from the system and the format in which it is structured will vary,
as follows:

Syntax Data Retrieved Format
"DATE" Current date in Gregorian form yymmdd
"DATE YYYYMMDD" Current date in Gregorian form yyyymmdd
"DAY" Current date in Julian form yyddd
"DAY YYYYDDD" Current date in Julian form yyyyddd
"TIME" Time, including hundredths of a second

(nn)
hhmmssnn

3 June 2014 Chapter 6 - PROCEDURE DIVISION



348 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.1.6. ACCEPT FROM Screen-Info� �
ACCEPT FROM Screen-Info Syntax
 	

ACCEPT identifier-1

~~~~~~

FROM { LINES|LINE-NUMBER }

~~~~ { ~~~~~ ~~~~~~~~~~~ }

{ COLS|COLUMNS }

{ ~~~~ ~~~~~~~ }

{ ESCAPE KEY }

~~~~~~ ~~~

[ END-ACCEPT ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement is used to retrieve information about the console
window or about the user’s interactions with it.

1. The reserved words "LINES" and "LINE-NUMBER" are interchangeable.

2. The reserved words "COLS" and "COLUMNS" are interchangeable.

3. The following points pertain to the use of the "LINES" and "COLUMNS" options:

A. The "LINES" and "COLUMNS" options will retrieve the respective components of
the size of the console display.

B. When the console is running in a windowed environment, this will be the sizing of
the window in which the program is executing, in terms of horizontal ("COLUMNS")
or vertical ("LINES") character counts — not pixels.

C. When the system is not running a windowing environment, the physical console
screen attributes will be returned.

D. Values of 0 will be returned if GNU COBOL was not generated to include screen
I/O.

E. See the documentation on the "CBL_GET_SCR_SIZE" built-in system subroutine
(see [CBL GET SCR SIZE], page 541) for another way to retrieve this informa-
tion.

4. The "ESCAPE KEY" option may be used after the "ACCEPT FROM Screen-Info" state-
ment (see [ACCEPT FROM Screen-Info], page 348) has executed. The result returned
will be the four-digit "CRT STATUS" (see [SPECIAL-NAMES], page 62) identifier value.
See [CRT STATUS Codes], page 345, for the specific code values.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 349

6.17.1.7. ACCEPT FROM Runtime-Info� �
ACCEPT FROM Runtime-Info Syntax
 	

ACCEPT identifier-1

~~~~~~

FROM { EXCEPTION STATUS }

~~~~ { ~~~~~~~~~ ~~~~~~ }

{ USER NAME }

~~~~ ~~~~

[ END-ACCEPT ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "ACCEPT" statement is used to retrieve run-time information such as the
most-recent error exception code and the current user’s user name.

1. The following points pertain to the use of the "EXCEPTION STATUS" option:

A. <identifier-1> must be defined as a "PIC X(4)" item.

B. See [Error Exception Codes], page 266, for a complete list of the exception codes
and their meanings.

C. An alternative to the use of "ACCEPT FROM Runtime-Info" is to use the
"EXCEPTION-STATUS" intrinsic function (see [EXCEPTION-STATUS], page 266).

2. The following points pertain to the use of the "USER NAME" option:

A. The returned result is the userid that was used to login to the system with, and
not any actual first and/or last name of the user in question (unless, of course,
that is the information used as a logon id).

B. <identifier-1> should be defined large enough to receive the longest user-name on
the system.

C. If insufficient space is allocated, the returned value will be truncated.

D. If excess space is allocated, the returned value will be padded with spaces (to the
right).

3 June 2014 Chapter 6 - PROCEDURE DIVISION



350 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.2. ADD

6.17.2.1. ADD TO� �
ADD TO Syntax
 	

ADD { literal-1 }...

~~~ { identifier-1 }

TO { identifier-2

~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-ADD ]

~~~~~~~

————————————————————————————————————————

This format of the "ADD" statement generates an intermediate arithmetic sum of the values
of all <identifier-1> and <literal-1>) items. The value of each <identifier-2> will be replaced,
in turn, by the sum of that <identifier-2>s value and the intermediate sum.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items while
<literal-1> must be a numeric literal.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 351

3. An <identifier-1> data item may also be coded as an <identifier-2> — note, however,
that the value of such a data item will therefore be included twice in the result.

4. The contents of each <identifier-1> will remain unchanged by this statement.

5. The optional "ROUNDED" (see [ROUNDED], page 240) clause available to each
<identifier-2> will control how non-integer results will be saved.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 239, for additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



352 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.2.2. ADD GIVING� �
ADD GIVING Syntax
 	

ADD { literal-1 }...

~~~ { identifier-1 }

[ TO identifier-2 ]

~~

GIVING { identifier-3

~~~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-ADD ]

~~~~~~~

————————————————————————————————————————

This format of the "ADD" statement generates the arithmetic sum of the values of all
<identifier-1>, <literal-1>) and <identifier-2> (if any) items and then saves that sum to
each <identifier-3>.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items while

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 353

<literal-1> must be a numeric literal; <identifier-3> may be either a numeric or numeric
edited data item.

3. An <identifier-1> or <identifier-2> data item may be used as an <identifier-3>, if
desired.

4. The contents of each <identifier-1> and <identifier-2> will remain unchanged by this
statement, unless they happen to also be specified as an <identifier-3>.

5. The current value in each <identifier-3> at the start of the statement’s execution is
irrelevant, since the contents of each <identifier-3> will simply be replaced with the
computed sum.

6. The optional "ROUNDED" (see [ROUNDED], page 240) clause available to each
<identifier-3> will control how non-integer results will be saved.

7. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-3> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 239, for additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



354 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.2.3. ADD CORRESPONDING� �
ADD CORRESPONDING Syntax
 	

ADD CORRESPONDING identifier-1

~~~

TO identifier-2

~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ]

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-ADD ]

~~~~~~~

————————————————————————————————————————

This format of the "ADD" statement generates code equivalent to individual "ADD TO" (see
[ADD TO], page 350) statements for corresponding matches of data items found subordinate
to the two identifiers.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be group items.

3. See [CORRESPONDING], page 236, for information on how corresponding matches
will be found between <identifier-1> and <identifier-2>.

4. The optional "ROUNDED" (see [ROUNDED], page 240) clause available to each
<identifier-3> will control how non-integer results will be saved.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 355

5. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-3> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 239, for additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



356 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.3. ALLOCATE� �
ALLOCATE Syntax
 	

ALLOCATE { expression-1 CHARACTERS } [ { INITIALIZED } ]

~~~~~~~~ { identifier-1 ~~~~~~~~~~ } { ~~~~~~~~~~~ }

{ INITIALISED }

[ RETURNING identifier-2 ] ~~~~~~~~~~~

~~~~~~~~~

————————————————————————————————————————

The "ALLOCATE" statement is used to dynamically allocate memory at run-time.

1. The reserved words "INITIALIZED" and "INITIALISED" are interchangeable.

2. Both <identifier-1> and "RETURNING <identifier-2>" may not be specified in the
same statement.

3. If used, <expression-1> must be an arithmetic expression with a non-zero positive
integer value.

4. If used, <identifier-1> should be an 01-level item defined in working-storage or local-
storage with the "BASED" (see [BASED], page 130) attribute. It may be an 01 item
defined in the linkage section without the "BASED" attribute, but using such a data
item is not recommended.

5. If used, <identifier-2> should be a "POINTER" (see [USAGE], page 186) data item.

6. The optional "RETURNING" clause will return the address of the allocated memory
block into the specified "USAGE POINTER" <identifier-2> data item. When this option
is used, knowledge of the originally-requested size of the allocated memory block will
be retained by the program in case a "FREE" (see [FREE], page 390) statement is ever
issued against <identifier-2>.

7. When the <identifier-1> option is used in conjunction with "INITIALIZED" (or it’s
internationalized alternative "INITIALISED"), the allocated memory block will be ini-
tialized as if an "INITIALIZE <identifier-1> WITH FILLER ALL TO VALUE THEN TO

DEFAULT" (see [INITIALIZE], page 399) were executed.

8. When the "<expression-1> CHARACTERS" option is used, "INITIALIZED" will initial-
ize the allocated memory block to binary zeros. If "INITIALIZED" is not used, the
initial contents of allocated memory will be left to whatever rules of memory allocation
are in effect for the operating system the program is running under.

9. There are two basic ways in which this statement is used. The simplest is:

ALLOCATE My-01-Item

With this form, a block of storage equal in size to the defined size of My-01-Item (which

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 357

must have been defined with the "BASED" attribute) will be allocated. The address of
that block of storage will become the base address of My-01-Item so that it and its
subordinate data items become usable within the program.

A second (and equivalent) approach is:

ALLOCATE LENGTH OF My-01-Item CHARACTERS RETURNING The-Pointer

SET ADDRESS OF My-01-Item TO The-Pointer

10. Referencing a "BASED" data item either before its storage has been allocated or after
its storage has been released (via the "FREE" statement) will lead to "unpredictable
results". That’s how reference manuals and standards specifications talk about this
situation. In the author’s experience, the results are all too predictable — the program
aborts from an attempt to reference an unallocated area of memory.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



358 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.4. ALTER� �
ALTER Syntax
 	

ALTER procedure-name-1 TO PROCEED TO procedure-name-2

~~~~~ ~~

————————————————————————————————————————

The "ALTER" statement was used in the early years of the COBOL language to edit the
object code of a program at execution time, changing a "GO TO" (see [Simple GO TO],
page 394) statement to branch to a spot in the program different than where the "GO TO"

statement was originally compiled for.

1. The reserved words "PROCEED" and "TO" (the one after "PROCEED") are optional and
may be included, or not, at the discretion of the programmer. The presence or absence
of these words has no effect upon the program.

2. <procedure-name-1> must contain only a single statement, and that statement must be
a simple "GO TO".

3. The effect of this statement will be as if the generated machine-language code for the
"GO TO" statement in <procedure-name-1> is changed so that the "GO TO" statement
now transfers control to <procedure-name-2>, rather than to whatever procedure name
was specified in the program source code.

4. Support for the "ALTER" verb has been added to GNU COBOL for the purpose of
enabling GNU COBOL to pass those National Institute of Standards and Technology
(NIST) tests for the COBOL programming language that require support for "ALTER".

5. Because of the catastrophic effect this statement has on program readability and there-
fore the programmer’s ability to debug problems with program logic, the use of "ALTER"
in new programs is STRONGLY discouraged.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 359

6.17.5. CALL� �
CALL Syntax
 	

CALL [ { STDCALL } ] { literal-1 }

~~~~ { ~~~~~~~ } { identifier-1 }

{ STATIC }

{ ~~~~~~ }

{ mnemonic-name-1 }

[ USING CALL-Argument... ]

~~~~~

[ RETURNING|GIVING identifier-2 ]

~~~~~~~~~ ~~~~~~

[ ON OVERFLOW|EXCEPTION imperative-statement-1 ]

~~~~~~~~ ~~~~~~~~~

[ NOT ON OVERFLOW|EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~ ~~~~~~~~~

[ END-CALL ]

~~~~~~~~

————————————————————————————————————————� �
CALL Argument Syntax
 	

[ BY { REFERENCE } ]

{ ~~~~~~~~~ }

{ CONTENT }

{ ~~~~~~~ }

{ VALUE }

~~~~~

{ OMITTED }

{ ~~~~~~~ }

{ [ UNSIGNED ] [ SIZE IS { AUTO } ] [ { literal-2 } }

~~~~~~~~ ~~~~ { ~~~~ } { identifier-2 }

{ DEFAULT }

{ ~~~~~~~ }

{ integer-1 }

————————————————————————————————————————

The "CALL" statement is used to transfer control to a subroutine. See [Sub-Programming],
page 557, for the specifics of using subprograms with GNU COBOL programs.

1. The reserved words "BY", "IS" and "ON" are optional and may be included, or not, at

3 June 2014 Chapter 6 - PROCEDURE DIVISION



360 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The reserved words "EXCEPTION" and "OVERFLOW" are interchangeable.

3. The reserved words "GIVING" and "RETURNING" are interchangeable.

4. The expectation is that the subroutine will eventually return control back to the calling
program, at which point the CALLing program will resume execution starting with the
statement immediately following the "CALL". Subprograms are not required to return
to their callers, however, and are free to halt program execution if they wish.

5. The <mnemonic-name-1> / "STATIC" / "STDCALL" option, if used, affects the linkage
conventions that will be used to the subroutine being called, as follows:

A. The "STATIC" option will cause the linkage to the subroutine to be performed in
such a way as to require the subroutine to be statically-linked with the calling
program. Note that this enables static-linking to be used on a subroutine-by-
subroutine selective basis.

B. The "STDCALL" option allows system-standard calling conventions (as opposed to
GNU COBOL calling conventions) to be used when calling a subroutine. The
definition of what consititutes "system standard" may vary from operating system
to operating system. Use of this requires special knowledge about the linkage
requirements of subroutines you are intending to "CALL". Subroutines written in
GNU COBOL do not need this option.

C. The <mnemonic-name-1> option allows a custom-defined calling convention to
be used. Such mnemonic names are defined using the "CALL-CONVENTION" (see
[SPECIAL-NAMES], page 62) clause. That clause associates a decimal integer
value with <mnemonic-name-1> such that the individual bits set on or off in the
binary equivalent of the integer affect linkage to the subroutine as described in the
following chart. Those rows of the chart marked with a "No" in the "Supported"
column represent bit positions (switch settings) in the integer value that are cur-
rently accepted (to provide compatibility to other COBOL implementations) if
coded, but are otherwise unsupported.

Note that bit 0 is the right-most bit in the binary value.

Bit Supported Meaning if 0 Meaning if 1
0 No Arguments will be passed in right-

to-left sequence
Arguments will be passed in left-
to-right sequence.

1 No The calling program will flush pro-
cessed arguments from the argu-
ment stack.

The called program (subroutine)
will flush processed arguments
from the argument stack.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 361

2 Yes The "RETURN-CODE" special
register (see [Special Registers],
page 243) will be updated in
addition to any "RETURNING" or
"GIVING" data item.

The "RETURN-CODE" special regis-
ter will not be updated (but any
"RETURNING" or "GIVING" data
item still will).

3 Yes If CALL "literal" is used, the sub-
routine will be located and linked
in with the calling program at
compile time or may be dynami-
cally located and loaded at execu-
tion time, depending on compiler
switch settings and operating sys-
tem capabilities.

If CALL "literal" is used, the sub-
routine can only be located and
linked with the calling program at
compilation time.

4 No OS/2 "OPTLINK" conventions
will not be used to CALL the
subprogram.

OS/2 "OPTLINK" conventions
will be used to CALL the
subprogram.

5 No Windows 16-bit "thunking" will
not be in effect.

Windows 16-bit "thunking" will
be used to call the subroutine as a
DLL.

6 Yes The STDCALL convention will
not be used.

The STDCALL convention, re-
quired to use the Microsoft Win32
API, will be used.

Using the "STDCALL" option on a "CALL" statement is equivalent to using
"CALL-CONVENTION 8" (only bit 3 set).

Using the "STATIC" option on a "CALL" statement is equivalent to using "CALL

CONVENTION 64" (only bit 6 set).

6. The value of <literal-1> or <identifier-1> is the entry-point of the subprogram you wish
to call.

7. When you call a subroutine using <identifier-1>, you are forcing the runtime system
to call a dynamically-loadable subprogram. The contents of <identifier-1> will be the
entry-point name within that module. If this is the first call to any entry-point within
the module being made at run-time, the contents of <identifier-1> must be the primary
entry-point name of the module (which must also match the filename, minus any OS-
mandated extension) of the executable file comprising the module).

8. You can force the GNU COBOL runtime system to pre-load all dynamically-loaded
modules that could ever be called by the program, at the time the program starts
executing. This is accomplished through the use of the "COB_PRE_LOAD" run-time
environment variable (see [Run Time Environment Variables], page 522). If used, this
will only pre-load those modules invoked via "CALL <literal-1>", as the runtime
contents of <identifier-1> cannot be predicted.

9. If the subprogram being called is a GNU COBOL program, and if that program had
the "INITIAL" (see [IDENTIFICATION DIVISION], page 53) attribute specified on

3 June 2014 Chapter 6 - PROCEDURE DIVISION



362 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

its "PROGRAM-ID" clause, all of the subprogram’s data division data will be restored to
its initial state each time the subprogram is executed, regardless of which entry-point
within the subprogram is being referenced.

This [re]-initialization behavior will always apply to any subprogram’s local-storage (if
any), regardless of the use (or not) of "INITIAL".

10. The "USING" clause defines a list of arguments that may be passed from the calling
program to the subprogram. The manner in which any given argument is passed to the
subroutine depends upon the "BY" clause (if any) coded (or implied) for that argument,
as follows:

A. "BY REFERENCE" passes the address of the argument to the subprogram. If the
subprogram changes the contents of that argument, the change will be "visible"
to the calling program.

B. "BY CONTENT" passes the address of a copy of the argument to the subprogram.
If the subprogram changes the value of such an argument, the change only affects
the copy back in the calling program, not the original version.

C. "BY VALUE" passes the actual numeric value of the literal or identifiers contents
as the argument. This feature exists to provide compatibility with C, C++ and
other languages and would not normally be used when calling GNU COBOL sub-
programs. Only numeric literals or numeric data items should be passed in this
manner.

D. If an argument lacks a "BY" clause, the most-recently encountered "BY" specifica-
tion on that "CALL" statement will be assumed. If the first argument specified on
a "CALL" lacks a "BY" clause, "BY REFERENCE" will be assumed.

11. No more than 36 arguments may be passed to a subroutine, unless the GNU COBOL
compiler was built with a specifically different argument limit specified for it. If you
have access to the GNU COBOL source code, you may adjust this limit by changing the
value of the "COB_MAX_FIELD_PARAMS" in the "common.h" file (found in the "libcob"
folder) before you run "make" to build the compiler and run-time library.

12. The "RETURNING" clause allows you to specify a numeric data item into which the
subroutine should return a numeric value. If you use this clause on the "CALL", the
subroutine should include a "RETURNING" (see [PROCEDURE DIVISION RETURN-
ING], page 206) clause on its procedure division header. Of course, a subroutine may
pass a value of any kind back in any argument passed "BY REFERENCE".

13. The optional "ON OVERFLOW" and "NOT ON OVERFLOW" clauses (or "ON EXCEPTION"

and "NOT ON EXCEPTION" — they are interchangeable) may be used to detect and
react to the failure or success, respectively, of an attempt to "CALL" the subroutine.
Failure, in this context, is defined as the inability to either locate or load the object code
of the subroutine at execution time. See [ON OVERFLOW + NOT ON OVERFLOW],
page 239, for additional information.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 363

6.17.6. CANCEL� �
CANCEL Syntax
 	

CANCEL { literal-1 }...

~~~~~~ { identifier-1 }

————————————————————————————————————————

The "CANCEL" statement unloads the dynamically-loadable subprogram module containing
the entry-point specified as <literal-1> or <identifier-1> from memory.

1. If a dynamically-loadable module unloaded by the "CANCEL" statement is subsequently
re-executed, all data division storage for that module will once again be in it’s initial
state.

2. Whether the "CANCEL" statement actually physically unloads a dynamically-loaded
module or simply marks it as logically-unloaded depends on the use and value of the
"COB_PHYSICAL_CANCEL" run-time environment variable (see [Run Time Environment
Variables], page 522).

3 June 2014 Chapter 6 - PROCEDURE DIVISION



364 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.7. CLOSE� �
CLOSE Syntax
 	

CLOSE { file-name-1 [ { REEL|UNIT [ FOR REMOVAL ] } ] }...

~~~~~ { ~~~~ ~~~~ ~~~~~~~ }

{ WITH LOCK }

{ ~~~~ }

{ WITH NO REWIND }

~~ ~~~~~~

The "REEL", "LOCK" and "NO REWIND" clauses are syntactically recognized but are otherwise
non-functional, except for the "CLOSE...NO REWIND" statement, which will generate a file
status of 07 rather than the usual 00 (but take no other action).

————————————————————————————————————————

The "CLOSE" statement terminates the program’s access to the specified file(s).

1. The reserved words "FOR" and "WITH" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The reserved words "REEL" and "UNIT" are interchangeable.

3. The "CLOSE" statement may only be executed against files that have been successfully
opened.

4. A successful "CLOSE" will write any remaining unwritten record buffers to the file
(similar to an "UNLOCK" statement (see [UNLOCK], page 474)) and release any file
locks for the file, regardless of open mode. A closed file will then be no longer available
for subsequent I/O statements until it is once again OPENED.

5. When a "ORGANIZATION LINE SEQUENTIAL" (see [ORGANIZATION LINE SEQUEN-
TIAL], page 80) or "LINE ADVANCING" (see [LINE ADVANCING], page 11) file is
closed, a final delimiter sequence will be written to the file to signal the termination
point of the final data record in the file. This will only be necessary if the final record
written to the file was written with the "AFTER ADVANCING" (see [WRITE], page 479)
option.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 365

6.17.8. COMMIT� �
COMMIT Syntax
 	

COMMIT

~~~~~~

————————————————————————————————————————

The "COMMIT" statement performs an "UNLOCK" against every currently-open file, but does
not close any of the files.

See the "UNLOCK" statement (see [UNLOCK], page 474) for additional details.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



366 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.9. COMPUTE� �
COMPUTE Syntax
 	

COMPUTE { identifier-1

~~~~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

=|EQUAL arithmetic-expression-1

~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-COMPUTE ]

~~~~~~~~~~~

————————————————————————————————————————

The "COMPUTE" statement provides a means of easily performing complex arithmetic opera-
tions with a single statement, instead of using cumbersome and possibly confusing sequences
of "ADD", "SUBTRACT", "MULTIPLY" and "DIVIDE" statements. "COMPUTE" also allows the
use of exponentiation — an arithmetic operation for which no other statement exists in
COBOL.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The reserved word "EQUAL" is interchangeable with the use of "=".

3. Each <identifier-1> must be a numeric or numeric-edited data item.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 367

4. The optional "ROUNDED" (see [ROUNDED], page 240) clause available to each
<identifier-1> will control how non-integer results will be saved.

5. See [Arithmetic Expressions], page 215, for more information on arithmetic expressions.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined either as having an <identifier-3> with an
insufficient number of digit positions available to the left of any implied decimal point
or attempting to divide by zero. See [ON SIZE ERROR + NOT ON SIZE ERROR],
page 239, for additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



368 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.10. CONTINUE� �
CONTINUE Syntax
 	

CONTINUE

~~~~~~~~

————————————————————————————————————————

The "CONTINUE" statement is a no-operation statement that may be coded anywhere an
imperative statement (see [Imperative Statement], page 593) may be coded.

1. The "CONTINUE" statement has no effect on the execution of the program.

2. This statement (perhaps in combination with an appropriate comment or two) makes a
convenient "placeholder" — particularly in "ELSE" (see [IF], page 397) or "WHEN" (see
[EVALUATE], page 383) clauses where no code is currently expected to be needed, but
a place for code to handle the conditions in question is to be reserved in case it’s ever
needed.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 369

6.17.11. DELETE� �
DELETE Syntax
 	

DELETE file-name-1 RECORD

~~~~~~

[ INVALID KEY imperative-statement-1 ]

~~~~~~~

[ NOT INVALID KEY imperative-statement-2 ]

~~~ ~~~~~~~

[ END-DELETE ]

~~~~~~~~~~

————————————————————————————————————————

The "DELETE" statement logically deletes a record from a COBOL file.

1. The reserved words "KEY" and "RECORD" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The "ORGANIZATION" of <file-name-1> cannot be "ORGANIZATION LINE SEQUENTIAL"

(see [ORGANIZATION LINE SEQUENTIAL], page 80).

3. The <file-name-1> file cannot be a sort/merge work file (a file descibed using a "SD"

(see [File/Sort-Description], page 94)).

4. For files in the "SEQUENTIAL" access mode, the last input-output statement executed
against <file-name-1> prior to the execution of the "DELETE" statement must have been
a successfully executed sequential-format "READ" statement (see [Sequential READ],
page 428). That "READ" will therefore identify the record to be deleted.

5. If <file-name-1> is a "RELATIVE" file whose "ACCESS MODE" (see [ORGANIZATION
RELATIVE], page 82) is either "RANDOM" or "DYNAMIC", the record to be deleted is
the one whose relative record number is currently the value of the field specified as the
files "RELATIVE KEY" in it’s "SELECT" statement.

6. If <file-name-1> is an "INDEXED" file whose "ACCESS MODE" (see [ORGANIZATION
INDEXED], page 84) is "RANDOM" or "DYNAMIC", the record to be deleted is the one
whose primary key is currently the value of the field specified as the "RECORD KEY" in
the file’s "SELECT" statement.

7. The optional "INVALID KEY" and "NOT INVALID KEY" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to delete a record. See
[INVALID KEY + NOT INVALID KEY], page 238, for additional information.

8. No "INVALID KEY" or "NOT INVALID KEY" clause may be specified for a file who’s
"ACCESS MODE IS SEQUENTIAL".

3 June 2014 Chapter 6 - PROCEDURE DIVISION



370 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.12. DISPLAY

6.17.12.1. DISPLAY UPON device� �
DISPLAY UPON device Syntax
 	

DISPLAY { literal-1 }...

~~~~~~~ { identifier-1 }

[ UPON mnemonic-name-1 ]

~~~~

[ WITH NO ADVANCING ]

~~ ~~~~~~~~~

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

[ END-DISPLAY ]

~~~~~~~~~~~

————————————————————————————————————————

This format of the "DISPLAY" statement displays the specified identifier contents and/or
literal values on the system output device specified via the "UPON" clause.

1. The reserved words "ON" and "WITH" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. If no "UPON" clause is specified, "UPON CONSOLE" will be assumed. If the "UPON"

clause is specified, <mnemonic-name-1> must be one of the built-in output
device names "CONSOLE", "PRINTER", "STDERR", "STDOUT", "SYSERR", "SYSLIST",
"SYSLST" or "SYSOUT" or a mnemonic name assigned to one of those devices via the
"SPECIAL-NAMES" (see [SPECIAL-NAMES], page 62) paragraph.

When displaying upon the "STDERR" or "SYSERR" devices or to a <mnemonic-name-1>
attached to one of those two devices, the output will be written to output pipe #2,
which will normally cause the output to appear in the console output window. You
may, if desired, redirect that output to a file by appending "2> filename" to the end
of the command that executes the program. This applies to both Windows (any type)
or Unix versions of GNU COBOL.

When displaying upon the "CONSOLE", "PRINTER", "STDOUT", "SYSLIST", "SYSLST"
or "SYSOUT" devices or to a <mnemonic-name-1> attached to one of them, the output
will be written to output pipe #1, which will normally cause the output to appear
in the console output window. You may, if desired, redirect that output to a file by
appending "1> filename" or simply "> filename" to the end of the command that

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 371

executes the program. This applies to both Windows (any type) or Unix versions of
GNU COBOL.

3. The "NO ADVANCING" clause, if used, will suppress the carriage-return / line-feed se-
quence that is normally added to the end of any console display.

4. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to display output to the
specified device. See [ON EXCEPTION + NOT ON EXCEPTION], page 238, for
additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



372 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.12.2. DISPLAY UPON COMMAND-LINE� �
DISPLAY UPON COMMAND-LINE Syntax
 	

DISPLAY { literal-1 }...

~~~~~~~ { identifier-1 }

UPON { ARGUMENT-NUMBER|COMMAND-LINE }

~~~~ { ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ }

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

[ END-DISPLAY ]

~~~~~~~~~~~

————————————————————————————————————————

This form of the "DISPLAY" statement may be used to specify the command-line argu-
ment number to be retrieved by a subsequent "ACCEPT FROM ARGUMENT-VALUE" statement
(see [ACCEPT FROM COMMAND-LINE], page 339) or to specify a new value for the
command-line arguments themselves.

1. The reserved word "ON" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. By displaying a numeric integer value UPON "ARGUMENT-NUMBER", you will specify
which argument (by its relative number) will be retrieved by a subsequent "ACCEPT

FROM ARGUMENT-VALUE" statement.

3. Executing a "DISPLAY UPON COMMAND-LINE" will influence subsequent "ACCEPT FROM

COMMAND-LINE" statements (which will then return the value you displayed), but will
not influence subsequent "ACCEPT FROM ARGUMENT-VALUE" statements — these will
continue to return the original program execution parameters.

4. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to display output to
the specified item. See [ON EXCEPTION + NOT ON EXCEPTION], page 238, for
additional information.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 373

6.17.12.3. DISPLAY UPON ENVIRONMENT-NAME� �
DISPLAY UPON ENVIRONMENT-NAME Syntax
 	

DISPLAY { literal-1 }... UPON { ENVIRONMENT-VALUE }

~~~~~~~ { identifier-1 } ~~~~ { ~~~~~~~~~~~~~~~~~ }

{ ENVIRONMENT-NAME }

~~~~~~~~~~~~~~~~

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

[ END-DISPLAY ]

~~~~~~~~~~~

————————————————————————————————————————

This form of the "DISPLAY" statement can be used to create or modify environment vari-
ables.

1. The reserved word "ON" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. To create or change an environment variable will require two "DISPLAY" statements.
The following example sets the environment variable "MY ENV VAR" to a value of
"Demonstration Value":

DISPLAY "MY_ENV_VAR" UPON ENVIRONMENT-NAME

DISPLAY "Demonstration Value" UPON ENVIRONMENT-VALUE

3. Environment variables created or changed from within GNU COBOL programs will be
available to any sub-shell processes spawned by that program (i.e. "CALL ’SYSTEM’"

(see [SYSTEM], page 549)) but will not be known to the shell or console window that
started the GNU COBOL program.

4. Consider using "SET ENVIRONMENT" (see [SET ENVIRONMENT], page 445) in lieu of
"DISPLAY" to set environment variables as it is much simpler.

5. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to the failure or success, respectively, of an attempt to display output to
the specified item. See [ON EXCEPTION + NOT ON EXCEPTION], page 238, for
additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



374 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.12.4. DISPLAY screen-data-item� �
DISPLAY screen-data-item Syntax
 	

DISPLAY identifier-1 [ UPON CRT|CRT-UNDER ]

~~~~~~~ ~~~~ ~~~ ~~~~~~~~~

[ AT { | LINE NUMBER { integer-1 } | } ]

~~ { | ~~~~ { identifier-2 } | }

{ | | }

{ | COLUMN|POSITION NUMBER { integer-2 } | }

{ | ~~~~~~ ~~~~~~~~ { identifier-3 } | }

{ }

{ { integer-3 } }

{ { identifier-4 } }

[ WITH [ DISPLAY-Attribute ]...

~~~~

[ SCROLL { UP } [ { integer-4 } LINE|LINES ] ]

~~~~~~ { ~~ } { identifier-5 }

{ DOWN }

~~~~

[ TIMEOUT|TIME-OUT AFTER { integer-5 } ]

~~~~~~~ ~~~~~~~~ { identifier-6 }

[ CONVERSION ] ]

~~~~~~~~~~

[ ON EXCEPTION imperative-statement-1 ]

~~~~~~~~~

[ NOT ON EXCEPTION imperative-statement-2 ]

~~~ ~~~~~~~~~

[ END-DISPLAY ]

~~~~~~~~~~~

The "UPON CRT", "UPON CRT-UNDER" and "CONVERSION" clauses are syntactically recog-
nized but are otherwise non-functional. They are supported to provide compatibility with
COBOL source written for other COBOL implementations.

————————————————————————————————————————

This format of the "DISPLAY" statement presents data onto a formatted screen.

1. The reserved words "AFTER", "LINE", "LINES", "NUMBER" and "ON" are optional and
may be included, or not, at the discretion of the programmer. The presence or absence
of these words has no effect upon the program.

2. The reserved words "COLUMN" and "POSITION" are interchangeable.

3. The reserved words "LINE" and "LINES" are interchangeable.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 375

4. The reserved words "TIMEOUT" and "TIME-OUT" are interchangeable.

5. If <identifier-1> is defined in the "SCREEN SECTION" (see [SCREEN SECTION],
page 115), any "AT", <Attribute-Specification> and "WITH" clauses will be ignored.
All field definition, cursor positioning and screen control will occur as a result of the
screen section definition of <identifier-1>.

6. The following points apply if <identifier-1> is not defined in the screen section:

A. The purpose of the "AT" clause is to define where on the screen <identifier-1>
should be displayed. See [ACCEPT screen-data-item], page 342, for additional
information.

B. The purpose of the "WITH" clause is to define the visual attributes that should
be applied to <identifier-1> when it is displayed on the screen as well as other
presentation-control characteristics.

C. The following <Attribute-Specification> clauses are allowed on the "DISPLAY" state-
ment — these are the same as those allowed for "SCREEN SECTION" data items. A
particular <Attribute-Specification> may be used only once in any "DISPLAY":

• "BACKGROUND-COLOR" (see [BACKGROUND-COLOR], page 129)

• "BEEP" (see [BEEP], page 131), "BELL" (see [BELL], page 132)

• "BLANK" (see [BLANK], page 133)

• "BLINK" (see [BLINK], page 135)

• "ERASE" (see [ERASE], page 140)

• "FOREGROUND-COLOR" (see [FOREGROUND-COLOR], page 143)

• "HIGHLIGHT" (see [HIGHLIGHT], page 148)

• "LOWLIGHT" (see [LOWLIGHT], page 155)

• "OVERLINE" (see [OVERLINE], page 161)

• "REVERSE-VIDEO" (see [REVERSE-VIDEO], page 175)

• "UNDERLINE" (see [UNDERLINE], page 185)

D. See [ACCEPT screen-data-item], page 342, for additional information on the other
"WITH" clause options.

7. The optional "ON EXCEPTION" and "NOT ON EXCEPTION" clauses may be used to detect
and react to the failure or success, respectively, of the screen I/O attempt. See [ON
EXCEPTION + NOT ON EXCEPTION], page 238, for additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



376 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.13. DIVIDE

6.17.13.1. DIVIDE INTO� �
DIVIDE INTO Syntax
 	

DIVIDE { literal-1 } INTO { identifier-2

~~~~~~ { identifier-1 } ~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-DIVIDE ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "DIVIDE" statement will divide a numeric value (specified as a literal
or numeric data item) into one or more numeric data items, replacing the value in each of
those data items with the result(s).

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items and
<literal-1> must be a numeric literal.

3. A division operation will be performed for each <identifier-2>, in turn. Each of the
results of those divisions will be saved to the corresponding <identifier-2> data item(s).

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 377

4. Should any <identifier-2> be an integer numeric data item, the result computed when
that <identifier-2> is divided by <literal-1> or <identifier-1> will also be an integer —
any remainder from that division will be discarded.

5. The optional "ROUNDED" (see [ROUNDED], page 240) clause available to each
<identifier-2> will control how non-integer results will be saved.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being numeric truncation caused by an
<identifier-2> with an insufficient number of digit positions available to the left of any
implied decimal point, or an attempt to divide by zero. See [ON SIZE ERROR + NOT
ON SIZE ERROR], page 239, for additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



378 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.13.2. DIVIDE INTO GIVING� �
DIVIDE INTO GIVING Syntax
 	

DIVIDE { literal-1 } INTO { literal-2 } GIVING { identifier-3

~~~~~~ { identifier-1 } ~~~~ { identifier-2 } ~~~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

[ REMAINDER identifier-4 ] ~~~~~~~~~~

~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-DIVIDE ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "DIVIDE" statement will divide one numeric value (specified as a literal
or numeric data item) into another numeric value (also specified as a literal or numeric data
item) and will then replace the contents of one or more receiving data items with the results
of that division.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items while both
<identifier-3> and <identifier-4> must be numeric (edited or unedited) data items.

3. Both <literal-1> and <literal-2> must be numeric literals.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 379

4. If the "REMAINDER" clause is coded, there may be only one <identifier-3> specified.

5. The result obtained when the value of <literal-2> or <identifier-2> is divided by the
value of <literal-1> or <identifier-1> is computed; this result is then moved into each
<identifier-3>, in turn, applying the rules defined by the "ROUNDED" (see [ROUNDED],
page 240) clause (if any) for that <identifier-3> to the move.

6. If a "REMAINDER" clause is specified, the value of the one and only <identifier-3> (as
stated earlier, if "REMAINDER" is specified there may only be a single <identifier-3>
coded on the statement) after it was assigned a value according to the previous rule
will be multiplied by the value of <literal-1> or <identifier-1>; that result is then
subtracted from the value of <literal-2> or <identifier-2> and that result is the value
which is moved to <identifier-4>.

7. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point, or an
attempt to divide by zero. See [ON SIZE ERROR + NOT ON SIZE ERROR], page 239,
for additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



380 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.13.3. DIVIDE BY GIVING� �
DIVIDE BY GIVING Syntax
 	

DIVIDE { literal-1 } BY { literal-2 } GIVING { identifier-3

~~~~~~ { identifier-1 } ~~ { identifier-2 } ~~~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

[ REMAINDER identifier-4 ] ~~~~~~~~~~

~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-DIVIDE ]

~~~~~~~~~~

————————————————————————————————————————

This format of the "DIVIDE" statement will divide one numeric value (specified as a literal
or numeric data item) into another numeric value (also specified as a literal or numeric data
item) and will then replace the contents of one or more receiving data items with the results
of that division.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items while both
<identifier-3> and <identifier-4> must be numeric (edited or unedited) data items.

3. Both <literal-1> and <literal-2> must be numeric literals.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 381

4. If the "REMAINDER" clause is coded, there may be only one <identifier-3> specified.

5. The result obtained when the value of <literal-1> or <identifier-1> is divided by the
value of <literal-2> or <identifier-2> is computed; this result is then moved into each
<identifier-3>, in turn, applying the rules defined by the "ROUNDED" (see [ROUNDED],
page 240) clause (if any) for that <identifier-3> to the move.

6. If a "REMAINDER" clause is specified, the value of the one and only <identifier-3> (as
stated earlier, if "REMAINDER" is specified there may only be a single <identifier-3>
coded on the statement) after it was assigned a value according to the previous rule
will be multiplied by the value of <literal-2> or <identifier-2>; that result is then
subtracted from the value of <literal-1> or <identifier-1> and that result is the value
which is moved to <identifier-4>.

7. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point, or an
attempt to divide by zero. See [ON SIZE ERROR + NOT ON SIZE ERROR], page 239,
for additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



382 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.14. ENTRY� �
ENTRY Syntax
 	

ENTRY literal-1 [ USING ENTRY-Argument... ]

~~~~~ ~~~~~

————————————————————————————————————————� �
ENTRY-Argument Syntax
 	

[ BY { REFERENCE } ] identifier-1

{ ~~~~~~~~~ }

{ CONTENT }

{ ~~~~~~~ }

{ VALUE }

~~~~~

————————————————————————————————————————

The "ENTRY" statement is used to define an alternate entry-point into a subroutine, along
with the arguments that subroutine will be expecting.

1. The reserved word "BY" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. You may not use an "ENTRY" statement in a nested subprogram, nor may you use it in
any form of user-defined function.

3. The "USING" clause defines the arguments the subroutine entry-point supports. This
list of arguments must match up against the "USING" clause of any "CALL" statement
that will be invoking the subroutine using this entry-point.

4. Each <ENTRY-Argument> specified on the "ENTRY" statement must be defined in the
linkage section of the subroutine in which the "ENTRY" statement exists.

5. The <literal-1> value will specify the entry-point name of the subroutine. It must be
specified exactly on "CALL" statements (with regard to the use of upper- and lower-case
letters) as it is specified on the "ENTRY" statement.

6. The meaning of "REFERENCE", "CONTENT" and "VALUE" are the same as the equivalent
specifications on the "CALL" statement (see [CALL], page 359). Whatever specification
will be used for an argument on the "CALL" to this entry-point should match the
specification used in the corresponding <ENTRY-Argument>. The same rules regarding
the presence or absence of a "BY" clause on a "CALL" statement apply to the presence
or absence of a "BY" clause on the corresponding argument of the "ENTRY" statement.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 383

6.17.15. EVALUATE� �
EVALUATE Syntax
 	

EVALUATE Selection-Subject-1 [ ALSO Selection-Subject-2 ]...

~~~~~~~~ ~~~~

{ { WHEN Selection-Object-1 [ ALSO Selection-Object-2 ] }...

~~~~ ~~~~

[ imperative-statement-1 ] }...

[ WHEN OTHER

~~~~ ~~~~~

imperative-statement-other ]

[ END-EVALUATE ]

~~~~~~~~~~~~

————————————————————————————————————————� �
EVALUATE Selection Subject Syntax
 	

{ TRUE }

{ ~~~~ }

{ FALSE }

{ ~~~~~ }

{ expression-1 }

{ identifier-1 }

{ literal-1 }

————————————————————————————————————————� �
EVALUATE Selection Object Syntax
 	

{ ANY }

{ ~~~ }

{ TRUE }

{ ~~~~ }

{ FALSE }

{ ~~~~~ }

{ partial-expression-1 }

{ }

{ { expression-2 } [ THRU|THROUGH { expression-3 } ] }

{ { identifier-2 } ~~~~ ~~~~~~~ { identifier-3 } }

{ { literal-2 } { literal-3 } }

————————————————————————————————————————

3 June 2014 Chapter 6 - PROCEDURE DIVISION



384 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

The "EVALUATE" statement provides a means of defining processing that should take place
under any number of mutually-exclusive conditions.

1. The reserved words "THRU" and "THROUGH" are interchangeable.

2. There must be at least one "WHEN" clause (in addition to any "WHEN OTHER" clause)
specified on any "EVALUATE" statement.

3. There must be at least one <Selection-Subject> specified on the "EVALUATE" state-
ment. Any number of additional <Selection-Subject> clauses may be specified, using
the "ALSO" reserved word to separate each from the prior.

4. Each "WHEN" clause (other than the "WHEN OTHER" clause, if any) must have the same
number of <Selection-Object> clauses as there are <Selection-Subject> clauses.

5. When using "THRU", the values on both sides of the "THRU" must be the same class
(both numeric, both alphanumeric, etc.).

6. A <partial-expression> is one of the following:

A. A Class Condition without a leading <identifier-1> (see [Class Conditions],
page 219).

B. A Sign Condition without a leading <identifier-1> (see [Sign Conditions],
page 221).

C. A Relation Condition with nothing to the left of the relational operator (see
[Relation Conditions], page 223).

7. At execution time, each <Selection-Subject> on the "EVALUATE" statement will have
its value matched against that of the corresponding <Selection-Object> on a "WHEN"

clause, in turn, until:

A. A "WHEN" clause has each of its <Selection-Object>(s) successfully matched by the
corresponding <Selection-Subject>; this will be referred to as the ’Selected WHEN
clause’.

B. The complete list of "WHEN" clauses (except for the "WHEN OTHER" clause, if any)
has been exhausted. In this case, there is no ’Selected WHEN Clause’.

8. If a ’Selected WHEN Clause’ was identified:

A. The <imperative-statement-1> (see [Imperative Statement], page 593) immediately
following the ’Selected WHEN Clause’ will be executed. If the ’Selected WHEN
Clause’ is lacking an <imperative-statement-1>, the first <imperative-statement-1>
found after any following "WHEN" clause will be executed.

B. Once the <imperative-statement-1> has been executed, or no <imperative-
statement-1> was found anywhere after the ’Selected WHEN Clause’, control
will proceed to the statement following the "END-EVALUATE" or, if there is no
"END-EVALUATE", the first statement that follows the next period. If, however,
the <imperative-statement-1> included a "GO TO" statement, and that "GO TO"

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 385

was executed, then control will transfer to the procedure named on the "GO TO"

instead.

9. If no ’Selected WHEN Clause’ was identified:

A. The "WHEN OTHER" clause’s <imperative-statement-other> will be executed, if such
a clause was coded.

B. Control will then proceed to the statement following the "END-EVALUATE" or
the first statement that follows the next period if there is no "END-EVALUATE".
If,however, the <imperative-statement-other> included a "GO TO" statement, and
that "GO TO" was executed, then control will transfer to the procedure named on
the "GO TO" instead.

10. In order for a <Selection-Subject> to match the corresponding <Selection-Object> on a
"WHEN" clause, at least one of the following must be true:

A. The <Selection-Object> is "ANY"

B. The implied Relation Condition "<Selection-Subject> = <Selection

Object>" is TRUE — See [Relation Conditions], page 223, for the rules on how
the comparison will be made.

C. The value of the <Selection-Subject> falls within the range of values specified by
the "THRU" clause of the <Selection-Object>

D. If the <Selection-Object> is a <partial-expression>, then the conditional expres-
sion that would be represented by coding "<Selection-Subject> <Selection-

Object>" evaluates to TRUE

11. Here is a sample program that illustrates the EVALUATE statement.

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMOEVALUATE.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Test-Digit PIC 9(1).

88 Digit-Is-Odd VALUE 1, 3, 5, 7, 9.

88 Digit-Is-Prime VALUE 1, 3, 5, 7.

PROCEDURE DIVISION.

P1. PERFORM UNTIL EXIT

DISPLAY "Enter a digit (0 Quits): "

WITH NO ADVANCING

ACCEPT Test-Digit

IF Test-Digit = 0

EXIT PERFORM

END-IF

EVALUATE Digit-Is-Odd ALSO Digit-Is-Prime

WHEN TRUE ALSO FALSE

DISPLAY Test-Digit " is ODD"

WITH NO ADVANCING

3 June 2014 Chapter 6 - PROCEDURE DIVISION



386 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

WHEN TRUE ALSO TRUE

DISPLAY Test-Digit " is PRIME"

WITH NO ADVANCING

WHEN FALSE ALSO ANY

DISPLAY Test-Digit " is EVEN"

WITH NO ADVANCING

END-EVALUATE

EVALUATE Test-Digit

WHEN < 5

DISPLAY " and it’s small too"

WHEN < 8

DISPLAY " and it’s medium too"

WHEN OTHER

DISPLAY " and it’s large too"

END-EVALUATE

END-PERFORM

DISPLAY "Bye!"

STOP RUN

.

Console output when run (user input follows the colons on the prompts for input):

Enter a digit (0 Quits): 1

1 is PRIME and it’s small too

Enter a digit (0 Quits): 2

2 is EVEN and it’s small too

Enter a digit (0 Quits): 3

3 is PRIME and it’s small too

Enter a digit (0 Quits): 4

4 is EVEN and it’s small too

Enter a digit (0 Quits): 5

5 is PRIME and it’s medium too

Enter a digit (0 Quits): 6

6 is EVEN and it’s medium too

Enter a digit (0 Quits): 7

7 is PRIME and it’s medium too

Enter a digit (0 Quits): 8

8 is EVEN and it’s large too

Enter a digit (0 Quits): 9

9 is ODD and it’s large too

Enter a digit (0 Quits): 0

Bye!

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 387

6.17.16. EXIT� �
EXIT Syntax
 	

EXIT [ { PROGRAM } ]

~~~~ { ~~~~~~~ }

{ FUNCTION }

{ ~~~~~~~~ }

{ PERFORM [ CYCLE ] }

{ ~~~~~~~ ~~~~~ }

{ SECTION }

{ ~~~~~~~ }

{ PARAGRAPH }

~~~~~~~~~

————————————————————————————————————————

The "EXIT" statement is a multi-purpose statement; it may provide a common end point
for a series of procedures, exit an inline PERFORM, paragraph or section or it may mark
the logical end of a subprogram, returning control back to the calling program.

1. The "EXIT PROGRAM" statement is not legal anywhere within a user-defined function.

2. The "EXIT FUNCTION" statement cannot be used anywhere within a subroutine.

3. Neither "EXIT PROGRAM" nor "EXIT FUNCTION" may be used within a "USE GLOBAL"

routine in "DECLARATIVES" (see [DECLARATIVES], page 208).

4. The following points describe the "EXIT" statement with none of the optional clauses:

A. When this form of an "EXIT" statement is used, it must be the only statement in
the procedure (paragraph or section) in which it occurs.

B. This usage of the "EXIT" statement simply provides a common "GO TO" end
point for a series of procedures, as may be seen in the following example:

01 Switches.

05 Input-File-Switch PIC X(1).

88 EOF-On-Input-File VALUE Y FALSE N.

...

SET EOF-On-Input-File TO FALSE.

PERFORM 100-Process-A-Transaction THRU 199-Exit

UNTIL EOF-On-Input-File.

...

100-Process-A-Transaction.

READ Input-File AT END

SET EOF-On-Input-File TO TRUE

GO TO 199-Exit

END-READ.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



388 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

IF Input-Rec of Input-File = SPACES

GO TO 199-Exit *> IGNORE BLANK RECORDS!

END-IF.

<<<process the record just read>

>>

199-Exit.

EXIT.

C. In this case, the "EXIT" statement takes no other run-time action.

5. The following points apply to the "EXIT PARAGRAPH" and "EXIT SECTION" statements:

A. If an "EXIT PARAGRAPH" statement or "EXIT SECTION" statement resides in a
paragraph within the scope of a procedural "PERFORM" (see [Procedural PER-
FORM], page 422), control will be returned back to the "PERFORM" for evaluation
of any "TIMES", "VARYING" and/or "UNTIL" clauses.

B. If an "EXIT PARAGRAPH" statement or "EXIT SECTION" statement resides outside
the scope of a procedural "PERFORM", control simply transfers to the first exe-
cutable statement in the next paragraph ("EXIT PARAGRAPH") or section ("EXIT
SECTION").

C. The following shows how the previous example could have been coded without a
"GO TO" by utilizing an "EXIT PARAGRAPH" statement.

01 Switches.

05 Input-File-Switch PIC X(1).

88 EOF-On-Input-File VALUE Y FALSE N.

...

SET EOF-On-Input-File TO FALSE.

PERFORM 100-Process-A-Transaction

UNTIL EOF-On-Input-File.

...

100-Process-A-Transaction.

READ Input-File AT END

SET EOF-On-Input-File TO TRUE

EXIT PARAGRAPH

END-READ.

IF Input-Rec of Input-File = SPACES

EXIT PARAGRAPH *> IGNORE BLANK RECORDS!

END-IF.

<<<process the record just read>

>>

6. The following points apply to the "EXIT PERFORM" and "EXIT PERFORM CYCLE" state-
ments:

A. The "EXIT PERFORM" and "EXIT PERFORM CYCLE" statements are intended to be
used in conjunction with an inline "PERFORM" statement (see [Inline PERFORM],
page 424).

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 389

B. An "EXIT PERFORM CYCLE" statement will terminate the current iteration of the
inline "PERFORM", giving control to any "TIMES", "VARYING" and/or "UNTIL"

clauses for them to determine if another cycle needs to be performed.

C. An "EXIT PERFORM" statement will terminate the inline PERFORM outright,
transferring control to the first statement following the "END-PERFORM" (if there is
one) or to the next sentence following the "PERFORM" if there is no "END-PERFORM".

D. This last example shows the final modification to the previous examples by us-
ing an inline "PERFORM" along with "EXIT PERFORM" and "EXIT PERFORM CYCLE"

statements:

PERFORM FOREVER

READ Input-File AT END

EXIT PERFORM

END-READ

IF Input-Rec of Input-File = SPACES

EXIT PERFORM CYCLE *> IGNORE BLANK RECORDS!

END-IF

<<<process the record just read>

>>

END PERFORM

7. The following points apply to the "EXIT PROGRAM" and "EXIT FUNCTION" statements:

A. The "EXIT PROGRAM" and "EXIT FUNCTION" statements terminate the execution
of a subroutine (i.e. a program that has been CALLed by another) or user-defined
function, respectively, returning control back to the calling program.

B. An "EXIT PROGRAM" statement returns control back to the statement following
the "CALL" (see [CALL], page 359) of the subprogram. An "EXIT FUNCTION"

statement returns control back to the processing of the statement in the calling
program that invoked the user-defined function.

C. If executed by a main program, neither the "EXIT PROGRAM" nor "EXIT FUNCTION"

statements will take any action.

D. The COBOL2002 standard has made a common extension to the COBOL language
— the "GOBACK" statement (see [GOBACK], page 393) — a standard language
element; the "GOBACK" statement should be strongly considered as the preferred
alternative to both "EXIT PROGRAM" and "EXIT FUNCTION" for new subprograms.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



390 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.17. FREE� �
FREE Syntax
 	

FREE { [ ADDRESS OF ] identifier-1 }...

~~~~ ~~~~~~~

————————————————————————————————————————

The "FREE" statement releases memory previously allocated to the program by the
"ALLOCATE" statement (see [ALLOCATE], page 356).

1. The "ADDRESS OF" clause is optional and may be included, or not, at the discretion
of the programmer. The presence or absence of this clause has no effect upon the
program.

2. <identifier-1> must have a "USAGE" (see [USAGE], page 186) of "POINTER", or it must
be an 01-level data item with the "BASED" (see [BASED], page 130) attribute.

3. If <identifier-1> is a "USAGE POINTER" data item and it contains a valid address, the
"FREE" statement will release the memory block the pointer references. In addition,
any "BASED" data items that the pointer was used to provide an address for will become
un-based and therefore un-usable. If <identifier-1> did not contain a valid address, no
action will be taken.

4. If <identifier-1> is a "BASED" data item and that data item is currently based (meaning
it currently has memory allocated to it), its memory is released and <identifier-1> will
become un-based and therefore un-usable. If <identifier-1> was not based, no action
will be taken.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 391

6.17.18. GENERATE� �
GENERATE Syntax
 	

GENERATE { report-name-1 }

~~~~~~~~ { identifier-1 }

————————————————————————————————————————

The "GENERATE" statement presents data to a report.

1. The following points apply when <identifier-1> is specified:

A. <identifier-1> must be the name of a "DETAIL" (see [RWCS Lexicon], page 483)
report group.

B. If necessary, <identifier-1> may be qualified with a report name.

C. The file in whose "FD" a "REPORT" clause exists for the report in which <identifier-
1> is a detail group must be opened for "OUTPUT" or "EXTEND" at the time the
"GENERATE" is executed. See [OPEN], page 420, for information on file open modes.

D. The report in which <identifier-1> is a "DETAIL" group must have been successfully
initiated via the "INITIATE" statement (see [INITIATE], page 404) and not yet
terminated via the "TERMINATE" statement (see [TERMINATE], page 472) at the
time the "GENERATE" is executed.

E. If at least one "GENERATE" statement of this form is executed against a report, the
report is said to be a ’detail report ’. If no "GENERATE" statements of this form are
executed against a report, the report is said to be a ’summary report ’.

2. The following points apply when <report-name-1> is specified:

A. <report-name-1> must be the name of a report having an "RD" defined for it in
the report section.

B. There must be at least one "CONTROL" (see [RWCS Lexicon], page 483) group
defined for <report-name-1>.

C. There cannot be more than one "DETAIL" group defined for <report-name-1>.

D. The file in whose "FD" a "REPORT <report-name-1>" clause exists must be open
for "OUTPUT" or "EXTEND" at the time the GENERATE is executed.

E. <report-name-1> must have been successfully initiated (via "INITIATE <report-
name-1>") and not yet terminated (via TERMINATE) at the time the "GENERATE"
is executed. See [OPEN], page 420, for information on file open modes.

F. The "DETAIL" group which is defined for <report-name-1> will be processed but
will not actually be presented to any report page. This will allow summary pro-
cessing to take place. If all "GENERATE" statements are of this form, the report

3 June 2014 Chapter 6 - PROCEDURE DIVISION



392 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

is said to be a ’summary report ’. If at least one "GENERATE <identifier-1>" is
executed, the report is considered to be a ’detail report ’.

3. When the first "GENERATE" statement for a report is executed, the contents of all
control fields are saved so they may be referenced during the processing of subsequent
"GENERATE" statements.

4. When, during the processing of a subsequent "GENERATE", it is determined that a
control field has changed value (ie. a control break has occurred), the appropriate
control footing and control heading processing will take place and a snapshot of the
current values of all control fields will again be saved.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 393

6.17.19. GOBACK� �
GOBACK Syntax
 	

GOBACK

~~~~~~

————————————————————————————————————————

The "GOBACK" statement is used to logically terminate an executing program.

1. If executed within a subprogram (i.e. a subroutine or user-defined function), "GOBACK"
behaves like an "EXIT PROGRAM" or "EXIT FUNCTION" statement, respectively.

2. If executed within a main program, "GOBACK" will act as a "STOP RUN" statement.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



394 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.20. GO TO

6.17.20.1. Simple GO TO� �
Simple GO TO Syntax
 	

GO TO procedure-name-1

~~

————————————————————————————————————————

This form of the "GO TO" statement unconditionally transfers control in a program to the
first executable statement within the specified <procedure-name-1>.

1. The reserved word "TO" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. If this format of the "GO TO" statement appears in a consecutive sequence of imperative
statements (see [Imperative Statement], page 593) within a sentence, it must be the
final statement in the sentence.

3. If a "GO TO" is executed within the scope of. . .

A. ...an inline "PERFORM" (see [PERFORM], page 422), the "PERFORM" is terminated
as control of execution transfers to <procedure-name-1>.

B. ...a procedural "PERFORM" (see [PERFORM], page 422), and <procedure-name-1>
lies outside the scope of that "PERFORM", the "PERFORM" is terminated as control
of execution transfers to <procedure-name-1>.

C. ...a "MERGE" statement (see [MERGE], page 411) "OUTPUT PROCEDURE" or within
the scope of either an "INPUT PROCEDURE" or "OUTPUT PROCEDURE" of a "SORT"

statement (see [File-Based SORT], page 453), and <procedure-name-1> lies outside
the scope of that procedure, the "SORT" or "MERGE" operation is terminated as
control of execution transfers to <procedure-name-1>. Any sorted or merged data
accumu7lated to that point is lost.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 395

6.17.20.2. GO TO DEPENDING ON� �
GO TO DEPENDING ON Syntax
 	

GO TO procedure-name-1...

~~

DEPENDING ON identifier-1

~~~~~~~~~

————————————————————————————————————————

This form of the "GO TO" statement will transfer control to any one of a number of specified
procedure names depending on the numeric value of the identifier specified on the statement.

1. The reserved word "TO" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The "PICTURE" (see [PICTURE], page 162) and/or "USAGE" (see [USAGE], page 186)
of the specified <identifier-1> must be such as to define it as a numeric, unedited,
preferably unsigned integer data item.

3. If the value of <identifier-1> has the value 1, control will be transferred to the 1st
specified procedure name. If the value is 2, control will transfer to the 2nd procedure
name, and so on.

If control of execution is transferred to a procedure named on the statement, and the
"GO TO" is executed within the scope of. . .

A. ...an inline "PERFORM" (see [PERFORM], page 422), the "PERFORM" is terminated
as control of execution transfers to the procedure named on the statement.

B. ...a procedural "PERFORM" (see [PERFORM], page 422), and <procedure-name-1>
lies outside the scope of that "PERFORM", the "PERFORM" is terminated as control
of execution transfers to the procedure named on the statement.

C. ...a "MERGE" statement (see [MERGE], page 411) "OUTPUT PROCEDURE" or within
the scope of either an "INPUT PROCEDURE" or "OUTPUT PROCEDURE" of a "SORT"

statement (see [File-Based SORT], page 453), and <procedure-name-1> lies outside
the scope of that procedure, the "SORT" or "MERGE" operation is terminated as
control of execution transfers to the procedure named on the statement. Any
sorted or merged data accumu7lated to that point is lost.

4. If the value of <identifier-1> is less than 1 or exceeds the total number of procedure
names specified on the statement, control will simply fall thru into the next statement
following the "GO TO".

5. The following example shows how "GO TO ... DEPENDING ON" may be used in a
real application situation, and compares it against an alternative — "EVALUATE" (see
[EVALUATE], page 383).

GO TO DEPENDING ON Example Equivalent EVALUATE Example

3 June 2014 Chapter 6 - PROCEDURE DIVISION



396 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

================================= =================================

GO TO EVALUATE Acct-Type

ACCT-TYPE-1 WHEN 1

ACCT-TYPE-2 <<< Handle Acct Type 1 >>>

ACCT-TYPE-3 WHEN 2

DEPENDING ON Acct-Type. <<< Handle Acct Type 2 >>>

<<< Invalid Acct Type >>> WHEN 3

GO TO All-Done. <<< Handle Acct Type 3 >>>

Acct-Type-1. WHEN OTHER

<<< Handle Acct Type 1 >>> <<< Invalid Acct Type >>>

GO TO All-Done. END-EVALUATE.

Acct-Type-2.

<<< Handle Acct Type 2 >>>

GO TO All-Done.

Acct-Type-3.

<<< Handle Acct Type 3 >>>

All-Done.

6. Current programming philosophy would prefer the use of the "EVALUATE" statement
to that of this form of the "GO TO" statement.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 397

6.17.21. IF� �
IF Syntax
 	

IF conditional-expression

~~

THEN { imperative-statement-1 }

{ NEXT SENTENCE }

~~~~ ~~~~~~~~

[ ELSE { imperative-statement-2 } ]

~~~~ { NEXT SENTENCE }

~~~~ ~~~~~~~~

[ END-IF ]

~~~~~~

————————————————————————————————————————

The "IF" statement is used to conditionally execute an imperative statement (see
[Imperative Statement], page 593) or to select one of two different imperative statements
to execute based upon the TRUE/FALSE value of a conditional expression.

1. The reserved word "THEN" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. You cannot use both "NEXT SENTENCE" and the "END-IF" scope terminator in the same
"IF" statement.

3. If <conditional-expression> evaluates to TRUE, <imperative-statement-1> will be ex-
ecuted regardless of whether or not an "ELSE" clause is present. Once <imperative-
statement-1> has been executed, control falls into the first statement following the
"END-IF" or to the first statement of the next sentence if there is no "END-IF" clause.

4. If the optional "ELSE" clause is present and conditional-expression evaluates to false,
then (and only then) <imperative-statement-2> will be executed. Once <imperative-
statement-2> has been executed, control falls into the first statement following the
"END-IF" or to the first statement of the next sentence if there is no "END-IF" clause.

5. The clause "NEXT SENTENCE" may be substituted for either imperative-statement, but
not both. If control reaches a "NEXT SENTENCE" clause due to the truth or falsehood of
<conditional-expression>, control will be transferred to the first statement of the next
sentence found in the program (the first statement after the next period).

"NEXT SENTENCE" was needed for COBOL programs that were coded according
to pre-1985 standards that wish to nest one "IF" statement inside another. See
[Use of VERB/END-VERB Constructs], page 229, for an explanation of why "NEXT

SENTENCE" was necessary.

Programs coded for 1985 (and beyond) standards don’t need it, instead using the ex-
plicit scope-terminator "END-IF" to inform the compiler where <imperative-statement-

3 June 2014 Chapter 6 - PROCEDURE DIVISION



398 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

2> (or <imperative-statement-1> if there is no "ELSE" clause coded) ends. New GNU
COBOL programs should be coded to use the "END-IF" scope terminator for "IF"

statements. See [Use of VERB/END-VERB Constructs], page 229, for additional in-
formation.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 399

6.17.22. INITIALIZE� �
INITIALIZE Syntax
 	

INITIALIZE|INITIALISE identifier-1...

~~~~~~~~~~ ~~~~~~~~~~

[ WITH FILLER ]

~~~~~~

[ { category-name-1 } TO VALUE ]

{ ALL } ~~~~~

~~~

[ THEN REPLACING { category-name-2 DATA BY

~~~~~~~~~ ~~

[ LENGTH OF ] { literal-1 } }... ]

~~~~~~ { identifier-1 }

[ THEN TO DEFAULT ]

~~~~~~~

————————————————————————————————————————

The "INITIALIZE" statement initializes each <identifier-1> with certain specific values,
depending upon the options specified.

1. The reserved words "DATA", "OF", "THEN", "TO" and "WITH" are optional and may be
included, or not, at the discretion of the programmer. The presence or absence of these
words has no effect upon the program.

2. The reserved words "INITIALIZE" and "INITIALISE" are interchangeable.

3. The "WITH FILLER", "REPLACING" and "DEFAULT" clauses are meaningful only if
<identifier-1> is a group item. They are accepted if it’s an elementary item, but will
serve no purpose. The "VALUE" clause is meaningful in both cases.

4. A <category-name-1> and/or <category-name-2> may be any of the following:

"ALPHABETIC"

The "PICTURE" (see [PICTURE], page 162) of the data item only contains
"A" symbols.

"ALPHANUMERIC"

The "PICTURE" of the data item contains only "X" or a combination of "A"
and "9" symbols.

"ALPHANUMERIC-EDITED"

The "PICTURE" of the data item contains only "X" or a combination of "A"
and "9" symbols plus at least one "B", "0" (zero) or "/" symbol.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



400 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

"NUMERIC"

The data item is one that is described with a pictureless "USAGE" (see
[USAGE], page 186) or has a "PICTURE" composed of nothing but "P",
"9", "S" and "V" symbols.

"NUMERIC-EDITED"

The "PICTURE" of the data item contains nothing but the symbol "9" and
at least one of the editing symbols "$", "+", "-", "CR", "DB", ".", ",",
"*" or "Z".

"NATIONAL"

The data item is one containing nothing but the "N" symbol.

"NATIONAL-EDITED"

The data item contains nothing but "N", "B", "/" and "0" symbols.

5. From the sequence of <identifier-1> data items specified on the "INITIALIZE" state-
ment, a list of initializable fields referred to as the field list in the remainder of this
section, will include:

A. Every <identifier-1> that is an elementary item, including any that may have the
"REDEFINES" (see [REDEFINES], page 172) clause in their descriptions.

B. Every non-FILLER elementary item subordinate to <identifier-1>, provided that
elementary item neither contains a "REDEFINES" clause in its definition nor belongs
to a group item subordinate to <identifier-1> which contains a "REDEFINES" clause
in its definition.

C. If the optional "WITH FILLER" clause is included on the "INITIALIZE" statement,
then every FILLER elementary item subordinate to each <identifier-1> will be
included as well, provided that elementary item neither contains a "REDEFINES"

clause in its definition nor belongs to a group item subordinate to <identifier-1>
which contains a "REDEFINES" clause in its definition..

6. Once a field list has been determined, each item in that field list will be initialized as if
an individual "MOVE" (see [MOVE], page 414) statement to that effect had been coded.
The rules for initialization are as follows:

7. If no "VALUE", "REPLACING" or "DEFAULT" clauses are coded, each member of the field
list will be initialized as if the figurative constant "ZERO" (if the field list item is numeric
or numeric-edited) or "SPACES" (otherwise) were being moved to it.

8. If a "VALUE" clause is specified on the "INITIALIZE" statement, each qualifying member
of the field list having a compile-time "VALUE" (see [VALUE], page 197) specified in
it’s definition will be initialized to that value. Field list members with "VALUE" clauses
will qualify for this treatment as follows:

A. If the "ALL" keyword was specified on the "VALUE" clause, all members of the field
list with "VALUE" clauses will qualify.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 401

B. If <category-name-1> is specified instead of "ALL", only those members of the field
list with "VALUE" clauses that also meet the criteria set down for the specified
<category-name> (see the list above) will qualify.

C. If you need to apply "VALUE" initialization to multiple <category-name-1> values,
you will need to use multiple "INITIALIZE" statements.

9. If a "REPLACING" clause is specified on the "INITIALIZE" statement, each qualifying
member of the field list that was not already initialized by a "VALUE" clause, if any,
will be initialized to the specified <literal-1> or <identifier-1> value.

Only those as-yet uninitialized list members meeting the criteria set forth for the spec-
ified <category-name-2> will qualify for this initialization.

If you need to apply "REPLACING" initialization to multiple <category-name-2> values,
you may repeat the syntax after the reserved word "REPLACING", as necessary.

10. If a "DEFAULT" clause is specified, any remaining uninitialized members of the field list
will be initialized according to the default for their class (numeric and numeric-edited
are initialized to ZERO, all others are initialized to SPACES).

11. The following example may help your understanding of how the "INITIALIZE" state-
ment works. The sample code makes use of the COBDUMP program to dump the
storage that is (or is not) being initialized. See Section “COBDUMP” in GNU COBOL
Sample Programs, for a source and cross-reference listing of the COBDUMP program.

IDENTIFICATION DIVISION.

PROGRAM-ID. DemoInitialize.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Item-1.

05 I1-A VALUE ALL ’*’.

10 FILLER PIC X(1).

10 I1-A-1 PIC 9(1) VALUE 9.

05 I1-B USAGE BINARY-CHAR.

05 I1-C PIC A(1) VALUE ’C’.

05 I1-D PIC X/X VALUE ’ZZ’.

05 I1-E OCCURS 2 TIMES PIC 9.

PROCEDURE DIVISION.

000-Main.

DISPLAY "MOVE HIGH-VALUES TO Item-1"

PERFORM 100-Init-Item-1

CALL "COBDUMP" USING Item-1

DISPLAY " "

DISPLAY "INITIALIZE Item-1"

INITIALIZE Item-1

CALL "COBDUMP" USING Item-1

PERFORM 100-Init-Item-1

3 June 2014 Chapter 6 - PROCEDURE DIVISION



402 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

DISPLAY " "

DISPLAY "INITIALIZE Item-1 WITH "FILLER"

"

MOVE HIGH-VALUES TO Item-1

INITIALIZE Item-1 WITH "FILLER"

CALL "COBDUMP" USING Item-1

PERFORM 100-Init-Item-1

DISPLAY " "

DISPLAY "INITIALIZE Item-1 ALL TO VALUE"

MOVE HIGH-VALUES TO Item-1

INITIALIZE Item-1 ALPHANUMERIC TO VALUE

CALL "COBDUMP" USING Item-1

PERFORM 100-Init-Item-1

DISPLAY " "

DISPLAY "INITIALIZE Item-1 REPLACING NUMERIC BY 1"

MOVE HIGH-VALUES TO Item-1

INITIALIZE Item-1 REPLACING NUMERIC BY 1

CALL "COBDUMP" USING Item-1

PERFORM 100-Init-Item-1

DISPLAY " "

STOP RUN

.

100-Init-Item-1.

MOVE HIGH-VALUES TO Item-1

.

When executed, this program produces the following output:

MOVE HIGH-VALUES TO Item-1

<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->

======== ==== =============================================== ================

00404058 1 FF FF FF FF FF FF FF FF FF .........

INITIALIZE Item-1

<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->

======== ==== =============================================== ================

00404058 1 FF 30 00 20 20 2F 20 30 30 .0. / 00

INITIALIZE Item-1 WITH "FILLER"

<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->

======== ==== =============================================== ================

00404058 1 20 30 00 20 20 2F 20 30 30 0. / 00

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 403

INITIALIZE Item-1 ALL TO VALUE

<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->

======== ==== =============================================== ================

00404058 1 2A 2A FF 43 5A 5A 20 FF FF **.CZZ ..

INITIALIZE Item-1 REPLACING NUMERIC BY 1

<-Addr-> Byte <---------------- Hexadecimal ----------------> <---- Char ---->

======== ==== =============================================== ================

00404058 1 FF 31 01 FF FF FF FF 31 31 .1.....11

3 June 2014 Chapter 6 - PROCEDURE DIVISION



404 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.23. INITIATE� �
INITIATE Syntax
 	

INITIATE report-name-1

~~~~~~~~

————————————————————————————————————————

The "INITIATE" statement starts Report-Writer Control System (RWCS) processing for a
report.

1. Each <report-name-1> must be the name of a report having an "RD" (see [REPORT
SECTION], page 107) defined for it.

2. The file in whose "FD" (see [File/Sort-Description], page 94) a "REPORT <report-name-

1>" clause exists must be open for "OUTPUT" or "EXTEND" at the time the "INITIATE"
statement is executed. See [OPEN], page 420, for more information on file open modes.

3. The "INITIATE" statement will initialize all of the following for each report named on
the statement:

• All sum counters, if any, will be set to 0

• The report’s "LINE-COUNTER" special register (see [Special Registers], page 243)
will be set to 0

• The report’s "PAGE-COUNTER" special register will be set to 1

4. No report content will actually presented to the report file as a result of a successful
"INITIATE" statement — that will not occur until the first "GENERATE" statement (see
[GENERATE], page 391) is executed.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 405

6.17.24. INSPECT� �
INSPECT Syntax
 	

INSPECT { literal-1 }

~~~~~~~ { identifier-1 }

{ function-reference-1 }

[ TALLYING { identifier-2 FOR { ALL|LEADING|TRAILING { literal-2 } }

~~~~~~~~ ~~~ { ~~~ ~~~~~~~ ~~~~~~~~ { identifier-3 } }

{ CHARACTERS }

~~~~~~~~~~

[ | { AFTER|BEFORE } INITIAL { literal-3 } | ] }... ]

| ~~~~~ ~~~~~~ { identifier-4 } |

[ REPLACING { { { ALL|FIRST|LEADING|TRAILING { literal-4 } }

~~~~~~~~~ { { ~~~ ~~~~~ ~~~~~~~ ~~~~~~~~ { identifier-5 } }

{ CHARACTERS }

{ ~~~~~~~~~~ }

BY { [ ALL ] literal-5 }

~~ { ~~~ }

{ identifier-6 }

[ | { AFTER|BEFORE } INITIAL { literal-6 } | ] }... ]

| ~~~~~ ~~~~~~ { identifier-7 } |

[ CONVERTING { { literal-7 } TO { literal-8 }

~~~~~~~~~~ { identifier-8 } ~~ { identifier-9 }

[ | { AFTER|BEFORE } INITIAL { literal-9 } | ] ]

| ~~~~~ ~~~~~~ { identifier-10 } |

————————————————————————————————————————

The "INSPECT" statement is used to perform various counting and/or data-alteration op-
erations against strings.

1. The reserved word "INITIAL" is optional and may be included, or not, at the discretion
of the programmer. The presence or absence of this words has no effect upon the
program.

2. If a "CONVERTING" clause is specified, neither the "TALLYING" nor "REPLACING" clauses
may be used.

3. If either the "TALLYING" or "REPLACING" clauses are specified, the "CONVERTING" clause
cannot be used.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



406 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4. If both the "TALLYING" and "REPLACING" clauses are specified, they must be specified
in the order shown.

5. All literals and identifiers must be explicitly or implicitly defined as alphanumeric or
alphabetic.

6. If <function-reference-1> is specified, it must be an invocation of an intrinsic function
that returns a string result. Additionally, only the "TALLYING" clause may be specified.

7. If <literal-1> is specified, only the "TALLYING" clause may be specified.

8. Whichever is specified — <literal-1>, <identifier-1> or <function-reference-1> — that
item will be referred to in the discussions that follows as the ’inspect subject ’.

9. The three optional clauses control the operation of this statement as follows:

A. The "CONVERTING" clause replaces one or more individual characters found in the
inspect subject with a different character in much the same manner as is possible
with the "TRANSFORM" statement (see [TRANSFORM], page 473).

B. The "REPLACING" clause replaces one or more substrings located in the inspect
subject with a different, but equally-sized replacement substring. If you need
to replace a substring with another of a different length, consider using either
the "SUBSTITUTE" intrinsic function (see [SUBSTITUTE], page 324) or the
"SUBSTITUTE-CASE" intrinsic function (see [SUBSTITUTE-CASE], page 325).

C. The "TALLYING" clause counts the number of occurrences of one or more strings
of characters in the inspect subject.

10. The optional "INITIAL" clauses may be used to limit the range of characters in the
inspect subject that the "CONVERTING", "REPLACING" or "TALLYING" instruction in
which they occur will apply. We call this the ’target range’ of the inspect subject. The
target range is defined as follows:

A. If there is no "INITIAL" clause specified, the target range is the entire inspect
subject.

B. Either a "BEFORE" phrase, an "AFTER" phrase or both may be specified. They may
be specified in any order.

C. The starting point of the target range will be the first character following the
substring identified by the "AFTER" specification. The ending point will be the
last character immediately preceeding the substring identified by the "BEFORE"

specification.

D. If no "AFTER" is specified, the first character position of the target range will be
character position #1 of the inspect subject.

E. If no "BEFORE" is specified, the last character position of the target range will be
the last character position of the inspect subject.

11. The following points apply to the use of the "TALLYING" clause:

A. While there will typically be only be a single set of counting instructions on an

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 407

"INSPECT":

INSPECT Character-String

TALLYING C-ABC FOR ALL "ABC"

There could be multiple counting instructions specified:

INSPECT Character-String

TALLYING C-ABC FOR ALL "ABC"

C-BCDE FOR ALL "BCDE"

When there are multiple instructions, the one specified first will take priority over
the one specified second, (and so forth) as the "INSPECT" proceeds forward through
the inspect subject, character-by-character.

With the above example, if the inspect subject were "--ABCDEF----BCDEF--",
the final result of the counting would be that C-ABC would be incremented by 1
while C-BCDE would be incremented only once; although the human eye clearly
sees two "BCDE" sequences, the "INSPECT ... TALLYING" would only "see" the
second — the first would have been processed by the first (higher-priority) counting
instruction.

B. Each set of counting instructions contains the following information:

a. A target range, specified by the presence of an "AFTER INITIAL" and/or
"BEFORE INITIAL" clause; the rules for specifying target ranges were covered
previously.

b. A Target Substring — this is a sequence of characters to be located somewhere
in the inspect subject and counted. Target substrings may be defined as
a literal value (figurative constants are allowed) or by the contents of an
identifier. If the target substring is specified as a figurative constant, it will
be assumed to have a length of one (1) character. The keywords before the
literal or identifier control how many target substrings could be identified from
that replacement instruction, as follows:

"ALL" — identifies every possible target substring that occurs within
the target range. There are three occurrences of "ALL ’XX’" found in
"aXXabbXXccXXdd".

"LEADING"— identifies only an occurrence of the target substring found either
at the first character position of the target range or immediately following a
previously-found occurrence. There are no occurrences of "LEADING ’XX’"

found in "aXXabbXXccXXdd", but there is one occurrence of "LEADING ’a’"

(the first character).

"TRAILING" — identifies only an occurrence of the target substring found
either at the very end of the target range or toward the end, followed by
nothing but other occurrences. There are no occurrences of "LEADING ’XX’"

3 June 2014 Chapter 6 - PROCEDURE DIVISION



408 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

found in "aXXabbXXccXXdd", but there are two occurrences of "TRAILING

’d’".

The "CHARACTERS" option will match any one single character, regardless of
what that character is.

C. <identifier-2> will be incremented by 1 each time the target substring is found
within the target range of the inspect subject. The "INSPECT" statement will not
zero-out <identifier-2> at the stary of execution of the "INSPECT" — it is the pro-
grammer’s responsibility to ensure that all <identifier-2> data items are properly
initialized to the desired starting values prior to execution of the "INSPECT".

12. The following points apply to the use of the "REPLACING" clause:

A. While there will typically be only be a single set of replacement instructions on an
"INSPECT":

INSPECT Character-String

REPLACING ALL "ABC" BY "DEF"

There could be multiple replacement instructions:

INSPECT Character-String

REPLACING ALL "ABC" BY "DEF"

ALL "BCDE" BY "WXYZ"

When there are multiple replacement instructions, the one specified first will take
priority over the one specified second, (and so forth) as the "INSPECT" proceeds
forward through the inspect subject, character-by-character.

With the above example, if the inspect subject were "--ABCDEF----BCDEF--", the
final result of the replacement would be "--DEFDEF----WXYZF--".

B. Each set of replacement instructions contains the following information:

a. A target range, specified by the presence of an "AFTER INITIAL" and/or
"BEFORE INITIAL" clause; the rules for specifying target ranges were covered
previously.

b. A Target Substring — this is a sequence of characters to be located somewhere
in the inspect subject and subsequently replaced with a new value. Target
substrings, which are specified before the "BY" keyword, may be defined as
a literal value (figurative constants are allowed) or by the contents of an
identifier. If the target substring is specified as a figurative constant, it will
be assumed to have a length of one (1) character. The keywords before the
literal or identifier control how many target substrings could be identified from
that replacement instruction, as follows:

"ALL" — identifies every possible target substring that occurs within
the target range. There are three occurrences of "ALL ’XX’" found in
"aXXabbXXccXXdd".

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 409

"FIRST" — the first occurrence of the target substring found within the target
range. The "FIRST ’XX’" found in "aXXabbXXccXXdd" would be the one
found between the "a" and "b" characters.

"LEADING" — an occurrence of the target substring found either at the first
character position of the target range or immediately following a previously-
found occurrence. There are no occurrences of "LEADING ’XX’" found in
"aXXabbXXccXXdd", but there is one occurrence of "LEADING ’a’" (the first
character).

"TRAILING" — an occurrence of the target substring found either at the
very end of the target range or toward the end, followed by nothing but
other occurrences. There are no occurrences of "LEADING ’XX’" found in
"aXXabbXXccXXdd", but there are two occurrences of "TRAILING ’d’".

The "CHARACTERS" option will match any one single character. When you use
this option, the replacement substring (see the next item) must be exactly
one character in length.

c. A Replacement Substring — this is the sequence of characters that should
replace the target substring. Replacement substrings are specified after the
"BY" keyword. They too may be specified as a literal, either with or without
an "ALL" prefix (again, figurative constants are allowed) or the value of an
identifier. If a figurative constant is coded, the "ALL" keyword will be assumed,
even if it wasn’t specified. Literals without "ALL" will either be truncated or
padded with spaces on the right to match the length of the target substring.
Literals with "ALL" or figurative constants will be repeated as necessary to
match the length of the target substring. Identifiers specified as replacement
substrings must be defined with a length equal to that of the target substring.

13. When both "REPLACING" and "TALLYING" are specified:

A. The "INSPECT" statement will make a single pass through the sequence of charac-
ters comprising the inspect subject. As the pointer to the current inspect target
character reaches a point where it falls within the explicit or implicit target ranges
specified on the operational instructions of the two clauses, the actions specified
by those instructions will become eligible to be taken. As the character pointer
reaches a point where it falls past the end of target ranges, the instructions be-
longing to those target ranges will become disabled.

B. At any point in time, there may well be multiple"REPLACING" and/or "TALLYING"
operational instructions active. Only one of the "TALLYING" and one of the
"REPLACING" instructions (if any) can be executed for any one character pointer
position. In each case, it will be the first of the instructions in each category that
produces a match with it’s target string specification.

C. When both a "TALLYING" and a "REPLACING" instruction have been selected for
execution, the "TALLYING" instruction will be executed first. This guarantees that

3 June 2014 Chapter 6 - PROCEDURE DIVISION



410 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

"TALLYING" will compute occurrences based upon the initial value of the inspect
subject before any replacements occur.

14. The following points apply to the use of the "CONVERTING" clause:

A. A "CONVERTING" clause performs a series of single-character substitutions against a
data item in much the same manner as is possible with the "TRANSFORM" statement
(see [TRANSFORM], page 473).

B. Unlike the "TALLYING" and "REPLACING" clauses, both of which may have mul-
tiple operations specified, there may be only one "CONVERTING" operation per
"INSPECT".

C. If the length of <literal-7> or <identifier-8> (the "from" string) exceeds the length
of <literal-8> or <identifier-9> (the "to" string), then the "to" string will be as-
sumed to be padded to the right with enough spaces to make it the same length
as the "from" string.

D. If the length of the "from" string is less than the length of the "to" string, then
the "to" string will be truncated to the length of the "from" string.

E. Each character, in turn, within the "from" string will be searched for in the target
range of the inspect subject. Each located occurrence will be replaced by the
corresponding character of the "to" string.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 411

6.17.25. MERGE� �
MERGE Syntax
 	

MERGE sort-file-1

~~~~~

{ ON { ASCENDING } KEY identifier-1... }...

{ ~~~~~~~~~ }

{ DESCENDING }

~~~~~~~~~~

[ WITH DUPLICATES IN ORDER ]

~~~~~~~~~~

[ COLLATING SEQUENCE IS alphabet-name-1 ]

~~~~~~~~~

USING file-name-1 file-name-2...

~~~~~

{ OUTPUT PROCEDURE IS procedure-name-1 }

{ ~~~~~~ ~~~~~~~~~ }

{ [ THRU|THROUGH procedure-name-2 ] }

{ ~~~~ ~~~~~~~ }

{ GIVING file-name-3... }

{ ~~~~~~ }

The "DUPLICATES" clause is syntactically recognized but is otherwise non-functional.

————————————————————————————————————————

The "MERGE" statement merges the contents of two or more files that have each been pre-
sorted on a set of specified identical keys.

1. The reserved words "IN", "IS", "KEY", "ON", "ORDER", "SEQUENCE" and "WITH" are
optional and may be included, or not, at the discretion of the programmer. The
presence or absence of these words has no effect upon the program.

2. The reserved words "THRU" and "THROUGH" are interchangeable.

3. GNU COBOL always behaves as if the "WITH DUPLICATES IN ORDER" clause is speci-
fied, even if it isn’t.

While any COBOL implementation’s sort or merge facilities guarantee that records
with duplicate key values will be in proper sequence with regard to other records
with different key values, they generally make no promises as to the resulting relative
sequence of records having duplicate key values with one another.

Some COBOL implementations provide this optional clause to force their sort and
merge facilities to retain duplicate key-value records in their original input sequence,
relative to one another.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



412 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4. The <sort-file-1> named on the "MERGE" statement must be defined using a sort de-
scription ("SD" (see [File/Sort-Description], page 94)). This file is referred to in the
remainder of this discussion as the "merge work file".

5. Each <file-name-1>, <file-name-2> and <file-name-3> (if specified) must reference
"ORGANIZATION LINE SEQUENTIAL" (see [ORGANIZATION LINE SEQUENTIAL],
page 80) or "ORGANIZATION SEQUENTIAL" (see [ORGANIZATION SEQUENTIAL],
page 78) files. These files must be defined using a file description ("FD" (see
[File/Sort-Description], page 94)).

6. The <identifier-1> . . . field(s) must be defined as field(s) within a record of <sort-file-
1>.

7. The record descriptions of <file-name-1>, <file-name-2>, <file-name-3> (if any) and
<sort-file-1> are assumed to be identical in layout and size. While the actual data names
used for fields in these files’ records may differ, the structure of records, "PICTURE" (see
[PICTURE], page 162) of fields, "USAGE" (see [USAGE], page 186) of fields, size of fields
and location of fields within the records should match field-by-field across all files, at
least as far as the "KEY" fields are concerned.

8. A common programming technique when using the "MERGE" statement is to define the
records of all files involved as simple elementary items of the form "01 record-name

PIC X(n)." where n is the record size. The only file where records are actually de-
scribed in detail would then be <sort-file-1>.

9. The following rules apply to the files named on the "USING" clause:

A. None of them may be open at the time the "MERGE" is executed.

B. Each of those files is assumed to be already sorted according to the specifications
set forth on the "MERGE" statement’s "KEY" clause.

C. No two of those files may be referenced on a "SAME RECORD AREA" (see [SAME
RECORD AREA], page 87), "SAME SORT AREA" or "SAME SORT-MERGE AREA"

statement.

10. The merging process is as follows:

A. As the "MERGE" statement begins execution, the first record in each of the "USING"
files is read automatically.

B. As the "MERGE" statement executes, the current record from each of the "USING"

files is examined and compared to each other according to the rules set forth by the
"KEY" clause and the alphabet (see [Alphabet-Name-Clause], page 67) specified on
the "COLLATING SEQUENCE" clause. The record that should be next in sequence
will be written to the merge work file and the "USING" file from which that record
came will be read so that its next record is available. As end-of-file conditions are
reached on "USING" files, those files will be excluded from further processing —
processing continues with the remaining files until all the contents of all of them
have been exhausted.

C. After the merge work file has been populated, the merged data will be written to

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 413

each <file-name-3> if the "GIVING" clause was specified, or will be processed by
utilizing an "OUTPUT PROCEDURE".

D. When "GIVING" is specified, none of the <file-name-3> files can be open at the
time the "MERGE" statement is executed.

E. When an output procedure is used, the procedure(s) specified on the "OUTPUT

PROCEDURE" clause will be invoked as if by a procedural "PERFORM" (see [Procedural
PERFORM], page 422) statement with no "VARYING", "TIMES" or "UNTIL" options
specified. Merged records may be read from the merge work file — one at a time
— within the output procedure using the "RETURN" (see [RETURN], page 436)
statement.

A "GO TO" statement (see [GO TO], page 394) that transfers control out of the
output procedure will terminate the "MERGE" statement but allows the program
to continue executing from the point where the "GO TO" statement transferred
control to. Once an output procedure has been "aborted" using a "GO TO"

it cannot be resumed, and the contents of the merge work file are lost. You
may, however, re-execute the "MERGE" statement itself. USING A "GO TO"

statement TO PREMATURELY TERMINATE A MERGE, OR RE-STARTING
A PREVIOUSLY-CANCELLED MERGE IS NOT CONSIDERED GOOD
PROGRAMMING STYLE AND SHOULD BE AVOIDED.

An output procedure should be terminated in the same way a procedural
"PERFORM" statement would be. Usually, this action will be taken once the
"RETURN" statement indicates that all records in the merge work file have been
processed, but termination could occur at any time — via an "EXIT" statement
(see [EXIT], page 387) — if required.

Neither a file-based "SORT" statement (see [File-Based SORT], page 453) nor an-
other "MERGE" statement may be executed within the scope of the procedures
comprising the output procedure unless those statements utilize a different sort or
merge work file.

F. Once the output procedure terminates, or the last <file-name-3> file has been
populated with merged data, the output phase — and the "MERGE" statement
itself — is complete.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



414 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.26. MOVE

6.17.26.1. Simple MOVE� �
Simple MOVE Syntax
 	

MOVE { literal-1 } TO identifier-2...

~~~~ { identifier-1 } ~~

————————————————————————————————————————

The Simple "MOVE" statement moves a specific value to one or more receiving data items.

1. The "MOVE" statement will replace the contents of one or more receiving data items
(<identifier-2>) with a new value — the one specified by <literal-1> or <identifier-1>.

2. Only numeric data can be moved to a numeric or numeric-edited <identifier-2>. A
"MOVE" involving numeric data will perform any necessary format conversions that
might be necessary due to differing "USAGE" (see [USAGE], page 186) specifications.

3. The contents of the <identifier-1> data item will not be changed, unless that same
data item appears as an <identifier-2>. Note that such situations will cause a warning
message to be issued by the compiler, if warning messages are enabled.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 415

6.17.26.2. MOVE CORRESPONDING� �
MOVE CORRESPONDING Syntax
 	

MOVE CORRESPONDING identifier-1 TO identifier-2...

~~~~ ~~~~ ~~

————————————————————————————————————————

The "MOVE CORRESPONDING" statement similarly-named items from one group item to an-
other.

1. The reserved word "CORRESPONDING" may be abbreviated as "CORR".

2. Both <identifier-1> and <identifier-2> must be group items.

3. See [CORRESPONDING], page 236, for a discussion of how corresponding matches
between two group items are established.

4. When corresponding matches are established, the effect of a "MOVE CORRESPONDING"

on those matches will be as if a series of individual "MOVE"s were done — one for each
match.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



416 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.27. MULTIPLY

6.17.27.1. MULTIPLY BY� �
MULTIPLY BY Syntax
 	

MULTIPLY { literal-1 } BY { identifier-2

~~~~~~~~ { identifier-1 } ~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-DIVIDE ]

~~~~~~~~~~

————————————————————————————————————————

The "MULTIPLY BY" statement computes the product of one or more data items (<identifier-
2>) and either a numeric literal or another data item.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric un-edited data items; <literal-
1> must be a numeric literal.

3. The product of <identifier-1> or <literal-1> and each <identifier-2>, in turn, will be
computed and moved to each of the <identifier-2> data items, replacing the prior
contents.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 417

4. The value of <identifier-1> is not altered, unless that same data item appears as an
<identifier-2>.

5. The optional "ROUNDED" (see [ROUNDED], page 240) clause available to each
<identifier-2> will control how non-integer results will be saved.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 239, for additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



418 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.27.2. MULTIPLY GIVING� �
MULTIPLY GIVING Syntax
 	

MULTIPLY { literal-1 } BY { literal-2 } GIVING { identifier-3

~~~~~~~~ { identifier-1 } ~~ { identifier-2 } ~~~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-DIVIDE ]

~~~~~~~~~~

————————————————————————————————————————

The "MULTIPLY GIVING" statement computes the product of two literals and/or data items
and saves that result in one or more other data items.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric un-edited data items; <literal-
1> and <literal-2> must be numeric literals.

3. The product of <identifier-1> or <literal-1> and <identifier-2> or <literal-2> will be
computed and moved to each of the <identifier-3> data items, replacing their old
contents.

4. Neither the value of <identifier-1> nor <identifier-2> will be altered, unless either

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 419

appears as an <identifier-3>.

5. The optional "ROUNDED" (see [ROUNDED], page 240) clause available to each
<identifier-2> will control how non-integer results will be saved.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 239, for additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



420 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.28. OPEN� �
OPEN Syntax
 	

OPEN { { INPUT } [ SHARING WITH { ALL OTHER } ] file-name-1

~~~~ { ~~~~~ } ~~~~~~~ { ~~~ }

{ OUTPUT } { NO OTHER }

{ ~~~~~~ } { ~~ }

{ I-O } { READ ONLY }

{ ~~~ } ~~~~ ~~~~

{ EXTEND }

~~~~~~

[ { REVERSED } ] }...

{ ~~~~~~~~ }

{ WITH { NO REWIND } }

{ { ~~ ~~~~~~ } }

{ { LOCK } }

~~~~

The "NO REWIND", and "REVERSED" clauses are syntactically recognized but are otherwise
non-functional.

————————————————————————————————————————

The "OPEN" statement makes one or more files described in your program available for use.

1. The reserved words "OTHER" and "WITH" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The "SHARING" and "WITH LOCK" clauses may not both be specified in the same "OPEN"
statement.

3. Any file defined in a GNU COBOL program must be successfully opened before it or
any of it’s record descriptions may be referenced on:

A "CLOSE" statement (see [CLOSE], page 364)

A "DELETE" statement (see [DELETE], page 369)

A "READ" statement (see [READ], page 428)

A "REWRITE" statement (see [REWRITE], page 437)

A "START" statement (see [START], page 459)

An "UNLOCK" statement (see [UNLOCK], page 474)

A "WRITE" statement (see [WRITE], page 479)

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 421

4. Any attempt to open a file that is already open will fail with a file status of 41 (see
[File Status Codes], page 76). This is a fatal error that will terminate the program.

5. Any open failure (including status 41) may be trapped using "DECLARATIVES"

(see [DECLARATIVES], page 208) or an error procedure established using the
"CBL_ERROR_PROC" built-in system subroutine (see [CBL ERROR PROC], page 536)
built-in subroutine. When either of these trap routines exit, however, the GNU
COBOL runtime system will still terminate the program after your trap logic is
executed. Ultimately, you cannot recover from an open failure.

6. The "INPUT", "OUTPUT", "I-O" and "EXTEND" open modes inform GNU COBOL of
the manner in which you wish to use the file, as follows:

"INPUT"

You may only read the existing contents of the file — only the "CLOSE",
"READ", "START" and "UNLOCK" statements will be allowed. This enforce-
ment takes place at execution time, not compilation time.

"OUTPUT"

You may only write new content (which will completely replace any previ-
ous file contents) to the file — only the "CLOSE", "UNLOCK" and "WRITE"

statements will be allowed. This enforcement takes place at execution time,
not compilation time.

"I-O"

You may perform any operation you wish against the file — all file I/O
statements will be allowed.

"EXTEND"

You may only write new content (which will be appended after the pre-
viously existing file contents) to the file — only the "CLOSE", "UNLOCK"
and "WRITE" statements will be allowed. This enforcement takes place at
execution time, not compilation time. You cannot extend an empty file;
this will not generate a runtime error, but no output will appear in the file.

7. The "SHARING" clause informs the GNU COBOL file runtime modules how you are
willing to co-exist with any other GNU COBOL programs that may attempt to open
the same file after your program does. See [File Sharing], page 231, for an explanation
of the "SHARING" clause.

8. The "WITH LOCK" option will be functional only if your GNU COBOL build can support
it. GNU COBOL built for MinGW or native Windows will not, because the Unix
"fcntl() primitive doesn’t exist in those environments. GNU COBOL built for Cygwin
or Unix will.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



422 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.29. PERFORM

6.17.29.1. Procedural PERFORM� �
Procedural PERFORM Syntax
 	

PERFORM procedure-name-1 [ THRU|THROUGH procedure-name-2 ]

~~~~~~~ ~~~~ ~~~~~~~

[ { [ WITH TEST { BEFORE } ] { VARYING-Clause } } ]

{ ~~~~ { ~~~~~~ } { UNTIL conditional-expression-1 } }

{ { AFTER } ~~~~~ }

{ ~~~~~ }

{ UNTIL EXIT|FOREVER }

{ ~~~~~ ~~~~ ~~~~~~~ }

{ { literal-1 } TIMES }

{ { identifier-1 } ~~~~~ }

————————————————————————————————————————

This format of the "PERFORM" statement is used to transfer control to one or more proce-
dures, which will return control back when complete. Execution of the procedure(s) can be
done a single time, multiple times, repeatedly until a condition becomes TRUE or forever
(with some way of breaking out of the control of the "PERFORM" or of halting program
execution within the procedure(s)).

1. The reserved word "WITH" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The reserved words "THRU" and "THROUGH" are interchangeable.

3. The reserved word and phrase "FOREVER" and "UNTIL EXIT" are interchangeable.

4. Both <procedure-name-1> and <procedure-name-2> must be procedure division sections
or paragraphs defined in the same program as the "PERFORM" statement. If <procedure-
name-2> is specified, it must follow <procedure-name-1> in the program’s source code.

5. The ’perform scope’ is defined as being the statements within <procedure-name-1>,
the statements within <procedure-name-2> and all statements in all procedures defined
between them.

6. <literal-1> must be a numeric literal or a reference to a function that returns a numeric
value. The value must be an integer greater than zero.

7. <identifier-1>must be an elementary un-edited numeric data item with an integer value
greater than zero.

8. Without the "UNTIL", "UNTIL EXIT", "TIMES", <VARYING-Clause> (see [VARYING],
page 425) or "FOREVER" clauses, the code within the perform scope will be executed
once, after which control will return to the statement following the "PERFORM".

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 423

9. The "FOREVER" option will repeatedly execute the code within the perform scope with
no conditions defined for termination of the repetition — it will be up to the pro-
grammer to include an "EXIT SECTION" statement (see [EXIT], page 387) or "EXIT

PARAGRAPH" statement within the procedure(s) being performed that will break out of
the loop.

10. The "TIMES" option will repeat the execution of the code within the perform scope a
fixed number of times. When the "PERFORM" statement begins execution, an internal
repeat counter (not accessible to the programmer) will be set to the value of <literal-1>
or the value within <identifier-1>.

If the counter has a value greater than zero, the statement(s) within the "PERFORM"

scope will be executed, after which the counter will be decremented by 1 with each
repetition. Once that counter reaches zero, repetition will cease and control will fall
into the next statement following the "PERFORM".

If the <identifier-1> option was used, altering the value of that data item within the
perform scope will not affect the repetition count.

11. The "UNTIL <conditional-expression-1>" option will repeat the code within the
perform scope until the specified conditional expression evaluates to a TRUE value.

12. The optional "WITH TEST" clause will control whether "UNTIL" testing occurs "BEFORE"
the statements within the perform scope are executed on each iteration (creating the
possibility — if <conditional-expression-1> is initially TRUE — that the statements
within the perform scope will never be executed) or "AFTER" (guaranteeing the state-
ments within the perform scope will be executed at least once).

The default, if this clause is absent, is "WITH TEST BEFORE".

This clause may not be coded when the "TIMES" clause is used.

13. The optional <VARYING-Clause> is a mechanism that creates an advanced loop-
management mechanism complete with one or more numeric data items being automat-
ically incremented (or decremented) on each loop iteration as well as the termination
control of an "UNTIL" clause. See [VARYING], page 425, for the details.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



424 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.29.2. Inline PERFORM� �
Inline PERFORM Syntax
 	

PERFORM

~~~~~~~

[ { [ WITH TEST { BEFORE } ] { VARYING-Clause } } ]

{ ~~~~ { ~~~~~~ } { UNTIL conditional-expression-1 } }

{ { AFTER } ~~~~~ }

{ ~~~~~ }

{ UNTIL EXIT|FOREVER }

{ ~~~~~ ~~~~ ~~~~~~~ }

{ { literal-1 } TIMES }

{ { identifier-1 } ~~~~~ }

imperative-statement-1

[ END-PERFORM ]

~~~~~~~~~~~

————————————————————————————————————————

This format of the "PERFORM" statement is identical in operation to the procedural
"PERFORM", except for the fact that the statement(s) comprising the perform scope
(<imperative-statement-1>) (see [Imperative Statement], page 593) are now specified in-line
with the "PERFORM" code rather than in procedures located elsewhere within the program.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 425

6.17.29.3. VARYING� �
VARYING Syntax
 	

VARYING identifier-2 FROM { literal-2 } [ BY { literal-3 } ]

~~~~~~~ ~~~~ { identifier-3 } ~~ { identifier-4 }

[ UNTIL conditional-expression-1 ]

~~~~~

[ AFTER identifier-5 FROM { literal-4 } [ BY { literal-5 } ]

~~~~~ ~~~~ { identifier-6 } ~~ { identifier-7 }

[ UNTIL conditional-expression-2 ] ]...

~~~~~

————————————————————————————————————————

The "VARYING" clause, available on both formats of the "PERFORM" statement, is a looping
mechanism that allows for the specification of one or more numeric data items that will
be initialized to a programmer-specified value and automatically incremented by another
programmer-specified value after each loop iteration.

1. All identifiers used in a <VARYING-Clause> must be elementary, un-edited numeric
data items. All literals must be numeric literals.

2. The following points describe the sequence of events that take place as a result of the
"VARYING" portion of the clause:

A. When the "PERFORM" begins execution, the "FROM" value will be moved to <iden-
tifier>.

B. If the "PERFORM" specifies or implies "WITH TEST BEFORE", <conditional-
expression-1> will be evaluated and processing of the "PERFORM" will halt if the
expression evaluates to TRUE. If "WITH TEST BEFORE" was not specified or
implied, or if the conditional expression evaluated to FALSE, processing proceeds
with step (C).

C. The statements within the perform scope will be executed. If a "GO TO" executed
within the perform scope transfers control to a point outside the perform scope,
processing of the "PERFORM" will halt.

D. When the statements within the perform scope terminate the loop iteration, by. . .

• . . . allowing the flow of execution to attempt to fall past the last statement in
the perform scope, or. . .

• . . . executing an "EXIT PERFORM CYCLE" statement (see [EXIT], page 387),
or. . .

• . . . executing an "EXIT PARAGRAPH" statement or "EXIT SECTION" statement
when there is only one paragraph (or section) in the perform scope ( this
option only applies to a procedural "PERFORM")

3 June 2014 Chapter 6 - PROCEDURE DIVISION



426 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Control will return back to the "PERFORM", where — if "WITH TEST AFTER" was
specified — <conditional-expression-1> will be evaluated and processing of the
"PERFORM" will halt if the expression evaluates to TRUE. If "WITH TEST AFTER"

was not specified, or if the conditional expression evaluated to FALSE, processing
continues with the next step.

E. The "BY" value, if any, will be added to <identifier-2>. If no "BY" is speci-
fied, <identifier-2> will be unaffected. You are always free to modify the value
of <identifier-2> yourself within the perform scope.

F. Return to step (C).

3. Most <VARYING-Clause>s have no "AFTER" specified. Those that do, however, are
establishing a loop-within-a-loop situation where the process descibed above in steps
(A) thru (F) will take place from the "AFTER", and those six processing steps actually
replace step (C) of the "VARYING". This "nesting" process can continue indefinitely,
with each additional "AFTER".

This is the point where an example should really help you see this at work. Observe the
following code which defines a two-dimensional (3 row by 4 column) table and a pair of
numeric data items to be used to subscript references to each element of the table:

01 PERFORM-DEMO.

05 PD-ROW OCCURS 3 TIMES.

10 PD-COL OCCURS 4 TIMES

15 PD PIC X(1).

01 PD-Col-No PIC 9 COMP.

01 PD-Row-No PIC 9 COMP.

Let’s say the 3x4 "grid" defined by the above structure has these values:

A B C D

E F G H

I J K L

This code will display "ABCDEFGHIJKL" on the console output window:

PERFORM WITH TEST AFTER

VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No = 3

AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No = 4

DISPLAY PD (PD-Row-No, PD-Col-No) WITH NO ADVANCING

END-PERFORM

While this code will display "AEIBFJCGKDHL" on the console output window:

PERFORM WITH TEST AFTER

VARYING PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No = 4

AFTER PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No = 3

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 427

DISPLAY PD (PD-Row-No, PD-Col-No) WITH NO ADVANCING

END-PERFORM

While we’re looking at sample code, this code displays "ABCEFG":

PERFORM

VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No = 3

AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No = 4

DISPLAY PD (PD-Row-No, PD-Col-No) WITH NO ADVANCING

END-PERFORM

By removing the "WITH TEST" clause, the statement is now assuming "WITH TEST BEFORE".
Since testing now happens before the "DISPLAY" statement gets executed, when PD-Row-No
is 3 and PD-Col-No is 4 the "DISPLAY" statement won’t be executed.

Most COBOL programmers, when using "WITH TEST BEFORE" explicitly or implicitly have
developed the habit of using ">" rather than "=" on "UNTIL" clauses. This would make
the sample code:

PERFORM

VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No > 3

AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No > 4

DISPLAY PD (PD-Row-No, PD-Col-No) WITH NO ADVANCING

END-PERFORM

With this change, "ABCDEFGHIJKL" is once again displayed.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



428 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.30. READ

6.17.30.1. Sequential READ� �
Sequential READ Syntax
 	

READ file-name-1 [ { NEXT|PREVIOUS } ] RECORD [ INTO identifier-1 ]

~~~~ { ~~~~ ~~~~~~~~ } ~~~~

[ { IGNORING LOCK } ]

{ ~~~~~~~~ ~~~~ }

{ WITH [ NO ] LOCK }

{ ~~ ~~~~ }

{ WITH KEPT LOCK }

{ ~~~~ ~~~~ }

{ WITH IGNORE LOCK }

{ ~~~~~~ ~~~~ }

{ WITH WAIT }

~~~~

[ AT END imperative-statement-1 ]

~~~

[ NOT AT END imperative-statement-2 ]

~~~ ~~~

[ END-READ ]

~~~~~~~~

————————————————————————————————————————

This form of the "READ" statement retrieves the next (or previous) record from a file.

1. The reserved words "AT", "RECORD" and "WITH" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has
no effect upon the program.

2. The <file-name-1> file must have been defined via an "FD" (see [File/Sort-Description],
page 94), not an "SD".

3. The <file-name-1> file must currently be open for "INPUT" (see [File OPEN Modes],
page 421) or "I-O".

4. If <file-name-1> is an "ORGANIZATION RELATIVE" (see [ORGANIZATION RELA-
TIVE], page 82) or "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED],
page 84) file with an "ACCESS MODE RANDOM", this statement cannot be used.

5. If <file-name-1> was specified as "ACCESS MODE SEQUENTIAL", this is the only format
of the "READ" statement that is available.

6. If <file-name-1> is an "ORGANIZATION RELATIVE" (see [ORGANIZATION RELA-
TIVE], page 82) or "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED],

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 429

page 84) file with "ACCESS MODE DYNAMIC", this statement as well as a random
"READ" (see [Random READ], page 430) may be used.

7. The keywords "NEXT" and "PREVIOUS" specify what direction of "travel" the reading
process will take through the file. If neither is specified, "NEXT" is assumed.

8. The "PREVIOUS" option is available only for "ORGANIZATION INDEXED" files.

9. When reading any sequential (any organization) or relative file, the "next" direction
refers to the physical sequence of records in the file. When reading an indexed file, the
"next" and "previous" directions refer to the sequence of primary or alternate record
key values in the file’s records, regardless of where the records physically occur within
the file.

10. The minimal statement "READ <file-name-1>" is perfectly legal according to both
READ formats. For that reason, when "ACCESS MODE DYNAMIC" has been specified
and you want to tell the GNU COBOL compiler that this minimal statement should
be treated as a sequential "READ", you must add either "NEXT" or "PREVIOUS" to the
statement (otherwise it will be treated as a random "READ").

11. A successful sequential READ will retrieve the next available record from <file-name-
1>, in either a "next" or "previous" direction from the most-recently-read record,
depending upon the use of the "NEXT" or "PREVIOUS" option. The newly-retrieved
record data will be saved into the 01-level record structure(s) that immediately follow
the file’s "FD". If the optional "INTO" clause is present, a copy of the just-retrieved
record will be automatically moved to <identifier-1>.

12. When an "ORGANIZATION RELATIVE" file has been successfully read, the file’s
"RELATIVE KEY" (see [ORGANIZATION RELATIVE], page 82) field will be
automatically populated with the relative record number (ordinal occurrence number)
of the record in the file.

13. The optional "LOCK" options may be used to manually control access to the retrieved
record by other programs while this program is running. See [Record Locking],
page 233, to review the various record locking behaviors.

14. The optional "AT END" clause, if coded, is used to detect and react to the failure of
an attempt to retrieve another record from the file due to an end-of-file (i.e. no more
records) condition.

15. The optional "NOT AT END" clause, if coded, will check checking for a file status value
of 00. See [File Status Codes], page 76, for additional information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



430 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.30.2. Random READ� �
Random READ Syntax
 	

READ file-name-1 RECORD [ INTO identifier-1 ]

~~~~ ~~~~

[ { IGNORING LOCK } ]

{ ~~~~~~~~ ~~~~ }

{ WITH [ NO ] LOCK }

{ ~~ ~~~~ }

{ WITH KEPT LOCK }

{ ~~~~ ~~~~ }

{ WITH IGNORE LOCK }

{ ~~~~~~ ~~~~ }

{ WITH WAIT }

~~~~

[ KEY IS identifier-2 ]

~~~

[ INVALID KEY imperative-statement-1 ]

~~~~~~~

[ NOT INVALID KEY imperative-statement-2 ]

~~~ ~~~~~~~

[ END-READ ]

~~~~~~~~

————————————————————————————————————————

This form of the "READ" statement retrieves an arbitrary record from an "ORGANIZATION

RELATIVE" (see [ORGANIZATION RELATIVE], page 82) or "ORGANIZATION INDEXED"

(see [ORGANIZATION INDEXED], page 84) file.

1. The reserved words "IS", "KEY" (on the "INVALID" and "NOT INVALID" clauses),
"RECORD" and "WITH" are optional and may be included, or not, at the discretion
of the programmer. The presence or absence of these words has no effect upon the
program.

2. The <file-name-1> file must have been defined via an "FD" (see [File/Sort-Description],
page 94), not an "SD".

3. The <file-name-1> file must currently be open for "INPUT" (see [File OPEN Modes],
page 421) or "I-O".

4. If the "ACCESS MODE" of <file-name-1> is "SEQUENTIAL", or the "ORGANIZATION" of
the file is any form of sequential, this format of the "READ" statement cannot be used.

5. If the "ACCESS MODE" of <file-name-1> is "RANDOM", this is the only format of the
"READ" statement that is available.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 431

6. If <file-name-1> is an "ORGANIZATION RELATIVE" (see [ORGANIZATION RELA-
TIVE], page 82) or "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED],
page 84) file with "ACCESS MODE DYNAMIC", this statement as well as a sequential
"READ" (see [Sequential READ], page 428) may be used.

7. The minimal statement "READ <file-name-1>" is perfectly legal according to both
READ formats. For that reason, when "ACCESS MODE DYNAMIC" has been specified
and you want to tell the GNU COBOL compiler that this minimal statement should
be treated as a random "READ", you must omit the "NEXT" or "PREVIOUS" available to
the sequential format of the "READ" statement to ensure the statement will be treated
as a random "READ".

8. The optional "KEY" clause tells the compiler how a record is to be located in the file.
If the clause is absent, and. . .

A. . . . if the file is an "ORGANIZATION RELATIVE" file, the contents of the field declared
as the file’s "RELATIVE KEY" will be used to identify a record, otherwise. . .

B. . . . if the file is an "ORGANIZATION INDEXED" file, the contents of the field declared
as the file’s "RECORD KEY" will be used to identify a record.

9. But, if the "KEY" clause is specified, and. . .

A. . . . if the file is an "ORGANIZATION RELATIVE" file, the contents of <identifier-
2> will be used as the relative record number of the record to be accessed —
<identifier-2> need not be the "RELATIVE KEY" (see [ORGANIZATION RELA-
TIVE], page 82) field of the file (although it could be if you wish).

B. . . . if the file is an "ORGANIZATION INDEXED" file, <identifier-2> must be the
"RECORD KEY" (see [ORGANIZATION INDEXED], page 84) or one of the file’s
"ALTERNATE RECORD KEY" fields (if any) — the current contents of that field will
identify the record to be accessed. If an alternate record key is used, and that key
allows duplicate values, the record accessed will be the first one having that key
value.

10. Once read from the file, the newly-retrieved record data will be saved into the 01-level
record structure(s) that immediately follow the file’s "FD". If the optional "INTO"
clause is present, a copy of the just-retrieved record will be automatically moved to
<identifier-1>.

11. When an "ORGANIZATION RELATIVE" file has been successfully read, the file’s
"RELATIVE KEY" (see [ORGANIZATION RELATIVE], page 82) field will be
automatically populated with the relative record number (ordinal occurrence number)
of the record in the file.

12. The optional "LOCK" options may be used to manually control access to the retrieved
record by other programs while this program is running. See [Record Locking],
page 233, to review the various record locking behaviors.

13. The optional "INVALID KEY" and "NOT INVALID KEY" clauses may be used to detect
and react to the failure or success, respectively, by detecting non-zero (typically 23

3 June 2014 Chapter 6 - PROCEDURE DIVISION



432 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

= key not found = record not found) and 00 file status codes, respectively. See [File
Status Codes], page 76, for additional information.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 433

6.17.31. READY TRACE� �
READY TRACE Syntax
 	

READY TRACE

~~~~~ ~~~~~

————————————————————————————————————————

The "READY TRACE" statement turns procedure or procedure-and-statement tracing on.

1. In order for this statement to be functional, tracing code must have been generated
into the compiled program using either the "-ftrace" switch (procedures only) or
"-ftraceall" switch (procedures and statements).

2. Tracing may be turned off at any point by executing the "RESET TRACE" statement
(see [RESET TRACE], page 435).

3. The "COB_SET_TRACE" run-time environment variable (see [Run Time Environment
Variables], page 522) provides another way to control tracing.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



434 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.32. RELEASE� �
RELEASE Syntax
 	

RELEASE record-name-1 [ FROM { literal-1 } ]

~~~~~~~ ~~~~ { identifier-1 }

————————————————————————————————————————

The "RELEASE" statement adds a new record to a sort work file.

1. This statement is valid only within the "INPUT PROCEDURE" of a file-based "SORT"

statement (see [File-Based SORT], page 453).

2. The specified <record-name-1> must be a record defined to the sort description ("SD"
(see [File/Sort-Description], page 94)) of the sort work file being processed by the
current sort.

3. The optional "FROM" clause will cause <literal-1> or <identifier-1> to be automatically
moved into <record-name-1> prior to writing <record-name-1>’s contents to the <file-
name-1>. If this clause is not specified, it is the programmer’s responsibility to populate
<record-name-1> with the desired data prior to executing the "RELEASE".

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 435

6.17.33. RESET TRACE� �
RESET TRACE Syntax
 	

RESET TRACE

~~~~~ ~~~~~

————————————————————————————————————————

The "RESET TRACE" statement turns procedure or procedure-and-statement tracing off.

1. By default, procedure and procedure-and-statement tracing is off as programs begin
execution. The "READY TRACE" statement (see [READY TRACE], page 433) can be
used to turn tracing on.

2. In order for this statement to be functional, tracing code must have been generated
into the compiled program using either the "-ftrace" switch (procedures only) or
"-ftraceall" switch (procedures and statements).

3. The "COB_SET_TRACE" run-time environment variable (see [Run Time Environment
Variables], page 522) provides another way to control tracing.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



436 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.34. RETURN� �
RETURN Syntax
 	

RETURN sort-file-name-1 RECORD

~~~~~~

[ INTO identifier-1 ]

~~~~

AT END imperative-statement-1

~~~

[ NOT AT END imperative-statement-2 ]

~~~ ~~~

[ END-RETURN ]

~~~~~~~~~~

————————————————————————————————————————

The "RETURN" statement reads a record from a sort- or merge work file.

1. The reserved words "AT" and "RECORD" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The "RETURN" statement is valid only within the "OUTPUT PROCEDURE" of a file-based
"SORT" (see [File-Based SORT], page 453) or a "MERGE" statement (see [MERGE],
page 411) statement.

3. The <sort-file-name-1> file must be a sort- or merge work file defined with a "SD" (see
[File/Sort-Description], page 94), not an "FD".

4. A successful "RETURN" will retrieve the next available record from <sort-file-name-1>.
The newly-retrieved record data will be saved into the 01-level record structure(s) that
immediately follow the file’s SD. If the optional "INTO" clause is present, a copy of the
just-retrieved record will be automatically moved to <identifier-1>.

5. The mandatory "AT END" clause is used to detect and react to the failure of an attempt
to retrieve another record from the file due to an end-of-file (i.e. no more records)
condition.

6. The optional "NOT AT END" clause, if coded, will check checking for a file status value
of 00. See [File Status Codes], page 76, for additional information.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 437

6.17.35. REWRITE� �
REWRITE Syntax
 	

REWRITE record-name-1

~~~~~~~

[ FROM { literal-1 } ]

~~~~ { identifier-1 }

[ WITH [ NO ] LOCK ]

~~ ~~~~

[ INVALID KEY imperative-statement-1 ]

~~~~~~~

[ NOT INVALID KEY imperative-statement-2 ]

~~~ ~~~~~~~

[ END-REWRITE ]

~~~~~~~~~~~

————————————————————————————————————————

The "REWRITE" statement replaces a logical record on a disk file.

1. The reserved words "KEY" and "WITH" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. The <record-name-1> specified on the statement must be defined as an 01-level record
subordinate to the File Description ("FD" (see [File/Sort-Description], page 94)) of a
file that is currently open for "I-O" (see [File OPEN Modes], page 421).

3. The optional "FROM" clause will cause <literal-1> or <identifier-1> to be automatically
moved into <record-name-1> prior to writing <record-name-1>’s contents to the <file-
name-1>. If this clause is not specified, it is the programmer’s responsibility to populate
<record-name-1> with the desired data prior to executing the "REWRITE".

4. This statement may not be used with "ORGANIZATION LINE SEQUENTIAL" (see
[ORGANIZATION LINE SEQUENTIAL], page 80) files.

5. Rewriting a record does not cause the contents of the file to be physically updated until
the next block of the file is read, a "COMMIT" (see [COMMIT], page 365) or "UNLOCK"
statement (see [UNLOCK], page 474) is issued or that file is closed.

6. If the file has "ORGANIZATION SEQUENTIAL" (see [ORGANIZATION SEQUENTIAL],
page 78):

A. The record to be rewritten will be the one retrieved by the most-recently executed
"READ" (see [READ], page 428) of the file.

B. If the "FD" of the file contains the "RECORD CONTAINS" or "RECORD IS VARYING"

3 June 2014 Chapter 6 - PROCEDURE DIVISION



438 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

clause, and that clause allows the record size to vary, the size of <record-name-1>
cannot be altered.

7. If the file has "ORGANIZATION RELATIVE" (see [ORGANIZATION RELATIVE],
page 82) or "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED], page 84):

A. If the file has "ACCESS MODE SEQUENTIAL", the record to be rewritten will be
the one retrieved by the most-recently executed "READ" of the file. If the file has
"ACCESS MODE RANDOM" or "ACCESS MODE DYNAMIC", no "READ" is required before
a record may be rewritten — the "RELATIVE KEY" or "RECORD KEY" definition for
the file, respectively, will specify the record to be updated.

B. If the "FD" of the file contains the "RECORD CONTAINS" or "RECORD IS VARYING"

clause, and that clause allows the record size to vary, the size can be altered.

8. The optional "LOCK" options may be used to manually control access to the re-written
record by other programs while this program is running. See [Record Locking],
page 233, to review the various record locking behaviors.

9. The optional "INVALID KEY" and "NOT INVALID KEY" clauses may be used to detect
and react to the failure or success, respectively, by detecting non-zero (typically 23
= key not found = record not found) and 00 file status codes, respectively. See [File
Status Codes], page 76, for additional information.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 439

6.17.36. ROLLBACK� �
ROLLBACK Syntax
 	

ROLLBACK

~~~~~~~~

————————————————————————————————————————

The "ROLLBACK" statement has the same effect as if an "UNLOCK" statement (see [UNLOCK],
page 474) were executed against every open file in the program.

1. All locks currently being held for all open files will be released.

2. See [Record Locking], page 233, to review the various record locking behaviors.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



440 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.37. SEARCH� �
SEARCH Syntax
 	

SEARCH table-name-1

~~~~~~

[ VARYING index-name-1 ]

~~~~~~~

[ AT END imperative-statement-1 ]

~~~

{ WHEN conditional-expression-1 imperative-statement-2 }...

~~~~

[ END-SEARCH ]

~~~~~~~~~~

————————————————————————————————————————

The "SEARCH" statement is used to sequentially search a table, stopping either once a specific
value is located within the table or when the table has been completely searched.

1. The reserved word "AT" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. The searching process will be controlled through a ’Search Index ’ — a data item with
a "USAGE" (see [USAGE], page 186) of "INDEX". The search index is either the <index-
name-1> identifier specified on the "VARYING" clause or — if no "VARYING" is spec-
ified — the "USAGE INDEX" data item implicitly created by an "INDEXED BY" (see
[OCCURS], page 158) clause in the table’s definition.

3. At the time the "SEARCH" statement is executed, the current value of the search index
data item will define the starting position in the table where the searching process will
begin. Typically, one initializes that index to a value of 1 before starting the "SEARCH"
via "SET <search-index> TO 1".

4. Each of the <conditional-expression-n>s on the "WHEN" clause(s) should involve a data
element within the table, subscripted using the search index.

5. The searching process is as follows:

A. Each <conditional-expression-n> will be evaluated, in turn, until either one evalu-
ates to a value of TRUE or all have evaluated to FALSE.

B. The <imperative-statement-n> (see [Imperative Statement], page 593) specified on
the "WHEN" clause whose <conditional-expression-n> evaluated to TRUE will be
executed; after that, the search will be considered complete and control will fall
into the first executable statement following the "SEARCH".

C. If all <conditional-expression-n>s evaluated to FALSE:

• The search index will be incremented by 1

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 441

• If the search index now has a value greater than the number of entries in the
table, the search is considered to have failed and the <imperative-statement-1>
on the optional "AT END" clause, if any, will be executed. After that, control
will fall into the first executable statement following the "SEARCH".

• If the search index now has a value less than or equal to the number of entries
in the table, search processing returns back to step (A).

3 June 2014 Chapter 6 - PROCEDURE DIVISION



442 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.38. SEARCH ALL� �
SEARCH ALL Syntax
 	

SEARCH ALL table-name-1

~~~~~~ ~~~

[ AT END imperative-statement-1 ]

~~~

WHEN conditional-expression-1 imperative-statement-2

~~~~

[ END-SEARCH ]

~~~~~~~~~~

————————————————————————————————————————

The "SEARCH ALL" statement performs a binary, or half-interval, search against a sorted
table. This is generally significantly faster than performing a sequential "SEARCH" of a
table, especially if the table contains a large number of entries.

1. The reserved word "AT" is optional and may be included, or not, at the discretion of
the programmer. The presence or absence of this word has no effect upon the program.

2. To be eligible for searching via "SEARCH ALL":

A. The "OCCURS" clause of <table-name-1> must contain the following elements:

• An "INDEXED BY" entry to define an implicit search index data item with a
"USAGE" (see [USAGE], page 186) of "INDEX".

• An "ASCENDING KEY" or "DESCENDING KEY" clause to specify the field within
the table by which all entries in the table are sorted.

B. Just because the table has one or more "KEY" clauses doesn’t mean the data is
actually in that sequence in the table — the actual sequence of the data must agree
with the KEY clause(s)! A table-based "SORT" (see [Table SORT], page 457) can
prove very useful in this regard.

C. No two records in the table may have the same "KEY" field values. If the table has
multiple "KEY" definitions, then no two records in the table may have the same
combination of "KEY" field values.

3. If rule (A) is violated, the compiler will reject the "SEARCH ALL". If rules (B) and/or
(C) are violated, there will be no message issued by the compiler, but the run-time
results of a "SEARCH ALL" against the table will probably be incorrect.

4. The <conditional-expression-1> should involve the "KEY" field(s), using the search index
(the table’s "INDEXED BY" index name) as a subscript.

5. The function of the single, mandatory, "WHEN" clause is to compare the key field(s) of
the table, as indexed by the search index data item, against whatever literal and/or
identifier values you are comparing the key field(s) to in the <conditional-expression-1>

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 443

in order to locate the desired entry in the table. The search index will be automatically
varied in a manner designed to require the minimum number of tests.

6. The internal processing of the SEARCH ALL statement begins by setting internal
"first" and "last" pointers to the 1st and last entry locations of the table. Processing
then proceeds as follows:

A. The entry half-way between "first" and "last" is identified. We’ll call this the
"current" entry, and will set its table entry location into <index-name-1>.

B. The <conditional-expression-1> is evaluated. This comparison of the key(s) against
the target literal/identifier values will have one of three possible outcomes:

• If the key(s) and value(s) match, <imperative-statement-2> (see [Imperative
Statement], page 593) is executed, after which control falls thru into the next
statement following the "SEARCH ALL".

• If the key(s) are LESS THAN the value(s), then the table entry being searched
for can only occur in the "current" to "last" range of the table, so a new "first"
pointer value is set (it will be set to the "current" pointer).

• If the key(s) are GREATER THAN the value(s), then the table entry being
searched for can only occur in the "first" to "current" range of the table, so
a new "last" pointer value is set (it will be set to the "current" pointer).

C. If the new "first" and "last" pointers are different than the old "first" and "last"
pointers, there’s more left to be searched, so return to step (A) and continue.

D. If the new "first" and "last" pointers are the same as the old "first" and "last"
pointers, the table has been exhausted and the entry being searched for cannot
be found; <imperative-statement-1> is executed, after which control falls thru into
the next statement following the "SEARCH ALL". If there is no "AT END" clause
coded, control simply falls into the next statement following the "SEARCH ALL".

7. The net effect of the above algorithm is that only a fraction of the number of elements
in the table need ever be tested in order to decide whether or not a particular entry
exists. This is because the half the remaining entries in the table are discarded each
time an entry is checked.

8. Computer scientists will compare the two techniques implemented by the "SEARCH"

and "SEARCH ALL" statements as follows:

9. When searching a table with "n" entries, a sequential search will need an average of
n/2 tests and a worst case of n tests in order to find an entry and n tests to identify
that an entry doesn’t exist.

10. When searching a table with "n" entries, a binary search will need a worst-case of
log2(n) tests in order to find an entry and log2(n) tests to identify that an entry doesn’t
exist (n = the number of entries in the table), where "log2" is the base-2 logarithm
function.

Here’s a more practical view of the difference. Let’s say that a table has 1,000 entries in it.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



444 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

With a sequential search, on average, you’ll have to check 500 of them to find an entry and
you’ll have to look at all 1,000 of them to find that an entry doesn’t exist.

With a binary search, express the number of entries as a binary number (1,000 =
1111101000), count the number of digits in the result (which is, essentially, what a
logarithm is, when rounded up to the next integer — the number of digits a decimal
number would have if expressed in the logarithm’s number base). In this case, we end up
with 10 — THAT is the worst-case number of tests required to find an entry or to identify
that it doesn’t exist. That’s quite an improvement!

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 445

6.17.39. SET

6.17.39.1. SET ENVIRONMENT� �
SET ENVIRONMENT Syntax
 	

SET ENVIRONMENT { literal-1 } TO { literal-2 }

~~~ ~~~~~~~~~~~ { identifier-1 } ~~ { identifier-2 }

————————————————————————————————————————

The "SET ENVIRONMENT" statement provides a straight-forward means of setting environ-
ment values from within a program.

1. The value of <literal-1> or <identifier-1> specifies the name of the environment variable
to set.

2. The value of <literal-2> or <identifier-2> specifies the value to be assigned to the
environment variable.

3. Environment variables created or changed from within GNU COBOL programs will be
available to any sub-shell processes spawned by that program (i.e. CALL "SYSTEM")
but will not be known to the shell or console window that started the GNU COBOL
program.

This is a much simpler and more readable means of setting environment variables than
by using the "DISPLAY UPON ENVIRONMENT-NAME" statement (see [DISPLAY UPON
ENVIRONMENT-NAME], page 373). For example, these two code sequences produce
identical results:

DISPLAY "VARNAME" UPON ENVIRONMENT-NAME

DISPLAY "VALUE" UPON ENVIRONMENT-VALUE

SET ENVIRONMENT "VARNAME" TO "VALUE"

3 June 2014 Chapter 6 - PROCEDURE DIVISION



446 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.39.2. SET Program-Pointer� �
SET Program-Pointer Syntax
 	

SET program-pointer-1 TO ENTRY { literal-1 }

~~~ ~~ ~~~~~ { identifier-1 }

————————————————————————————————————————

The "SET <Program-Pointer>" statement allows you to retrieve the address of a procedure
division code module — specifically the "PROGRAM-ID", "FUNCTION-ID" or an entry-point
established via the "ENTRY" statement (see [ENTRY], page 382).

1. If you have used other versions of COBOL before (particularly mainframe implemen-
tations), you’ve possibly seen subroutine calls made passing a procedure name as an
argument — that is not possible in GNU COBOL; instead, you need to know how to
use this form of the "SET" statement.

2. The "USAGE" (see [USAGE], page 186) of <program-pointer-1> must be
"PROGRAM-POINTER".

3. The <literal-1> or <identifier-1> value specified must name a primary entry-point name
("PROGRAM-ID" of a subroutine or "FUNCTION-ID" of a user-defined function) or an
alternate entry-point defined via an "ENTRY" statement within a subprogram.

4. Once the address of a procedure division code area has been acquired in this way, the
address could be passed to a subroutine (usually written in C) for whatever use it
needs it for. For examples of "PROGRAM-POINTER"s at work, see the discussions of the
"CBL_ERROR_PROC" built-in system subroutine (see [CBL ERROR PROC], page 536)
and "CBL_EXIT_PROC" built-in system subroutine (see [CBL EXIT PROC], page 538).

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 447

6.17.39.3. SET ADDRESS� �
SET ADDRESS Syntax
 	

SET [ ADDRESS OF ] { pointer-name-1 }...

~~~ ~~~~~~~ ~~ { identifier-1 }

TO [ ADDRESS OF ] { pointer-name-2 }

~~ ~~~~~~~ ~~ { identifier-2 }

————————————————————————————————————————

The "SET ADDRESS" statement can be used to work with the addresses of data items rather
than their contents.

1. When the "ADDRESS OF" clause is used before the "TO" you will be using this statement
to alter the address of a linkage section or "BASED" (see [BASED], page 130) data item.
Without that clause you will be assigning an address to one or more data items whose
"USAGE" (see [USAGE], page 186) is "POINTER".

2. When the "ADDRESS OF" clause is used after the "TO", this statement will be identifying
the address of <identifier-2> as the address to be assigned to <identifier-1> or stored
in <pointer-name-1>.

3. If the "ADDRESS OF" clause is absent after the "TO", the contents of <pointer-name-2>
will serve as the address to be assigned.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



448 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.39.4. SET Index� �
SET Index Syntax
 	

SET index-name-1 TO { literal-1 }

~~~ ~~ { identifier-2 }

————————————————————————————————————————

This statement assigns a value to a "USAGE INDEX" data item.

1. Either the "USAGE" (see [USAGE], page 186) of <index-name-1> should be "INDEX",
or <index-name-1> must be identified in a table "INDEXED BY" clause.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 449

6.17.39.5. SET UP/DOWN� �
SET UP/DOWN Syntax
 	

SET identifier-1 { UP } BY [ LENGTH OF ] { literal-1 }

~~~ { ~~ } ~~ ~~~~~~ ~~ { identifier-2 }

{ DOWN }

~~~~

————————————————————————————————————————

Use this statement to increment or decrement the value of an index or pointer by a specified
amount.

1. The "USAGE" (see [USAGE], page 186) of <identifier-1> must be "INDEX", "POINTER"
or "PROGRAM-POINTER".

2. The typical usage when <identifier-1> is a "USAGE INDEX" data item is to increment
it’s value "UP" or "DOWN" by 1, since an index is usually being used to sequentially walk
through the elements of a table.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



450 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.39.6. SET Condition Name� �
SET Condition Name Syntax
 	

SET condition-name-1... TO { TRUE }

~~~ ~~ { ~~~~ }

{ FALSE }

~~~~~

————————————————————————————————————————

The "SET <Condition Name>" statement provides one method of specifying the TRUE /
FALSE value of a level-88 condition name.

1. By setting the specified <condition-name-1>(s) to a TRUE or FALSE value, you will
actually be assigning a value to the parent data item(s) to which the condition name
data item(s) is(are) subordinate to.

2. When specifying "TRUE", the value assigned to each parent data item will be the first
value specified on the condition name’s "VALUE" clause.

3. When specifying "FALSE", the value assigned to each parent data item will be the value
specified for the "FALSE" clause of the condition name’s definition; if any <condition-
name-1> occurrence lacks a "FALSE" clause, the "SET" statement will be rejected by
the compiler.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 451

6.17.39.7. SET Switch� �
SET Switch Syntax
 	

SET mnemonic-name-1... TO { ON }

~~~ ~~ { ~~ }

{ OFF }

~~~

————————————————————————————————————————

This form of the "SET" statement is used to turn switches on or off.

1. Switches are defined using the "SPECIAL-NAMES" (see [SPECIAL-NAMES], page 62)
paragraph.

2. Switches may be tested via the "IF" statement (see [IF], page 397) and a Switch-Status
Condition. See [Switch-Status Conditions], page 222, for more information.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



452 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.39.8. SET ATTRIBUTE� �
SET ATTRIBUTE Syntax
 	

SET identifier-1 ATTRIBUTE { { BELL } { ON }...

~~~ ~~~~~~~~~ { ~~~~ } { ~~ }

{ BLINK } { OFF }

{ ~~~~~ } ~~~

{ HIGHLIGHT }

{ ~~~~~~~~~ }

{ LEFTLINE }

{ ~~~~~~~~ }

{ LOWLIGHT }

{ ~~~~~~~~ }

{ OVERLINE }

{ ~~~~~~~~ }

{ REVERSE-VIDEO }

{ ~~~~~~~~~~~~~ }

{ UNDERLINE }

~~~~~~~~~

————————————————————————————————————————

The "SET ATTRIBUTE" statement may be used to modify one or more attributes of a screen
section data item at run-time.

1. When making an attribute change to <identifier-1>, the change will not become vis-
ible on the screen until the screen section data item containing <identifier-1> is next
accepted (if <identifier-1> is an input field) or is next displayed (if <identifier-1> is not
an input field).

2. The attributes shown in the syntax diagram are the only ones that may be altered
by this statement. See [Data Description Clauses], page 125, for information on their
usage.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 453

6.17.40. SORT

6.17.40.1. File-Based SORT� �
File-Based SORT Syntax
 	

SORT sort-file-1

~~~~

{ ON { ASCENDING } KEY identifier-1... }...

{ ~~~~~~~~~ }

{ DESCENDING }

~~~~~~~~~~

[ WITH DUPLICATES IN ORDER ]

~~~~~~~~~~

[ COLLATING SEQUENCE IS alphabet-name-1 ]

~~~~~~~~~

{ INPUT PROCEDURE IS procedure-name-1 }

{ ~~~~~~ ~~~~~~~~~ }

{ [ THRU|THROUGH procedure-name-2 ] }

{ ~~~~ ~~~~~~~ }

{ USING file-name-1 ... }

~~~~~

{ OUTPUT PROCEDURE IS procedure-name-3 }

{ ~~~~~~ ~~~~~~~~~ }

{ [ THRU|THROUGH procedure-name-4 ] }

{ ~~~~ ~~~~~~~ }

{ GIVING file-name-3 ... }

~~~~~~

The "DUPLICATES" clause is syntactically recognized but is otherwise non-functional.

————————————————————————————————————————

This format of the "SORT" statement is designed to sort large volumes of data according to
one or more key fields.

1. The reserved words "IN", "IS", "KEY", "ON", "ORDER", "SEQUENCE" and "WITH" are
optional and may be included, or not, at the discretion of the programmer. The
presence or absence of these words has no effect upon the program.

2. The reserved words "THRU" and "THROUGH" are interchangeable.

3. GNU COBOL always behaves as if the "WITH DUPLICATES IN ORDER" clause is speci-
fied, even if it isn’t.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



454 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

While any COBOL implementation’s sort or merge facilities guarantee that records
with duplicate key values will be in proper sequence with regard to other records
with different key values, they generally make no promises as to the resulting relative
sequence of records having duplicate key values with one another.

Some COBOL implementations provide this optional clause to force their sort and
merge facilities to retain duplicate key-value records in their original input sequence,
relative to one another.

4. The <sort-file-1> named on the "SORT" statement must be defined using a sort de-
scription ("SD" (see [File/Sort-Description], page 94)). This file is referred to in the
remainder of this discussion as the "sort work file".

5. If specified, <file-name-1> and <file-name-2> must reference "ORGANIZATION

LINE SEQUENTIAL" (see [ORGANIZATION LINE SEQUENTIAL], page 80) or
"ORGANIZATION SEQUENTIAL" (see [ORGANIZATION SEQUENTIAL], page 78) files.
These files must be defined using a file description ("FD" (see [File/Sort-Description],
page 94)). The same file(s) may be used for <file-name-1> and <file-name-2>.

6. The <identifier-1> . . . field(s) must be defined as field(s) within a record of <sort-file-
1>.

7. A sort work file is never opened or closed.

8. The sorting process works in three stages — the Input Stage, the Sort Stage and the
Output Stage.

9. The following points pertain to the Input Stage:

A. The data to be sorted is loaded into the sort work file either by copying the entire
contents of the file(s) named on the "USING" clause (done automatically by the
sort) or by utilizing an input procedure.

B. When "USING" is specified, none of the <file-name-1> files may be open at the
time the "SORT" statement is executed.

C. When an input procedure is used, the procedure(s) specified on the "INPUT

PROCEDURE" clause will be invoked as if by a procedural "PERFORM" statement
(see [Procedural PERFORM], page 422) with no "VARYING", "TIMES" or "UNTIL"
options specified. Records will be loaded into the sort work file — one at a time
— within the input procedure using the "RELEASE" statement (see [RELEASE],
page 434). This, by the way, is how you could sort the contents of relative or
indexed files.

A "GO TO" statement (see [GO TO], page 394) that transfers control out of the
input procedure will terminate the "SORT" statement but allows the program to
continue executing from the point where the "GO TO" statement transferred con-
trol to. Once an input procedure has been "aborted" using a "GO TO" it can-
not be resumed, and the contents of the sort work file are lost. You may, how-
ever, re-execute the "SORT" statement itself. USING A "GO TO" statement TO
PREMATURELY TERMINATE A SORT, OR RE-STARTING A PREVIOUSLY-

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 455

CANCELLED SORT IS NOT CONSIDERED GOOD PROGRAMMING STYLE
AND SHOULD BE AVOIDED.

An input procedure should be terminated in the same way a procedural "PERFORM"
statement would be.

Neither a another file-based "SORT" statement nor a "MERGE" statement may be
executed within the input procedure unless those statements utilize a different sort
or merge work file.

D. Once the input procedure terminates, the input phase is complete.

E. As data is loaded into the sort work file, it is actually being buffered in dynamically-
allocated memory. Only if the amount of data to be sorted exceeds the amount
of available sort memory (128 MB) will actual disk files be allocated and utilized.
There is a "COB_SORT_MEMORY" run-time environment variable (see [Run Time En-
vironment Variables], page 522) that you may use to allocate more or less memory
to the sorting process.

10. The following points pertain to the Sort Stage:

A. The sort will take place by arranging the data records in the sequence defined by
the "KEY" specification(s) on the "SORT" statement according to the "COLLATING

SEQUENCE" specified on the "SORT" (if any) or — if none was defined — the
"PROGRAM COLLATING SEQUENCE" (see [OBJECT-COMPUTER], page 58). Keys
may be any supported data type and "USAGE" (see [USAGE], page 186) except for
level-78 or level-88 data items.

B. For example, let’s assume we’re sorting a series of financial transactions. The
SORT statement might look like this:

SORT Sort-File

ASCENDING KEY Transaction-Date

ASCENDING KEY Account-Number

DESCENDING KEY Transaction-Amount

The effect of this statement will be to sort all transactions into ascending order of
the date the transaction took place (oldest first, newest last). Unless the business
running this program is going out of business, there are most-likely many trans-
actions for any given date. Therefore, within each grouping of transactions all
with the same date, transactions will be sub-sorted into ascending sequence of the
account number the transactions apply to. Since it’s quite possible there might be
multiple transactions for an account on any given date, a third level sub-sort will
arrange all transactions for the same account on the same date into descending
sequence of the actual amount of the transaction (largest first, smallest last). If
two or more transactions of $100.00 were recorded for account #12345 on the 31st
of August 2009, those transactions will be retained in the order in which they were
loaded into the sort work file.

C. Should disk work files be necessary due to the amount of data being sorted, they

3 June 2014 Chapter 6 - PROCEDURE DIVISION



456 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

will be automatically allocated to disk in a folder defined by the "TMPDIR" run-time
environment variable, "TMP" run-time environment variable or "TEMP" run-time en-
vironment variable run-time environment variables (see [Run Time Environment
Variables], page 522) (checked for existence in that sequence). These disk files will
be automatically purged upon "SORT" termination or program execution termina-
tion (normal or otherwise).

11. The following points pertain to the Output Stage:

A. Once the sort stage is complete, a copy of the sorted data will be written to each
<file-name-2> if the "GIVING" clause was specified. None of the <file-name-2> files
can be open at the time the sort is executed.

B. When an output procedure is used, the procedure(s) specified on the "OUTPUT

PROCEDURE" clause will be invoked as if by a procedural "PERFORM" statement
(see [Procedural PERFORM], page 422) with no "VARYING", "TIMES" or "UNTIL"
options specified. Records will be retrieved from the sort work file — one at a time
— within the output procedure using the "RETURN" statement (see [RETURN],
page 436).

A "GO TO" statement (see [GO TO], page 394) that transfers control out of the
output procedure will terminate the "SORT" statement but allows the program
to continue executing from the point where the "GO TO" statement transferred
control to. Once an output procedure has been "aborted" using a "GO TO" it
cannot be resumed, and the contents of the sort work file are lost. You may,
however, re-execute the "SORT" statement itself. USING A "GO TO" statement TO
PREMATURELY TERMINATE A SORT, OR RE-STARTING A PREVIOUSLY-
CANCELLED SORT IS NOT CONSIDERED GOOD PROGRAMMING STYLE
AND SHOULD BE AVOIDED.

An output procedure should be terminated in the same way a procedural
"PERFORM" statement would be.

Neither a another file-based "SORT" statement nor a "MERGE" statement may be
executed within the output procedure unless those statements utilize a different
sort or merge work file.

C. Once the output procedure terminates, the sort is complete.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 457

6.17.40.2. Table SORT� �
Table SORT Syntax
 	

SORT table-name-1

~~~~

{ ON { ASCENDING } KEY identifier-1... }...

{ ~~~~~~~~~ }

{ DESCENDING }

~~~~~~~~~~

[ WITH DUPLICATES IN ORDER ]

~~~~~~~~~~

[ COLLATING SEQUENCE IS alphabet-name-1 ]

~~~~~~~~~

The "DUPLICATES" clause is syntactically recognized but is otherwise non-functional.

————————————————————————————————————————

This format of the "SORT" statement sorts relatively small quantities of data — namely
data contained in a data division table — according to one or more key fields.

1. The reserved words "IN", "IS", "KEY", "ON", "ORDER", "SEQUENCE" and "WITH" are
optional and may be included, or not, at the discretion of the programmer. The
presence or absence of these words has no effect upon the program.

2. GNU COBOL always behaves as if the "WITH DUPLICATES IN ORDER" clause is speci-
fied, even if it isn’t.

While any COBOL implementation’s sort or merge facilities guarantee that records
with duplicate key values will be in proper sequence with regard to other records
with different key values, they generally make no promises as to the resulting relative
sequence of records having duplicate key values with one another.

Some COBOL implementations provide this optional clause to force their sort and
merge facilities to retain duplicate key-value records in their original input sequence,
relative to one another.

3. The <table-name-1> data item must be a table defined in any data division section
except the report or screen sections.

4. The data within <table-name-1> will be sorted in-place (i.e. no sort file is required).

5. The sort will take place by rearranging the data in <table-name-1> into the sequence
defined by the "KEY" specification(s) on the "SORT" statement, according to the
"COLLATING SEQUENCE" specified on the "SORT" (if any) or — if none was defined —
the "PROGRAM COLLATING SEQUENCE" (see [OBJECT-COMPUTER], page 58). Keys
may be any supported data type and "USAGE" (see [USAGE], page 186) except for
level-78 or level-88 data items.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



458 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6. If you are sorting <table-name-1> for the purpose of preparing the table for use with
a "SEARCH ALL" statement (see [SEARCH ALL], page 442), care must be taken that
the "KEY" specifications on the "SORT" agree with those in the table’s definition.

7. Although the specification of one or more KEY clauses is optional, currently, a table
sort with no "KEY" specification(s) made on the "SORT" statement is unsupported by
GNU COBOL and will be rejected by the compiler.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 459

6.17.41. START� �
START Syntax
 	

START file-name-1

~~~~~

[ { FIRST } ]

{ ~~~~~ }

{ LAST }

{ ~~~~ }

{ KEY { IS EQUAL TO | IS = | EQUALS } identifier-1 }

{ ~~~~~ ~~~~~~ }

{ IS GREATER THAN | IS > }

{ ~~~~~~~ }

{ IS GREATER THAN OR EQUAL TO | IS >= }

{ ~~~~~~~ ~~ ~~~~~ }

{ IS NOT LESS THAN }

{ ~~~ ~~~~ }

{ IS LESS THAN | IS < }

{ ~~~~ }

{ IS LESS THAN OR EQUAL TO | IS <= }

{ ~~~~ ~~ ~~~~~ }

{ IS NOT GREATER THAN }

~~~ ~~~~~~~

[ INVALID KEY imperative-statement-1 ]

~~~~~~~

[ NOT INVALID KEY imperative-statement-2 ]

~~~ ~~~~~~~

[ END-START ]

~~~~~~~~~

————————————————————————————————————————

The "START" statement defines the logical starting point within a relative or indexed file
for subsequent sequential read operations. It positions an internal logical record pointer to
a particular record in the file, but does not actually transfer any of that record’s data into
the record buffer.

1. The reserved words "IS", "KEY", "THAN" and "TO" are optional and may be included,
or not, at the discretion of the programmer. The presence or absence of these words
has no effect upon the program.

2. To use this statement, <file-name-1> must be an "ORGANIZATION RELATIVE"

(see [ORGANIZATION RELATIVE], page 82) or "ORGANIZATION INDEXED" (see
[ORGANIZATION INDEXED], page 84) file that must have been defined with an
"ACCESS MODE DYNAMIC" or "ACCESS MODE SEQUENTIAL" in its "SELECT" statement
(see [SELECT], page 73).

3 June 2014 Chapter 6 - PROCEDURE DIVISION



460 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

3. At the time this statement is executed, <file-name-1> must be open in either "INPUT"
or "I-O" (see [File OPEN Modes], page 421) mode.

4. If <file-name-1> is a relative file, <identifier-1> must be the defined "RELATIVE KEY"

of the file.

5. If <file-name-1> is an indexed file, <identifier-1> must be the defined "RECORD KEY"

of the file or any of the "ALTERNATE RECORD KEY" fields for the file.

6. If no "FIRST", "LAST" or "KEY" clause is specified, "KEY IS EQUAL TO xxx" will be
assumed, where "xxx" is the defined "RELATIVE KEY" of (if <file-name-1> is a relative
file) or the defined "RECORD KEY" (if <file-name-1> is an indexed file).

7. After successful execution of a "START" statement, the internal logical record pointer
into the <file-name-1> data will be positioned to the record which satisfied the actual
or implied "FIRST", "LAST" or "KEY" clause specification, as follows:

A. If "FIRST" was specified, the logical record pointer will point to the first record in
the file.

B. If "LAST" was specified, the logical record pointer will point to the last record in
the file.

C. If "KEY" was specified or implied, the logical record pointer will be specified to
the first record satisfying the relation condition; to identify this record, the file’s
contents are searched in a first-to-last (in sequence of the key implied by the "KEY"
clause), provided the relation is "EQUAL TO", "GREATER THAN" or "GREATER THAN

OR EQUAL TO" (or any of their syntactical equivalents).

D. If "KEY" was specified or implied, the logical record pointer will be specified to
the last record satisfying the relation condition; to identify this record, the file’s
contents are searched in a last-to-first (in sequence of the key implied by the "KEY"
clause), provided the relation is "LESS THAN", "LESS THAN OR EQUAL TO" or "NOT
GREATER THAN" (or any of their syntactical equivalents).

The next sequential "READ" statement will read the record that is pointed to by the
logical record pointer.

8. The optional "INVALID KEY" and "NOT INVALID KEY" clauses may be used to detect
and react to the failure or success, respectively, by detecting non-zero (typically 23
= key not found = record not found) and 00 file status codes, respectively. See [File
Status Codes], page 76, for additional information.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 461

6.17.42. STOP� �
STOP Syntax
 	

STOP { RUN [ { RETURNING|GIVING { literal-1 } } ] }

~~~~ { ~~~ { ~~~~~~~~~ ~~~~~~ { identifier-1 } } }

{ { } }

{ { WITH { ERROR } STATUS [ { literal-2 } ] } }

{ { { ~~~~~ } { identifier-2 } } }

{ { { NORMAL } } }

{ ~~~~~~ }

{ literal-3 }

————————————————————————————————————————

The "STOP" statement suspends program execution. Some options will allow program exe-
cution to resume while others return control to the operating system.

1. The reserved words "STATUS" and "WITH" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. The reserved words "RETURNING" and "GIVING" are interchangeable.

3. The "RUN" clause halts the program without displaying any special message to that
effect.

4. The <literal-3> clause displays the specified text on the "SYSOUT"/"STDOUT" device,
waits for the user to press the Enter key and then — once the key has been pressed —
allows the program to continue execution.

5. The optional "RETURNING" clause provides the opportunity to return a numeric value
to the operating system (a "return code"). The manner in which the return code may
be interrogated by the operating system varies, but Windows can use "%ERRORLEVEL%"
to query the return code while Unix shells such as sh, bash and ksh can query the
return code as "$?". Other Unix shells may have different ways to access return code
values.

6. The "STATUS" clause provides another means of returning a return code. Using the
"STATUS" clause is functionally equivalent to using the "RETURNING" clause.

7. Using the "STATUS" clause without a <literal-2> or <identifier-2> will return a return
code of 0 if the "NORMAL" keyword is used or a 1 if "ERROR" was specified.

8. Your program will always return a return code, even if no "RETURNING" or "STATUS"
clause is specified. In the absence of the use of these clauses, the value in the
"RETURN-CODE" special register (see [Special Registers], page 243) at the time the
"STOP" statement is executed will be used as the return code.

9. Any programmer-defined exit procedure (established via the "CBL_EXIT_PROC" built-

3 June 2014 Chapter 6 - PROCEDURE DIVISION



462 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

in system subroutine (see [CBL EXIT PROC], page 538)) will be executed by "STOP

RUN", but not by "STOP <literal-3>".

10. Valid return code values can be in the range -2147483648 to +2147483647.

11. The three code snippets below are all equivalent — they show different ways in which
a GNU COBOL program may be coded to pass a return code value of 16 back to the
operating system and then halt.

STOP RUN RETURNING 16

MOVE 16 TO RETURN-CODE

STOP RUN

STOP RUN WITH ERROR STATUS 16

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 463

6.17.43. STRING� �
STRING Syntax
 	

STRING

~~~~~~

{ { literal-1 } [ DELIMITED BY { SIZE } ] }...

{ identifier-1 } ~~~~~~~~~ { ~~~~ }

{ literal-2 }

INTO identifier-3 { identifier-2 }

~~~~

[ WITH POINTER identifier-4 ]

~~~~~~~

[ ON OVERFLOW imperative-statement-1 ]

~~~~~~~~

[ NOT ON OVERFLOW imperative-statement-2 ]

~~~ ~~~~~~~~

[ END-STRING ]

~~~~~~~~~~

————————————————————————————————————————

The "STRING" statement is used to concatenate all or a part of one or more strings together,
forming a new string.

1. The reserved words "BY", "ON" and "WITH" are optional and may be included, or not,
at the discretion of the programmer. The presence or absence of these words has no
effect upon the program.

2. All literals and identifiers (except for <identifier-4>) must be explicitly or implicitly
defined with a "USAGE" (see [USAGE], page 186) of "DISPLAY". Any of the identifiers
may be group items.

3. The "POINTER" data item — <identifier-4> — must be a non-edited elementary integer
numeric data item with a value greater than zero.

4. Each <literal-1> / <identifier-1> will be referred to as a source item. The receiving
data item is <identifier-3>.

5. The "STRING" statement’s processing is based upon a ’current character pointer ’. The
initial value of the current character pointer will be the value of <identifier-4> at the
time the "STRING" statement began execution. If no "POINTER" clause is coded, a value
of 1 (meaning "the 1st character position") will be assumed for the current character
pointer’s initial value.

6. For each source item, the contents of the sending item will be copied — character-
by-character — into <identifier-3> at the character position specified by the current
character pointer. After each character is copied, the current character pointer will be

3 June 2014 Chapter 6 - PROCEDURE DIVISION



464 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

incremented by 1 so that it points to the position within <identifier-3> where the next
character should be copied.

7. The "DELIMITED BY" clause specifies how much of each source item will be copied into
<identifier-3>. "DELIMITED BY SIZE" (the default if no "DELIMITED BY" clause is
specified) causes the entire contents of the source item to be copied into <identifier-3>.

8. Using "DELIMITED BY <literal-2>" or "DELIMITED BY <identifier-2>" causes
only the contents of the source item up to but not including the character sequence
specified by the literal or identifier to be copied.

9. "STRING" processing will cease when one of the following occurs:

A. The initial value of the current character pointer is less than 1 or greater than the
number of characters in <identifier-3>, or. . .

B. The value of the current character pointer exceeds the size of <identifier-3> at the
point the STRING statement wants to copy a character into <identifier-3>, or. . .

C. All sending items have been fully processed

10. If event (A) occurs, <identifier-3> will remain unchanged.

11. The occurrence of either event (A) or (B) triggers what is referred to as an ’overflow
condition’.

12. The <identifier-3>) is neither automatically initialized (to spaces or any other value) at
the start of a "STRING" statement nor will it be space-filled should the total number of
sending item characters copied into it be less than its size. You may explicitly initialize
<identifier-3> yourself via the "INITIALIZE" (see [INITIALIZE], page 399) or "MOVE"
(see [MOVE], page 414) statements before executing the "STRING" if you wish.

13. The optional "ON OVERFLOW" and "NOT ON OVERFLOW" clauses may be used to detect
and react to the occurrence or not, respectively, of an overflow condition. See [ON
OVERFLOW + NOT ON OVERFLOW], page 239, for additional information.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 465

6.17.44. SUBTRACT

6.17.44.1. SUBTRACT FROM� �
SUBTRACT FROM Syntax
 	

SUBTRACT { literal-1 }... FROM { identifier-2

~~~~~~~~ { identifier-1 } ~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-SUBTRACT ]

~~~~~~~~~~~~

————————————————————————————————————————

This format of the "SUBTRACT" statement generates the arithmetic sum of all arguments
that appear before the "FROM" (<identifier-1> or <literal-1>) and subtracts that sum from
each <identifier-2>.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items.

3. <literal-1> must be a numeric literal.

4. The optional "ROUNDED" (see [ROUNDED], page 240) clause available to each

3 June 2014 Chapter 6 - PROCEDURE DIVISION



466 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

<identifier-2> will control how non-integer results will be saved.

5. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 239, for additional information.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 467

6.17.44.2. SUBTRACT GIVING� �
SUBTRACT GIVING Syntax
 	

SUBTRACT { literal-1 }... FROM identifier-2

~~~~~~~~ { identifier-1 } ~~~~

GIVING { identifier-3

~~~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ] }...

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-SUBTRACT ]

~~~~~~~~~~~~

————————————————————————————————————————

The "SUBTRACT GIVING" statement generates the arithmetic sum of all arguments that ap-
pear before the "FROM" (<identifier-1> or <literal-1>), subtracts that sum from the contents
of <identifier-2> and then replaces the contents of the identifiers listed after the "GIVING"

(<identifier-3>) with that result.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be numeric unedited data items.

3. <literal-1> must be a numeric literal.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



468 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4. <identifier-3> must be a numeric (edited or unedited) data item.

5. The optional "ROUNDED" (see [ROUNDED], page 240) clause available to each
<identifier-2> will control how non-integer results will be saved.

6. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to
detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 239, for additional information.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 469

6.17.44.3. SUBTRACT CORRESPONDING� �
SUBTRACT CORRESPONDING Syntax
 	

SUBTRACT CORRESPONDING identifier-1 FROM identifier-2

~~~~~~~~ ~~~~

[ ROUNDED [ MODE IS { AWAY-FROM-ZERO } ] ]

~~~~~~~ ~~~~ { ~~~~~~~~~~~~~~ }

{ NEAREST-AWAY-FROM-ZERO }

{ ~~~~~~~~~~~~~~~~~~~~~~ }

{ NEAREST-EVEN }

{ ~~~~~~~~~~~~ }

{ NEAREST-TOWARD-ZERO }

{ ~~~~~~~~~~~~~~~~~~~ }

{ PROHIBITED }

{ ~~~~~~~~~~ }

{ TOWARD-GREATER }

{ ~~~~~~~~~~~~~~ }

{ TOWARD-LESSER }

{ ~~~~~~~~~~~~~ }

{ TRUNCATION }

~~~~~~~~~~

[ ON SIZE ERROR imperative-statement-1 ]

~~~~ ~~~~~

[ NOT ON SIZE ERROR imperative-statement-2 ]

~~~ ~~~~ ~~~~~

[ END-SUBTRACT ]

~~~~~~~~~~~~

————————————————————————————————————————

The "SUBTRACT CORRESPONDING" statement generates code equivalent to individual
"SUBTRACT FROM" statements for corresponding matches of data items found subordinate
to the two identifiers.

1. The reserved words "IS" and "ON" are optional and may be included, or not, at the
discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. Both <identifier-1> and <identifier-2> must be group items.

3. See [CORRESPONDING], page 236, for information on how corresponding matches
will be found between <identifier-1> and <identifier-2>.

4. The optional "ROUNDED" (see [ROUNDED], page 240) clause available to each
<identifier-2> will control how non-integer results will be saved.

5. The optional "ON SIZE ERROR" and "NOT ON SIZE ERROR" clauses may be used to

3 June 2014 Chapter 6 - PROCEDURE DIVISION



470 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

detect and react to the failure or success, respectively, of an attempt to perform a
calculation. In this case, failure is defined as being an <identifier-2> with an insufficient
number of digit positions available to the left of any implied decimal point. See [ON
SIZE ERROR + NOT ON SIZE ERROR], page 239, for additional information.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 471

6.17.45. SUPPRESS� �
SUPPRESS Syntax
 	

SUPPRESS PRINTING

~~~~~~~~

————————————————————————————————————————

The "SUPPRESS" statement causes the presentation of a report group to be suppressed.

1. The reserved word "PRINTING" is optional and may be included, or not, at the discretion
of the programmer. The presence or absence of this word has no effect upon the
program.

2. This statement may only appear within a "USE BEFORE REPORTING" procedure (in
"DECLARATIVES" (see [DECLARATIVES], page 208)).

3. "SUPPRESS" only prevents the presentation of the report group within whose "USE

BEFORE REPORTING" procedure the statement occurs.

4. This statement must be executed each time presentation of the report group is to be
suppressed.

5. When a report group’s presentation is suppressed, none of the following operations for
the report will take place:

A. Actual presentation of the report group in question.

B. Processing of any "LINE" (see [LINE], page 153) clauses within the report group
in question.

C. Processing of the "NEXT GROUP" (see [NEXT GROUP], page 156) clause (if any)
within the report group in question.

D. Any modification to the "LINE-COUNTER" special register (see [Special Registers],
page 243).

E. Any modification to the "PAGE-COUNTER" special register.

3 June 2014 Chapter 6 - PROCEDURE DIVISION



472 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.46. TERMINATE� �
TERMINATE Syntax
 	

TERMINATE report-name-1...

~~~~~~~~~

————————————————————————————————————————

The "TERMINATE" statement causes the processing of the specified report(s) to be completed.

1. Each <report-name-1> must be the name of a report having an "RD" (see [REPORT
SECTION], page 107) defined for it.

2. The specified report name(s) must be currently initiated (via "INITIATE" (see
[INITIATE], page 404)) and cannot yet have been terminated.

3. The "TERMINATE" statement will present each "CONTROL FOOTING" (if any), in reverse
sequence of the control hierarchy, starting with the most minor up to "FINAL" (if
any). During the presentation of these groups and the processing of any "USE BEFORE

REPORTING" procedures for those groups, the prior set of control data item values will
be available, as though a control break had been detected at the most major control
data name.

4. During the presentation of the "CONTROL FOOTING" groups, any necessary "PAGE

FOOTING" and "PAGE HEADING" groups will be presented as well.

5. Finally,the "REPORT FOOTING" group, if any, will be presented.

6. If an "INITIATE" is followed by a "TERMINATE" with no intervening "GENERATE" (see
[GENERATE], page 391) statements (all pertaining to the same report, of course), no
report groups will be presented to the output file.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 473

6.17.47. TRANSFORM� �
TRANSFORM Syntax
 	

TRANSFORM identifier-1 FROM { literal-1 } TO { literal-2 }

~~~~~~~~~ ~~~~ { identifier-2 } ~~ { identifier-3 }

————————————————————————————————————————

The "TRANSFORM" statement scans a data item performing a series of monoalphabetic sub-
stitutions, defined by the arguments before and after the "TO" clause.

1. Both <literal-1> and/or <literal-2> must be alphanumeric literals.

2. All of <identifier-1>, <identifier-2> and <identifier-3> must either be group items or
alphanumeric data items. Numeric data items with a "USAGE" (see [USAGE], page 186)
of "DISPLAY" are accepted, but will generate warning messages from the compiler.

3. The "TRANSFORM" statement will replace characters within <identifier-1> that are found
in the string specified before the "TO" keyword with the corresponding characters from
the string specified after the "TO" keyword.

4. This statement exists within GNU COBOL to provide compatibility with COBOL pro-
grams written to pre-1985 standards. The "TRANSFORM" statement was made obsolete
in the 1985 standard of COBOL, having been replaced by the "CONVERTING" clause of
the "INSPECT" statement (see [INSPECT], page 405). New programs should be coded
to use "INSPECT CONVERTING" rather than "TRANSFORM".

3 June 2014 Chapter 6 - PROCEDURE DIVISION



474 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

6.17.48. UNLOCK� �
UNLOCK Syntax
 	

UNLOCK filename-1 RECORD|RECORDS

~~~~~~

————————————————————————————————————————

This statement synchronizes any as-yet unwritten file I/O buffers to the specified file (if
any) and releases any record locks held for records belonging to <file-name-1>.

1. The reserved words "RECORD" and "RECORDS" are optional and may be included, or
not, at the discretion of the programmer. The presence or absence of these words has
no effect upon the program.

2. If <file-name-1> is a Sort/Merge work file, no action will be taken.

3. Not all GNU COBOL implementations support locking. Whether they do or not de-
pends upon the operating system they were built for and the build options that were
used when GNU COBOL was generated. When a program using one of those GNU
COBOL implementations issues an UNLOCK, it will ignored. There will be no compiler
message issued. Buffer syncing, if needed, will still occur.

4. See [Record Locking], page 233, for additional information on record locking.

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 475

6.17.49. UNSTRING� �
UNSTRING Syntax
 	

UNSTRING identifier-1

~~~~~~~~

DELIMITED BY { [ ALL ] literal-1 } [ OR { [ ALL ] literal-2 } ]...

~~~~~~~~~ { ~~~ } ~~ { ~~~ }

{ identifier-2 } { identifier-3 }

INTO { identifier-4

~~~~ [ DELIMITER IN identifier-5 ] [ COUNT IN identifier-6 ] }...

~~~~~~~~~ ~~~~~

[ WITH POINTER identifier-7 ]

~~~~~~~

[ TALLYING IN identifier-8 ]

~~~~~~~~

[ ON OVERFLOW imperative-statement-1 ]

~~~~~~~~

[ NOT ON OVERFLOW imperative-statement-2 ]

~~~ ~~~~~~~~

[ END-UNSTRING ]

~~~~~~~~~~~~

————————————————————————————————————————

The "UNSTRING" statement parses a string, extracting any number of substrings from it.

1. The reserved words "BY", "IN" and "ON" are optional and may be included, or not, at
the discretion of the programmer. The presence or absence of these words has no effect
upon the program.

2. <identifier-1> through <identifier-5> must be explicitly or implicitly defined with a
"USAGE" (see [USAGE], page 186) of "DISPLAY". Any of those identifiers may be
group items.

3. Both <literal-1> and <literal-2> must be alphanumeric literals.

4. Each of <identifier-6>, <identifier-7> and <identifier-8> must be elementary non-edited
integer numeric items.

5. At the time the "UNSTRING" statement begins execution, <identifier-7> must have a
value greater than 0.

6. <identifier-1> will be referred to as the ’source string ’ and each <identifier-4> will be
referred to as a ’destination field ’ in the following discussions.

7. The "UNSTRING" statement’s processing is based upon a ’current character pointer ’,
the initial value of which will be the value of <identifier-7> at the time the "UNSTRING"

3 June 2014 Chapter 6 - PROCEDURE DIVISION



476 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

statement began execution. If no "POINTER" clause is coded, a value of 1 (meaning
"the 1st character position") will be assumed for the current character pointer’s initial
value.

8. The source string will be parsed into substrings starting from the current character
pointer position. Substrings are identified by using the various delimiter strings speci-
fied on the "DELIMITED BY" clause as inter-substring separators.

9. Using the "ALL" option allows a delimiter sequence to be an arbitrarily long sequence
of occurrences of the delimiter literal whereas its absence treats each occurrence as a
separate delimiter. When multiple delimiters are specified, they will be looked for in
the source string in the sequence in which they are coded.

10. Two consecutive delimiter sequences will identify a null substring.

11. Identified substrings will be moved into each destination field in the sequence they
are identified; values moved into a destination field will be truncated if the substring
length exceeds the destination field length, or padded with spaces if the destination field
length exceeds the substring length. Both truncation and padding will be controlled
by the presence or absence of a "JUSTIFIED" (see [JUSTIFIED], page 149) clause on
the destination field.

12. Each destination field may have an optional "DELIMITER" clause. If a "DELIMITER"

clause is specified, <identifier-5> will have the delimiter character string used to identify
the substring for the destination field moved into it. If a destination field was not altered
(because an insufficient number of substrings were identified), <identifier-5> for that
destination field will also be unchanged.

13. Each destination field may have an optional "COUNT" clause. If a "COUNT" clause
is specified, <identifier-6> will have the size of the substring (in characters) for the
destination field moved into it. If a destination field was not altered (because an
insufficient number of substrings were identified), <identifier-6> for that destination
field will also be unchanged.

14. If a "TALLYING" clause is coded, <identifier-8> will be incremented by 1 each time a
destination field is populated.

15. None of <identifier-4>, <identifier-5>, <identifier-6>, <identifier-7> or <identifier-8>
are initialized by the "UNSTRING" statement. You need to do that yourself via a "MOVE"
(see [MOVE], page 414) or "INITIALIZE" statement (see [INITIALIZE], page 399).

16. "UNSTRING" processing will cease when one of the following occurs:

A. The initial value of the current character pointer is less than 1 or greater than the
number of character positions in <identifier-1>, or. . .

B. All destination fields have been fully processed

17. If event (A) occurs, none of the destination field contents (or the contents of their
"DELIMITER" or <COUNT> identifiers) will be changed.

18. An ’overflow ’ condition exists if either event (A) occurs, or if event (B) occurs with at

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 477

least one character position in <identifier-1> not having been processed.

19. The optional "ON OVERFLOW" and "NOT ON OVERFLOW" clauses may be used to detect
and react to the occurrence or not, respectively, of an overflow condition. See [ON
OVERFLOW + NOT ON OVERFLOW], page 239, for additional information.

The following sample program illustrates the "UNSTRING" statement statement.

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMOUNSTRING.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Full-Name PIC X(40).

01 Parsed-Info.

05 Last-Name PIC X(15).

05 First-Name PIC X(15).

05 MI PIC X(1).

05 Delim-LN PIC X(1).

05 Delim-FN PIC X(1).

05 Delim-MI PIC X(1).

05 Count-LN BINARY-CHAR.

05 Count-FN BINARY-CHAR.

05 Count-MI BINARY-CHAR.

05 Tallying-Ctr BINARY-CHAR.

PROCEDURE DIVISION.

P1. PERFORM UNTIL EXIT

DISPLAY "Enter Full Name (null quits):"

WITH NO ADVANCING

ACCEPT Full-Name

IF Full-Name = SPACES

EXIT PERFORM

END-IF

INITIALIZE Parsed-Info

UNSTRING Full-Name

DELIMITED BY ", "

OR ","

OR ALL SPACES

INTO Last-Name

DELIMITER IN Delim-LN

COUNT IN Count-LN

First-Name

DELIMITER IN Delim-FN

COUNT IN Count-FN

MI

DELIMITER IN Delim-MI

COUNT IN Count-MI

3 June 2014 Chapter 6 - PROCEDURE DIVISION



478 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

TALLYING Tallying-Ctr

DISPLAY "First-Name=" First-Name

" Delim=’" Delim-FN

"’ Count=" Count-FN

DISPLAY "MI =" MI " "

" Delim=’" Delim-MI

"’ Count=" Count-MI

DISPLAY "Last-Name =" Last-Name

" Delim=’" Delim-LN

"’ Count=" Count-LN

DISPLAY "Tally= " Tallying-Ctr

END-PERFORM

DISPLAY "Bye!"

STOP RUN .

The following is sample output from the program:

Enter Full Name (null quits):Cutler, Gary L

First-Name=Gary Delim=’ ’ Count=+004

MI =L Delim=’ ’ Count=+001

Last-Name =Cutler Delim=’,’ Count=+006

Tally= +003

Enter Full Name (null quits):Snoddgrass,Throckmorton,P

First-Name=Throckmorton Delim=’,’ Count=+012

MI =P Delim=’ ’ Count=+001

Last-Name =Snoddgrass Delim=’,’ Count=+010

Tally= +003

Enter Full Name (null quits):Munster Herman

First-Name=Herman Delim=’ ’ Count=+006

MI = Delim=’ ’ Count=+000

Last-Name =Munster Delim=’ ’ Count=+007

Tally= +002

Enter Full Name (null quits):

Bye!

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 479

6.17.50. WRITE� �
WRITE Syntax
 	

WRITE record-name-1

~~~~~

[ FROM { literal-1 } ]

~~~~ { identifier-1 }

[ WITH [ NO ] LOCK ]

~~ ~~~~

[ { BEFORE } ADVANCING { { literal-2 } LINE|LINES } ]

{ ~~~~~~ } { { identifier-2 }

{ AFTER } { PAGE }

~~~~~ { ~~~~ }

{ mnemonic-name-1 }

[ AT END-OF-PAGE|EOP imperative-statement-1 ]

~~~~~~~~~~~ ~~~

[ NOT AT END-OF-PAGE|EOP imperative-statement-2 ]

~~~ ~~~~~~~~~~~ ~~~

[ INVALID KEY imperative-statement-3 ]

~~~~~~~

[ NOT INVALID KEY imperative-statement-4 ]

~~~ ~~~~~~~

[ END-WRITE ]

~~~~~~~~~

————————————————————————————————————————

The "WRITE" statement writes a new record to an open file.

1. The reserved words "ADVANCING", "AT", "KEY", "LINE", "LINES" and "WITH" are op-
tional and may be included, or not, at the discretion of the programmer. The presence
or absence of these words has no effect upon the program.

2. The reserved words "END-OF-PAGE" and "EOP" are interchangeable.

3. The <record-name-1> specified on the statement must be defined as an 01-level record
subordinate to the File Description ("FD" (see [File/Sort-Description], page 94)) of a
file that is currently open for "OUTPUT" (see [File OPEN Modes], page 421), "EXTEND"
or "I-O".

4. The optional "FROM" clause will cause <literal-1> or <identifier-1> to be automatically
moved into <record-name-1> prior to writing <record-name-1>’s contents to the ap-
propriate file. If this clause is not specified, it is the programmer’s responsibility to
populate <record-name-1> with the desired data prior to executing the "WRITE".

3 June 2014 Chapter 6 - PROCEDURE DIVISION



480 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5. The optional "LOCK" options may be used to manually control access to the just-
written record by other programs while this program is running. See [Record Locking],
page 233, to review the various record locking behaviors.

6. The optional "INVALID KEY" and "NOT INVALID KEY" clauses may be used when writ-
ing to relative or indexed files to detect and react to the failure (non-zero file status
code) or success (00 file status code), respectively, of the statement. See [File Status
Codes], page 76, for additional information.

7. When "WRITE" is used against an "ORGANIZATION LINE SEQUENTIAL" (see
[ORGANIZATION LINE SEQUENTIAL], page 80) file, with or without the "LINE

ADVANCING" (see [LINE ADVANCING], page 11) option, an end-of-record delimiter
character sequence will be written to the file to signify where one record ends and the
next record begins. This delimiter sequence will be either of the following:

• A line-terminator sequence consisting of an ASCII carriage-return/line-feed char-
acter sequence (X’0D0A’) if you are running a MinGW or native Windows build
of GNU COBOL

• A line-terminator sequence consisting of an ASCII line-feed character (X’0A’) if
you are running a Cygwin, Linix, Unix or OSX build of GNU COBOL

8. The following points pertain to the use (or not) of the "ADVANCING" clause:

A. Using this clause with any organization other than "ORGANIZATION LINE

SEQUENTIAL" will either be rejected outright by the compiler (relative or indexed
files) or may introduce unwanted characters into the file ("ORGANIZATION
SEQUENTIAL" (see [ORGANIZATION SEQUENTIAL], page 78)).

B. If no "ADVANCING" clause is specified on a "WRITE" to a line-advancing file, "AFTER
ADVANCING 1 LINE" will be assumed; on other than line-advancing files, "BEFORE
ADVANCING 1 LINE" will be assumed.

C. When "BEFORE ADVANCING" is used (or implied), the record is written to the file
before the "ADVANCING" action writes line-terminator characters to the file.

D. If "AFTER ADVANCING" is used (or implied), the "ADVANCING" action writes line-
terminator characters to the file and then the record data is written to the file.

E. The "ADVANCING n LINES" clause will introduce the specified number of
line-terminator character sequences into the file either before the written record
("AFTER ADVANCING") or after the written record ("BEFORE ADVANCING").

F. If the "LINAGE" (see [File/Sort-Description], page 94) clause is absent from the
file’s "FD":

a. The "ADVANCING PAGE" clause will introduce an ASCII formfeed character
into the file either before the written record ("AFTER PAGE") or after the
written record ("BEFORE PAGE").

b. Management of areas on the printed page such as top-of page headers, bottom-

Chapter 6 - PROCEDURE DIVISION 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 481

of-page footers, dealing with "full page" situations and the like are the com-
plete responsibility of the programmer.

G. If the LINAGE clause is present in the file’s "FD":

a. The "ADVANCING PAGE" clause will introduce the appropriate number of line-
terminator character sequences into the file either before the written record
("AFTER ADVANCING") or after the written record ("BEFORE ADVANCING") so
as to force the printer to automatically advance to a new sheet of paper when
the file prints. No formfeed characters will be generated when "LINAGE" is
specified — instead, it is assumed that the printer to which the report will be
printed will be loaded with special forms that conform to the specifications
defined by the "LINAGE" clause.

b. Management of areas on the printed page such as top-of page headers, bottom-
of-page footers, dealing with "full page" situations and the like are now the
joint responsibility of the programmer and the GNU COBOL run-time li-
brary, which provides tools such as the "LINAGE-COUNTER" special register
(see [Special Registers], page 243) and the "END-OF-PAGE" clause to deal with
page formatting issues.

c. The "AT END-OF-PAGE" clause will be triggered, thus executing <imperative-
statement-1> (see [Imperative Statement], page 593), if the "WRITE" statement
introduces a data line or line-feed character into the file at a line position
within the Page Footer area defined by the "LINAGE" clause. The "NOT AT

END-OF-PAGE" clause will be triggered (thus executing <imperative-statement-
2>) if no end-of-page condition occurred during the "WRITE".

————————————————————
End of Chapter 6 — PROCEDURE DIVISION

3 June 2014 Chapter 6 - PROCEDURE DIVISION





GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 483

7. Report Writer Usage Notes

7.1. RWCS Lexicon

There are a number of terms that describe various aspects of the operation of the Report
Writer Control System (RWCS). Understanding the meanings of these terms is vital to
developing an understanding of the subject.

Control Break

An event that is triggered when a control field on an RWCS-generated report
changes value. It is these events that trigger the generation of control heading
and control footing groups.

Control Field

A field of data being presented within a detail group; as the various detail
groups that comprise the report are presented, they are presumed to appear
in sorted sequence of the control fields contained within them. As an example,
a department-by-department sales report for a chain of stores would probably
be sorted by store number and – within like store numbers – be further sorted
by department number. The store number will undoubtedly serve as a control
field for the report, allowing control heading groups to be presented before each
sequence of detail groups for the same store and control footing groups to be
presented after each such sequence.

Control Footing

A report group that appears immediately after one or more detail groups of
an RWCS-generated report. Such are produced automatically as a result of a
control break. This type of group typically serves as a summary of the detail
group(s) that preceed it, as might be the case on a sales report for a chain
of stores, where the detail groups documenting sales for each department (one
department per detail group) from the same store might be followed by a control
footing that provides a summation of the department-by-department sales for
that store.

Control Heading

A report group that appears immediately before one or more detail groups of
an RWCS-generated report. Such are produced automatically as a result of a
control break. This type of group typically serves as an introduction to the
detail group(s) that follow, as might be the case on a sales report for a chain
of stores, where the detail groups documenting sales for each department (one
department per detail group) from the same store might be preceeded by a
control heading that states the full name and location of the store.

3 June 2014 Chapter 7 - Report Writer Usage Notes



484 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Detail Group

A report group that contains the detailed data being presented for the report.

Page Footing

A report group that appears at the bottom of every page of an RWCS-generated
report. Information typically found within such a report group might be:

• The date the report was generated

• The current page number of the report

Page Heading

A report group that appears at the top of every page of an RWCS-generated
report. Information typically found sithin such a report group might be:

• A title for the report

• The date the report was generated

• The current page number of the report

• Column headings describing the fields within the detail group(s)

Report Footing

A report group that occurs only once in an RWCS-generated report — as the
very last presented report group of the report. These typically serve as a visual
indication that the report is finished.

Report Group

One or more consecutive lines on a report that serve a common informational
purpose or function. For example, lines of text that are displayed at the top or
bottom of every printed page of a report.

Report Heading

A report group that occurs only once in an RWCS-generated report — as the
very first presented report group of the report. These typically serve as an
introduction to the report.

7.2. The Anatomy of a Report

Every report has the same basic structure, as shown here, even though not all reports will
have all of the groups shown. In fact, it is a very unusual report indeed that actually has
every one of these groups:

• REPORT HEADING

• PAGE HEADING [1]

• CONTROL HEADING(S) [2]

Chapter 7 - Report Writer Usage Notes 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 485

• DETAIL GROUP(S) [2]

• CONTROL FOOTING(S) [2]

• "FINAL" CONTROL FOOTING

• PAGE FOOTING [1]

• REPORT FOOTING

[1] Presented throughout the report, as needed
[2] Repeated, as needed

These groups will be presented (printed) across however many formatted pages are necessary
to hold them. No single report group will be allowed to cross page boundaries.

The management of paging, enforcement of the "groups cannot span pages" rule and almost
every aspect of report generation are handled entirely by the Report Writer Control System.

7.3. The Anatomy of a Report Page

Each page of a report is divided into as many as five (5) areas, as shown in the following
diagram.

_______________________________

| |

| Top-of-page Unuseable Area |—# Lines: LINES AT TOP (LINAGE)
|_______________________________|

| |—Line #: HEADING (RD)
| Heading Area |

|_______________________________|—Line #: FIRST DETAIL (RD) - 1
| |—Line #: FIRST DETAIL (RD)
| |

| Body Area |—Line #: LAST CONTROL HEADING (RD)
| |—Line #: LAST DETAIL (RD)
|_______________________________|—Line #: FOOTING (RD)
| |—Line #: FOOTING (RD) + 1
| Footing Area |

|_______________________________|

| |

| Bottom-of-page Unuseable Area |—# Lines: LINES AT BOTTOM (LINAGE)
|_______________________________|

When describing a report via the "RD" (see [REPORT SECTION], page 107) clause, the
total number of usable lines are specified as the "PAGE LIMIT" value; this value is the sum
of the number of lines contained in the Heading, Body and Footing Areas.

3 June 2014 Chapter 7 - Report Writer Usage Notes



486 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

The unusable areas of a page (if any) will appear above and below that usable area. You
don’t specify the unusable area in the "RD", but rather using a "LINAGE" (see [File/Sort-
Description], page 94) clause in the "FD" of the file the report is "attached" to.

The various report groups will be presentable in the various areas of a page, as follows:

"REPORT HEADING"

Heading Area — An exception to this is the situation where the report heading
report group contains the "NEXT GROUP NEXT PAGE" (see [NEXT GROUP],
page 156) option; in those cases, the report heading will be presented on a page
by itself (anywhere on that page) at the beginning of the report.

"PAGE HEADING"

Heading Area

"CONTROL HEADING"

Body Area, but no line of a control heading is allowed past the line number
specified by "LAST CONTROL HEADING"

"DETAIL"

Body Area, but no line of a detail report group is allowed past the line number
specified by "LAST DETAIL"

"CONTROL FOOTING"

Body Area, but no line of a control footing report group is allowed past the line
number specified by "FOOTING"

"PAGE FOOTING"

Footing Area

"REPORT FOOTING"

Footing Area — An exception to this is the situation where the report foot-
ing report group contains the "NEXT PAGE" option in its "LINE" (see [LINE],
page 153) clause; in those cases, the report footing will be presented on a page
by itself at the end of the report.

7.4. How RWCS Builds Report Pages

A report created via a "WRITE" statement (see [WRITE], page 479) will contain carriage-
control information. Most notably, ASCII form-feed characters (X’0C’) will be written to
the report file to support the statement’s "ADVANCING PAGE" option. Whether the data for
a report line created via "ADVANCING PAGE" occurs before or after the form-feed character
depends upon whether the programmer coded "WRITE <record-name> BEFORE ADVANCING

PAGE" or "WRITE <record-name> AFTER ADVANCING PAGE", respectively.

Chapter 7 - Report Writer Usage Notes 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 487

The GNU COBOL implementation of RWCS does not issue any carriage-control information
to the report files it produces — instead, it relies upon the information coded in the "RD" for
the report (specifically the "PAGE LIMITS" and related options) and it’s internally-generated
and managed "LINE-COUNTER" special register (see [Special Registers], page 243) for the
report to know when to issue any blank lines to the file to fill-out the end of a printed page.

Because this is the way the GNU COBOL RWCS works, in order to design an RWCS-
generated report you’ll need to know answers to the following questions:

1. What printer(s) will the report be printed on?

2. What paper orientation will you use, — Landscape (long edge of the paper at the top
and bottom of page), or Portrait (long edge of the paper at the left and right of page)?

3. What tool will be used to print the report (direct printing to the device, notepad.exe,
MS-Word, . . . )?

4. What font and font size will be used for the report when it is printed? RWCS-generated
reports will assume that a fixed-width font such as "Courier", "Lucida Console", "Con-
solas" and the like will be used to print, as variable-pitch fonts would make the proper
alignment of columns of data on reports virtually impossible.

5. When unprintable area exists at all four margins of the paper? These are generally
caused by the printer itself or by its software driver.

6. What is the maximum number of lines per page that may be printed on a single sheet
of paper?

7. What is the maximum number of characters that may be printed on one line?

Once you know the answer to questions 1-4, you may easily determine the answers to the
remaining questions as follows:

1. Prepare a text file containing 100 or so records, each consisting of a numeric scale
("123456789012345678901234". . . ).

2. Print the file in a manner consistent with your answers to questions 1-4.

3. Add any necessary additional digits to each record in your test file (if lines weren’t
full) or remove characters from the end of each record if lines wrapped. If you made
changes, reprint the file.

4. Now that you know exactly how long each record may be, add additional records and
reprint. Continue until printing overflows to a second page.

5. The first page you print is now a perfect template to use when designing reports — it
shows, given the answers to questiuons 1-4, every available printable character position
on a page! The number of lines printed on that page becomes your "PAGE LIMIT" value
for the "RD".

The remaining "PAGE LIMIT" values can be established as required by your report(s).

3 June 2014 Chapter 7 - Report Writer Usage Notes



488 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Using <identifier> rather than <integer> specifications in the "RD" will give your program
the ability — at run time — to accommodate multiple printers, fonts, font sizes and paper
orientation. Just follow the above steps for each combination you wish your program to
support.

7.5. Control Hierarchy

Every report that employs control breaks has a natural hierarchy of those control breaks
based upon the manner in which the data the report is being generated from is sorted. This
concept is best understood using an example which assumes a COBOL program to process
sales data collected from every computerized cash register across a chain of stores having
multiple departments is being developed.

The application that collects data from the various cash registers at each store will generate
data records that look like this to a COBOL program:

01 Sales-For-Register.

05 Sales-Date PIC 9(8).

05 Time-Collected PIC 9(6).

05 Register-Number PIC 9(7).

05 Store-Number PIC 9(3).

05 Department-Number PIC 9(3).

05 Total-Sales PIC 9(6)V99.

Your task is to develop a report that shows the sales total from each cash register and
summarizes those sales by department within each store, by store and also generates a total
sales figure for the day across all stores.

To accomplish this, you will use a "SORT" statement (see [SORT], page 453) to sort the file
of cash register sales data into:

1. Ascending sequence of store number

2. Within each store, data will be sorted into ascending sequence of department number

3. If there are multiple cash registers in a particular department of a specific store, the
data needs to be further sorted so that the cash registers are ordered in sequence of
their register number.

So, assuming a sort file has been defined and it’s record layout (essentially a mirror of the
raw data file) is defined as follows:

01 Sorted-Sales-For-Register.

05 Sorted-Sales-Date PIC 9(8).

05 Sorted-Time-Collected PIC 9(6).

05 Sorted-Register-Number PIC 9(7).

05 Sorted-Store-Number PIC 9(3).

05 Sorted-Department-Number PIC 9(3).

Chapter 7 - Report Writer Usage Notes 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 489

05 Sorted-Total-Sales PIC 9(6)V99.

Then the "SORT" statement to accomplish the desired sequencing would be:

SORT SORT-FILE

ASCENDING KEY Sorted-Store-Number

Sorted-Department-Number

Sorted-Register-Number

USING Input-file

OUTPUT PROCEDURE 100-Generate-Report

As a result of the sort, our program might expect to see data somewhat like this (date, time
and sales totals are shown as ". . ."):

+-------------------- Register Number

| +------------- Store Number

| | +---------- Department Number

| | |

...0535240001001...

...0589130001001...

...0625174001001...

...0122234001002...

...0732345001002...

...0003423001003...

...2038774001004...

...0112646002001...

...9963348002002...

...3245677002003...

...4456778002003...

...0002345002004...

Because of the sort, the most-frequently changing value of the three sort keys will be that
of Sorted-Register-Number. This essentially defines the "detail" level of the report.

The next most-frequently changing value is that of Sorted-Department-Number, and the
least-frequently changing value is that of Sorted-Store-Number. remember that the program
should be generating totals each time one of these two values change, plus a grand total
of sales at the end of the report. These three points are the ’Control Break ’ points of the
report.

When the report is defined, it’s "RD" would contain a "CONTROLS ARE" clause that lists the
control breaks in least- to most-frequent sequence of changing. This would be coded as:

"CONTROLS ARE FINAL, Sorted-Store-Number, Sorted-Department-Number"

A FINAL control break only occurs once, at the very end of the report. The "CONTROL

FOOTING" for this break will be the one that produces the grand total of sales for all stores.

3 June 2014 Chapter 7 - Report Writer Usage Notes



490 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

The next break listed on the "CONTROLS" clause will be the one that occurs next most-
frequently (Sorted-Store-Number). This control break will be the one that produces the
summation for each entire store, and will have its own "CONTROL FOOTING".

The next (and last, in this case) break listed on the CONTROLS clause will be the one
that occurs even more frequently (Sorted-Department-Number). The "CONTROL FOOTING"

for this control field will be the one that summarizes sales for each department within a
store.

This sequence of control breaks from least- to most-frequent (in other words, in the order
they occur on the CONTROLS ARE clause) is the ’control hierarchy ’ of the report; control
breaks that occur more frequently than others are said to be at a lower level in the control
hierarchy.

Defining a control hierarchy (via "CONTROLS ARE") that does not match the actual sequence
in which data will be processed is a great way to guarantee a "broken" report. I’ll show
you an example in a later section.

7.6. An Example

This section contains an example of the RWCS at work. The complete program, presented
here, is a stripped-down version of a program I have used to generate a report for a class
I teach on PC hardware. This report will provide benchmark statistics on a variety of
popular AMD and Intel CPUs. The data for the report was obtained from the website www.
cpubenchmark.net in December of 2013. By the time you are reading this, that data will
most likely have become rather out-of-date, but it illustrates RWCS well enough.

7.6.1. Data

Here is the data that the program will be reading. Each record reflects the aggregated
benchmark scoring for one particular CPU, as scores for benchmarks against that CPU
have been reported to the cpubenchmark.net wwebsite by their PassMark benchmark
software. The data consists of four fields. Fields are separated from one another by a single
comma. The descriptions of the fields are as follows:

Benchmark Score

A five-digit number showing the aggregated benchmark scores for the CPU; the
higher this number, the better the CPU performed in benchmark testing.

Vendor

The name of the vendor who makes the CPU. In this data, that will either be
"AMD" (American Micro Devices) or "INTEL".

Family

The 7-character family of CPU products the CPU falls into. This will have
values such as "A4", "A10", "Core i5", "Core i7", etc.

Chapter 7 - Report Writer Usage Notes 3 June 2014

www.cpubenchmark.net
www.cpubenchmark.net
cpubenchmark.net


GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 491

Model

The specific model of CPU within the family.

The first record of data shown below shows that the aggregated score of all benchmarks
reported for the AMD A10-4600M CPU is 3145, as compared to the second record which
shows that the aggregated score reported of all benchmarks reported for the Intel Core-i7-
4960X CPU is 14291.

The following is the complete set of input data used for this example. This is by no means
the complete set of data available at cpubenchmark.net – it is just a representative sample
used for this example. For my class, I give my students a report showing the results for
almost a thousand CPUs.

For the sake of brevity, this document lists the data in three columns.

03145,AMD,A10,4600M 05421,AMD,FX,6100 03917,Intel,Core i5,4300U

14291,Intel,Core i7,4960X 05813,AMD,FX,6120 01743,Intel,Core i5,4300Y

02505,AMD,A10,4655M 06194,AMD,FX,6200 04804,Intel,Core i5,4330M

03449,AMD,A10,4657M 06388,AMD,FX,6300 03604,Intel,Core i5,4350U

04251,AMD,A10,5700 07017,AMD,FX,6350 06282,Intel,Core i5,4430

02758,AMD,A10,5745M 06163,AMD,FX,8100 05954,Intel,Core i5,4430S

03332,AMD,A10,5750M 06605,AMD,FX,8120 06517,Intel,Core i5,4440

03253,AMD,A10,5757M 06845,AMD,FX,8140 07061,Intel,Core i5,4570

04798,AMD,A10,5800B 07719,AMD,FX,8150 06474,Intel,Core i5,4570R

04677,AMD,A10,5800K 08131,AMD,FX,8320 06803,Intel,Core i5,4570S

04767,AMD,A10,6700 09067,AMD,FX,8350 02503,Intel,Core i5,4570T

05062,AMD,A10,6800K 09807,AMD,FX,9370 07492,Intel,Core i5,4670

00677,AMD,A4,1200 10479,AMD,FX,9590 07565,Intel,Core i5,4670K

00559,AMD,A4,1250 03076,Intel,Core i3,3110M 06351,Intel,Core i5,4670T

01583,AMD,A4,3300 03301,Intel,Core i3,3120M 03701,Intel,Core i7,3517U

01237,AMD,A4,3300M 03655,Intel,Core i3,3130M 03449,Intel,Core i7,3517UE

01227,AMD,A4,3305M 03820,Intel,Core i3,3210 04588,Intel,Core i7,3520M

01263,AMD,A4,3310MX 02266,Intel,Core i3,3217U 03912,Intel,Core i7,3537U

01193,AMD,A4,3320M 04219,Intel,Core i3,3220 04861,Intel,Core i7,3540M

01343,AMD,A4,3330MX 03724,Intel,Core i3,3220T 04009,Intel,Core i7,3555LE

01625,AMD,A4,3400 04407,Intel,Core i3,3225 06144,Intel,Core i7,3610QE

01768,AMD,A4,3420 02575,Intel,Core i3,3227U 07532,Intel,Core i7,3610QM

01685,AMD,A4,4300M 01885,Intel,Core i3,3229Y 06988,Intel,Core i7,3612QE

01169,AMD,A4,4355M 04259,Intel,Core i3,3240 06907,Intel,Core i7,3612QM

01919,AMD,A4,5000 03793,Intel,Core i3,3240T 05495,Intel,Core i7,3615QE

01973,AMD,A4,5150M 04414,Intel,Core i3,3245 07310,Intel,Core i7,3615QM

02078,AMD,A4,5300 04757,Intel,Core i3,3250 07759,Intel,Core i7,3630QM

01632,AMD,A4,5300B 03443,Intel,Core i3,4000M 07055,Intel,Core i7,3632QM

02305,AMD,A4,6300 02459,Intel,Core i3,4010U 06516,Intel,Core i7,3635QM

01634,AMD,A6,1450 02003,Intel,Core i3,4010Y 04032,Intel,Core i7,3667U

01964,AMD,A6,3400M 04904,Intel,Core i3,4130 04271,Intel,Core i7,3687U

02101,AMD,A6,3410MX 04041,Intel,Core i3,4130T 03479,Intel,Core i7,3689Y

02078,AMD,A6,3420M 05115,Intel,Core i3,4330 08347,Intel,Core i7,3720QM

02277,AMD,A6,3430MX 05117,Intel,Core i3,4340 08512,Intel,Core i7,3740QM

01995,AMD,A6,3500 03807,Intel,Core i5,3210M 09420,Intel,Core i7,3770

02798,AMD,A6,3600 03995,Intel,Core i5,3230M 09578,Intel,Core i7,3770K

02892,AMD,A6,3620 03126,Intel,Core i5,3317U 09074,Intel,Core i7,3770S

03232,AMD,A6,3650 04101,Intel,Core i5,3320M 08280,Intel,Core i7,3770T

03327,AMD,A6,3670 05902,Intel,Core i5,3330 08995,Intel,Core i7,3820

3 June 2014 Chapter 7 - Report Writer Usage Notes

cpubenchmark.net


492 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

01630,AMD,A6,4400M 05690,Intel,Core i5,3330S 08548,Intel,Core i7,3820QM

01296,AMD,A6,4455M 05781,Intel,Core i5,3335S 09025,Intel,Core i7,3840QM

02440,AMD,A6,5200 03280,Intel,Core i5,3337U 09196,Intel,Core i7,3920XM

01958,AMD,A6,5350M 02252,Intel,Core i5,3339Y 12107,Intel,Core i7,3930K

01878,AMD,A6,5357M 06282,Intel,Core i5,3340 09052,Intel,Core i7,3940XM

01906,AMD,A6,5400B 04327,Intel,Core i5,3340M 12718,Intel,Core i7,3960X

02174,AMD,A6,5400K 05372,Intel,Core i5,3340S 12823,Intel,Core i7,3970X

02384,AMD,A6,6400K 06199,Intel,Core i5,3350P 03992,Intel,Core i7,4500U

02050,AMD,A8,3500M 04314,Intel,Core i5,3360M 04507,Intel,Core i7,4558U

02426,AMD,A8,3510MX 04555,Intel,Core i5,3380M 04892,Intel,Core i7,4600M

02245,AMD,A8,3520M 03589,Intel,Core i5,3427U 04484,Intel,Core i7,4600U

02276,AMD,A8,3530MX 03479,Intel,Core i5,3437U 03680,Intel,Core i7,4610Y

02866,AMD,A8,3550MX 03057,Intel,Core i5,3439Y 04345,Intel,Core i7,4650U

03215,AMD,A8,3800 06442,Intel,Core i5,3450 07352,Intel,Core i7,4700EQ

03217,AMD,A8,3820 06071,Intel,Core i5,3450S 08161,Intel,Core i7,4700HQ

03552,AMD,A8,3850 06576,Intel,Core i5,3470 07946,Intel,Core i7,4700MQ

03682,AMD,A8,3870K 06077,Intel,Core i5,3470S 08002,Intel,Core i7,4702HQ

02709,AMD,A8,4500M 04591,Intel,Core i5,3470T 07647,Intel,Core i7,4702MQ

02193,AMD,A8,4555M 05991,Intel,Core i5,3475S 08066,Intel,Core i7,4750HQ

04052,AMD,A8,5500 06828,Intel,Core i5,3550 07367,Intel,Core i7,4765T

03464,AMD,A8,5500B 06631,Intel,Core i5,3550S 09969,Intel,Core i7,4770

02434,AMD,A8,5545M 06993,Intel,Core i5,3570 10190,Intel,Core i7,4770K

03052,AMD,A8,5550M 07118,Intel,Core i5,3570K 09803,Intel,Core i7,4770S

02935,AMD,A8,5557M 06709,Intel,Core i5,3570S 08803,Intel,Core i7,4770T

04348,AMD,A8,5600K 05414,Intel,Core i5,3570T 10078,Intel,Core i7,4771

04390,AMD,A8,6500 04333,Intel,Core i5,4200M 08567,Intel,Core i7,4800MQ

04719,AMD,A8,6600K 03355,Intel,Core i5,4200U 09969,Intel,Core i7,4820K

04055,AMD,FX,4100 02358,Intel,Core i5,4200Y 09331,Intel,Core i7,4850HQ

04153,AMD,FX,4130 02382,Intel,Core i5,4210Y 09323,Intel,Core i7,4900MQ

04094,AMD,FX,4150 03482,Intel,Core i5,4250U 13620,Intel,Core i7,4930K

04774,AMD,FX,4170 04381,Intel,Core i5,4258U 09754,Intel,Core i7,4930MX

04711,AMD,FX,4300 04663,Intel,Core i5,4288U 10262,Intel,Core i7,4960HQ

05247,AMD,FX,4350 04786,Intel,Core i5,4300M

7.6.2. Program

Here is the program that will be producing the report. Pay attention to how the data is
sorted and how the control hierarchy ("CONTROLS ARE") relates to the "SORT".

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMORWCS.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

REPOSITORY. FUNCTION ALL INTRINSIC.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CPU-FILE ASSIGN TO "CPUDATA.txt"

LINE SEQUENTIAL.

SELECT REPORT-FILE ASSIGN TO "CPUREPORT.txt"

LINE SEQUENTIAL.

SELECT SORT-FILE ASSIGN TO DISK.

DATA DIVISION.

FILE SECTION.

Chapter 7 - Report Writer Usage Notes 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 493

FD CPU-FILE.

01 CPU-REC PIC X(26).

FD REPORT-FILE

REPORT IS CPU-Report.

SD SORT-FILE.

01 SORT-REC.

05 F-SR-Score-NUM PIC 9(5).

05 F-SR-Vendor-TXT PIC X(5).

05 F-SR-Family-TXT PIC X(7).

05 F-SR-Model-TXT PIC X(6).

WORKING-STORAGE SECTION.

01 WS-Date PIC 9(8).

01 WS-Family-Counters.

05 WS-FC-AVE PIC 9(5)V99.

05 WS-FC-Qty BINARY-LONG.

05 WS-FC-Total-NUM BINARY-LONG.

01 WS-Flags.

05 WS-F-EOF PIC X(1).

01 WS-One-Const PIC 9 VALUE 1.

01 WS-Overall-Counters.

05 WS-OC-AVE PIC 9(5)V99.

05 WS-OC-Qty BINARY-LONG.

05 WS-OC-Total-NUM BINARY-LONG.

01 WS-Starz PIC X(44) VALUE ALL ’*’.

01 WS-Vendor-Counters.

05 WS-VC-AVE PIC 9(5)V99.

05 WS-VC-Qty BINARY-LONG.

05 WS-VC-Total-NUM BINARY-LONG.

REPORT SECTION.

RD CPU-Report

CONTROLS ARE FINAL

F-SR-Vendor-TXT

F-SR-Family-TXT

PAGE LIMIT IS 36 LINES

HEADING 1

FIRST DETAIL 5

3 June 2014 Chapter 7 - Report Writer Usage Notes



494 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

LAST DETAIL 36.

01 TYPE IS PAGE HEADING.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Date PIC 9999/99/99.

10 COL 14 VALUE ’CPU Benchmark Scores’.

10 COL 37 VALUE ’Page:’.

10 COL 43 SOURCE PAGE-COUNTER PIC Z9.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Starz PIC X(44).

05 LINE NUMBER PLUS 1.

10 COL 1 VALUE ’**’.

10 COL 6 VALUE ’All CPU Data From cpubenchmark.net’.

10 COL 43 VALUE ’**’.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Starz PIC X(44).

01 TYPE CONTROL HEADING F-SR-Family-TXT.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE F-SR-Vendor-TXT PIC X(6).

10 COL 8 SOURCE F-SR-Family-TXT PIC X(7).

05 LINE NUMBER PLUS 1.

10 COL 1 VALUE ’Family’.

10 COL 9 VALUE ’Model’.

10 COL 16 VALUE ’Benchmark Score (High to Low)’.

05 LINE NUMBER PLUS 1.

10 COL 1 VALUE ’======’.

10 COL 9 VALUE ’======’.

10 COL 16 VALUE ’=============================’.

01 Detail-Line TYPE IS DETAIL.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE F-SR-Family-TXT PIC X(7) GROUP INDICATE.

10 COL 9 PIC X(6) SOURCE F-SR-Model-TXT.

10 COL 16 PIC ZZZZ9 SOURCE F-SR-Score-NUM.

01 End-Family TYPE IS CONTROL FOOTING F-SR-Family-TXT.

05 LINE NUMBER PLUS 1.

10 COL 9 VALUE ’Ave...’.

10 COL 16 PIC ZZZZ9.99 SOURCE WS-FC-AVE.

10 COL 25 VALUE ’(’.

10 COL 26 PIC ZZ9 SUM WS-One-Const.

10 COL 30 VALUE ’Family CPUs)’.

01 End-Vendor TYPE IS CONTROL FOOTING F-SR-Vendor-TXT.

05 LINE NUMBER PLUS 1.

Chapter 7 - Report Writer Usage Notes 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 495

10 COL 9 VALUE ’Ave...’.

10 COL 16 PIC ZZZZ9.99 SOURCE WS-VC-AVE.

10 COL 25 VALUE ’(’.

10 COL 26 PIC ZZ9 SUM WS-One-Const.

10 COL 30 VALUE ’Vendor CPUs)’.

01 End-Overall TYPE IS CONTROL FOOTING FINAL.

05 LINE NUMBER PLUS 1.

10 COL 9 VALUE ’Ave...’.

10 COL 16 PIC ZZZZ9.99 SOURCE WS-OC-AVE.

10 COL 25 VALUE ’(’.

10 COL 26 PIC ZZ9 SUM WS-One-Const.

10 COL 30 VALUE ’CPUs)’.

PROCEDURE DIVISION.

DECLARATIVES.

000-End-Family SECTION.

USE BEFORE REPORTING End-Family.

1. IF WS-FC-Qty > 0

COMPUTE WS-FC-AVE = WS-FC-Total-NUM / WS-FC-Qty

ELSE

MOVE 0 TO WS-FC-AVE

END-IF

MOVE 0 TO WS-FC-Qty

WS-FC-Total-NUM

.

000-End-Vendor SECTION.

USE BEFORE REPORTING End-Vendor.

1. IF WS-VC-Qty > 0

COMPUTE WS-VC-AVE = WS-VC-Total-NUM / WS-VC-Qty

ELSE

MOVE 0 TO WS-VC-AVE

END-IF

MOVE 0 TO WS-VC-Qty

WS-VC-Total-NUM

.

000-End-Overall SECTION.

USE BEFORE REPORTING End-Overall.

1. IF WS-OC-Qty > 0

COMPUTE WS-OC-AVE = WS-OC-Total-NUM / WS-OC-Qty

ELSE

MOVE 0 TO WS-OC-AVE

END-IF

MOVE 0 TO WS-OC-Qty

WS-OC-Total-NUM

.

3 June 2014 Chapter 7 - Report Writer Usage Notes



496 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

END DECLARATIVES.

010-Main SECTION.

1. ACCEPT WS-Date FROM DATE YYYYMMDD

SORT SORT-FILE

ASCENDING KEY F-SR-Vendor-TXT

F-SR-Family-TXT

DESCENDING KEY F-SR-Score-NUM

ASCENDING KEY F-SR-Model-TXT

INPUT PROCEDURE 100-Pre-Process-Data

OUTPUT PROCEDURE 200-Generate-Report

STOP RUN

.

100-Pre-Process-Data SECTION.

1. OPEN INPUT CPU-FILE

PERFORM FOREVER

READ CPU-FILE

AT END

EXIT PERFORM

END-READ

MOVE SPACES TO SORT-REC

UNSTRING CPU-REC DELIMITED BY ’,’

INTO F-SR-Score-NUM,

F-SR-Vendor-TXT,

F-SR-Family-TXT,

F-SR-Model-TXT

RELEASE SORT-REC

END-PERFORM

CLOSE CPU-FILE

.

200-Generate-Report SECTION.

1. INITIALIZE WS-Family-Counters

WS-Flags

OPEN OUTPUT REPORT-FILE

INITIATE CPU-Report

RETURN SORT-FILE

AT END

MOVE ’Y’ TO WS-F-EOF

END-RETURN

PERFORM UNTIL WS-F-EOF = ’Y’

GENERATE Detail-Line

ADD 1 TO WS-FC-Qty

WS-OC-Qty

WS-VC-Qty

ADD F-SR-Score-NUM TO WS-FC-Total-NUM

WS-OC-Total-NUM

Chapter 7 - Report Writer Usage Notes 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 497

WS-VC-Total-NUM

RETURN SORT-FILE

AT END

MOVE ’Y’ TO WS-F-EOF

END-RETURN

END-PERFORM

TERMINATE CPU-Report

CLOSE REPORT-FILE

.

7.6.3. Generated Report Pages

Finally, here’s the report the program generates!

2013/12/24 CPU Benchmark Scores Page: 1

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

AMD A10

Family Model Benchmark Score (High to Low)

====== ====== =============================

A10 6800K 5062

5800B 4798

6700 4767

5800K 4677

5700 4251

4657M 3449

5750M 3332

5757M 3253

4600M 3145

5745M 2758

4655M 2505

Ave... 3817.90 ( 11 Family CPUs)

AMD A4

Family Model Benchmark Score (High to Low)

====== ====== =============================

A4 6300 2305

5300 2078

5150M 1973

5000 1919

3420 1768

4300M 1685

5300B 1632

3400 1625

3300 1583

3330MX 1343

3 June 2014 Chapter 7 - Report Writer Usage Notes



498 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

3310MX 1263

3300M 1237

3305M 1227

3320M 1193

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 2

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

A4 4355M 1169

1200 677

1250 559

Ave... 1484.47 ( 17 Family CPUs)

AMD A6

Family Model Benchmark Score (High to Low)

====== ====== =============================

A6 3670 3327

3650 3232

3620 2892

3600 2798

5200 2440

6400K 2384

3430MX 2277

5400K 2174

3410MX 2101

3420M 2078

3500 1995

3400M 1964

5350M 1958

5400B 1906

5357M 1878

1450 1634

4400M 1630

4455M 1296

Ave... 2220.22 ( 18 Family CPUs)

AMD A8

Family Model Benchmark Score (High to Low)

====== ====== =============================

A8 6600K 4719

6500 4390

5600K 4348

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 3

********************************************

Chapter 7 - Report Writer Usage Notes 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 499

** All CPU Data From cpubenchmark.net **

********************************************

A8 5500 4052

3870K 3682

3850 3552

5500B 3464

3820 3217

3800 3215

5550M 3052

5557M 2935

3550MX 2866

4500M 2709

5545M 2434

3510MX 2426

3530MX 2276

3520M 2245

4555M 2193

3500M 2050

Ave... 3148.68 ( 19 Family CPUs)

AMD FX

Family Model Benchmark Score (High to Low)

====== ====== =============================

FX 9590 10479

9370 9807

8350 9067

8320 8131

8150 7719

6350 7017

8140 6845

8120 6605

6300 6388

6200 6194

8100 6163

6120 5813

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 4

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

FX 6100 5421

4350 5247

4170 4774

4300 4711

4130 4153

4150 4094

3 June 2014 Chapter 7 - Report Writer Usage Notes



500 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4100 4055

Ave... 6457.00 ( 19 Family CPUs)

Ave... 3448.86 ( 84 Vendor CPUs)

Intel Core i3

Family Model Benchmark Score (High to Low)

====== ====== =============================

Core i3 4340 5117

4330 5115

4130 4904

3250 4757

3245 4414

3225 4407

3240 4259

3220 4219

4130T 4041

3210 3820

3240T 3793

3220T 3724

3130M 3655

4000M 3443

3120M 3301

3110M 3076

3227U 2575

4010U 2459

3217U 2266

4010Y 2003

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 5

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

Core i3 3229Y 1885

Ave... 3677.76 ( 21 Family CPUs)

Intel Core i5

Family Model Benchmark Score (High to Low)

====== ====== =============================

Core i5 4670K 7565

4670 7492

3570K 7118

4570 7061

3570 6993

3550 6828

4570S 6803

3570S 6709

3550S 6631

Chapter 7 - Report Writer Usage Notes 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 501

3470 6576

4440 6517

4570R 6474

3450 6442

4670T 6351

3340 6282

4430 6282

3350P 6199

3470S 6077

3450S 6071

3475S 5991

4430S 5954

3330 5902

3335S 5781

3330S 5690

3570T 5414

3340S 5372

4330M 4804

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 6

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

Core i5 4300M 4786

4288U 4663

3470T 4591

3380M 4555

4258U 4381

4200M 4333

3340M 4327

3360M 4314

3320M 4101

3230M 3995

4300U 3917

3210M 3807

4350U 3604

3427U 3589

4250U 3482

3437U 3479

4200U 3355

3337U 3280

3317U 3126

3439Y 3057

4570T 2503

4210Y 2382

3 June 2014 Chapter 7 - Report Writer Usage Notes



502 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

4200Y 2358

3339Y 2252

4300Y 1743

Ave... 5026.13 ( 52 Family CPUs)

Intel Core i7

Family Model Benchmark Score (High to Low)

====== ====== =============================

Core i7 4960X 14291

4930K 13620

3970X 12823

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 7

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

Core i7 3960X 12718

3930K 12107

4960HQ 10262

4770K 10190

4771 10078

4770 9969

4820K 9969

4770S 9803

4930MX 9754

3770K 9578

3770 9420

4850HQ 9331

4900MQ 9323

3920XM 9196

3770S 9074

3940XM 9052

3840QM 9025

3820 8995

4770T 8803

4800MQ 8567

3820QM 8548

3740QM 8512

3720QM 8347

3770T 8280

4700HQ 8161

4750HQ 8066

4702HQ 8002

4700MQ 7946

3630QM 7759

4702MQ 7647

Chapter 7 - Report Writer Usage Notes 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 503

3610QM 7532

4765T 7367

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 8

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

Core i7 4700EQ 7352

3615QM 7310

3632QM 7055

3612QE 6988

3612QM 6907

3635QM 6516

3610QE 6144

3615QE 5495

4600M 4892

3540M 4861

3520M 4588

4558U 4507

4600U 4484

4650U 4345

3687U 4271

3667U 4032

3555LE 4009

4500U 3992

3537U 3912

3517U 3701

4610Y 3680

3689Y 3479

3517UE 3449

Ave... 7725.58 ( 58 Family CPUs)

Ave... 6005.16 (131 Vendor CPUs)

Ave... 5006.42 (215 CPUs)

____________________________________________

7.7. Control Hierarchy (Revisited)

The sample program just discussed presents a great opportunity to show what can happen
if you don’t define the control hierarchy of a report properly.

3 June 2014 Chapter 7 - Report Writer Usage Notes



504 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

I changed the "CONTROLS ARE" clause on the sample program from this:

CONTROLS ARE FINAL

F-SR-Vendor-TXT

F-SR-Family-TXT

To this:

CONTROLS ARE FINAL

F-SR-Family-TXT

F-SR-Vendor-TXT

And then ran the report again. Here are the first two pages of that new report. See what
happened to the control breaks?

2013/12/24 CPU Benchmark Scores Page: 1

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

AMD A10

Family Model Benchmark Score (High to Low)

====== ====== =============================

A10 6800K 5062

5800B 4798

6700 4767

5800K 4677

5700 4251

4657M 3449

5750M 3332

5757M 3253

4600M 3145

5745M 2758

4655M 2505

Ave... 3817.90 ( 11 Vendor CPUs)

Ave... 3817.90 ( 11 Family CPUs)

AMD A4

Family Model Benchmark Score (High to Low)

====== ====== =============================

A4 6300 2305

5300 2078

5150M 1973

5000 1919

3420 1768

4300M 1685

5300B 1632

3400 1625

3300 1583

Chapter 7 - Report Writer Usage Notes 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 505

3330MX 1343

3310MX 1263

3300M 1237

3305M 1227

____________________________________________

2013/12/24 CPU Benchmark Scores Page: 2

********************************************

** All CPU Data From cpubenchmark.net **

********************************************

A4 3320M 1193

4355M 1169

1200 677

1250 559

Ave... 1484.47 ( 17 Vendor CPUs)

Ave... 1484.47 ( 17 Family CPUs)

AMD A6

Family Model Benchmark Score (High to Low)

====== ====== =============================

A6 3670 3327

3650 3232

3620 2892

3600 2798

5200 2440

6400K 2384

3430MX 2277

5400K 2174

3410MX 2101

3420M 2078

3500 1995

3400M 1964

5350M 1958

5400B 1906

5357M 1878

1450 1634

4400M 1630

4455M 1296

Ave... 2220.22 ( 18 Vendor CPUs)

Ave... 2220.22 ( 18 Family CPUs)

AMD A8

Family Model Benchmark Score (High to Low)

====== ====== =============================

A8 6600K 4719

____________________________________________

3 June 2014 Chapter 7 - Report Writer Usage Notes



506 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

7.8. Turning PHYSICAL Page Formatting Into LOGICAL
Formatting

You can trick RWCS into using the PAGE LIMIT values as logical specifications rather
than physical ones quite easily — simply include an ASCII form-feed (X’0C’) character into
your page heading design! Here’s how the sample program shown earlier could be easily
modified:

Simply Change This. . .

01 TYPE IS PAGE HEADING.

05 LINE NUMBER 1.

10 COL 1 SOURCE WS-Date PIC 9999/99/99.

10 COL 14 VALUE ’CPU Benchmark Scores’.

10 COL 37 VALUE ’Page:’.

10 COL 43 SOURCE PAGE-COUNTER PIC Z9.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Starz PIC X(44).

05 LINE NUMBER PLUS 1.

10 COL 1 VALUE ’**’.

10 COL 6 VALUE ’All CPU Data From ’ &

’cpubenchmark.net’.

10 COL 43 VALUE ’**’.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Starz PIC X(44).

To This. . .

01 TYPE IS PAGE HEADING.

05 LINE NUMBER 1. *> NEW
10 COL 1 VALUE X’0C’. *> NEW

05 LINE NUMBER PLUS 1. *> CHANGED
10 COL 1 SOURCE WS-Date PIC 9999/99/99.

10 COL 14 VALUE ’CPU Benchmark Scores’.

10 COL 37 VALUE ’Page:’.

10 COL 43 SOURCE PAGE-COUNTER PIC Z9.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Starz PIC X(44).

05 LINE NUMBER PLUS 1.

10 COL 1 VALUE ’**’.

10 COL 6 VALUE ’All CPU Data From ’ &

’cpubenchmark.net’.

10 COL 43 VALUE ’**’.

05 LINE NUMBER PLUS 1.

10 COL 1 SOURCE WS-Starz PIC X(44).

RWCS will still be counting lines to decide when to close off one page and start a new
one, but when a new page is started it’s page heading will physically form-feed the printer

Chapter 7 - Report Writer Usage Notes 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 507

when the report is printed. As long as any printer you plan on using supports at least as
many physical print lines as what is defined as the "PAGE LIMIT" value in whatever paper
orientation and font you plan on (or are limited to) printing in, you have now divorced your
program from the physical realities of the printer!

Of course, whatever software you are using to deliver the printed document to the printer
with must allow the ASCII form-feed character to pass through to the printer.

————————————————————
End of Chapter 7 — Report Writer Usage Notes

3 June 2014 Chapter 7 - Report Writer Usage Notes





GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 509

8. Interfacing With The OS

8.1. Compiling Programs

Program source files should have extensions of ".cob" or ".cbl".

Program filenames should match exactly the specification of PROGRAM-ID (including
case).

Spaces cannot be included in primary entry-point names and therefore should not be in-
cluded in program filenames.

The GNU COBOL compiler will translate your COBOL program into C source code, com-
pile that C source code into executable binary form using the "C" compiler specified when
GNU COBOL was built and link that executable binary into:

Directly executable form

This is an executable file directly-executable from the command-line. On Win-
dows computers, this would be an ".exe" file. On Unix systems, this will be
a file with no specific extension, but with execute permissions. This file will
include the main program as well as any static-linked subprograms.

Static-linkable form

This is a single subprogram compiled into object-code form, ready to be linked
in with a main program to form a directly-executable program. On windows
computers, these generally are ".o" (object-code) files.

Dynamically-loadable executable form

These are dynamically-loadable object code files ready to be invoked from other
programs at execution time. On Windows systems, these would be ".dll" files,
while on Unix systems they are typically ".so" files (OSX uses ".dylib").

8.1.1. cobc - The GNU COBOL Compiler

The GNU COBOL compiler is named "cobc" ("cobc.exe" on a Windows system).

The following describes the syntax and option switches of the cobc command. This infor-
mation may be displayed by entering the command "cobc –help".

Usage: cobc [options] file ...

Options:

-help Display this message

-version, -V Display compiler version

-info, -i Display compiler build information

-v Display the commands invoked by the compiler

3 June 2014 Chapter 8 - Interfacing With The OS



510 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

-x Build an executable program

-m Build a dynamically loadable module (default)

-std=<dialect> Warnings/features for a specific dialect :

cobol2002 Cobol 2002

cobol85 Cobol 85

ibm IBM Compatible

mvs MVS Compatible

bs2000 BS2000 Compatible

mf Micro Focus Compatible

default When not specified

See config/default.conf and config/*.conf

-free Use free source format

-fixed Use fixed source format (default)

-O, -O2, -Os Enable optimization

-g Enable C compiler debug / stack check / trace

-debug Enable all run-time error checking

-o <file> Place the output into <file>

-b Combine all input files into a single

dynamically loadable module

-E Preprocess only; do not compile or link

-C Translation only; convert COBOL to C

-S Compile only; output assembly file

-c Compile and assemble, but do not link

-P(=<dir or file>) Generate preprocessed program listing (.lst)

-Xref Generate cross reference through ’cobxref’

(V. Coen’s ’cobxref’ must be in path)

-I <directory> Add <directory> to copy/include search path

-L <directory> Add <directory> to library search path

-l <lib> Link the library <lib>

-A <options> Add <options> to the C compile phase

-Q <options> Add <options> to the C link phase

-D <define> DEFINE <define> to the COBOL compiler

-K <entry> Generate CALL to <entry> as static

-conf=<file> User defined dialect configuration - See -std=

-list-reserved Display reserved words

-list-intrinsics Display intrinsic functions

-list-mnemonics Display mnemonic names

-list-system Display system routines

-save-temps(=<dir>) Save intermediate files

- Default : current directory

-ext <extension> Add default file extension

-W Enable ALL warnings

-Wall Enable all warnings except as noted below

-Wobsolete Warn if obsolete features are used

-Warchaic Warn if archaic features are used

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 511

-Wredefinition Warn incompatible redefinition of data items

-Wconstant Warn inconsistent constant

-Woverlap Warn overlapping MOVE items

-Wparentheses Warn lack of parentheses around AND within OR

-Wstrict-typing Warn type mismatch strictly

-Wimplicit-define Warn implicitly defined data items

-Wcorresponding Warn CORRESPONDING with no matching items

-Wexternal-value Warn EXTERNAL item with VALUE clause

-Wcall-params Warn non 01/77 items for CALL params

- NOT set with -Wall

-Wcolumn-overflow Warn text after column 72, FIXED format

- NOT set with -Wall

-Wterminator Warn lack of scope terminator END-XXX

- NOT set with -Wall

-Wtruncate Warn possible field truncation

- NOT set with -Wall

-Wlinkage Warn dangling LINKAGE items

- NOT set with -Wall

-Wunreachable Warn unreachable statements

- NOT set with -Wall

-fsign=<value> Define display sign representation

- ASCII or EBCDIC (Default : machine native)

-ffold-copy=<value> Fold COPY subject to value

- UPPER or LOWER (Default : no transformation)

-ffold-call=<value> Fold PROGRAM-ID, CALL, CANCEL subject to value

- UPPER or LOWER (Default : no transformation)

-fdefaultbyte=<value> Initialize fields without VALUE to decimal value

- 0 to 255 (Default : initialize to picture)

-fintrinsics=<value> Intrinsics to be used without FUNCTION keyword

- ALL or intrinsic function name (,name,...)

-ftrace Generate trace code

- Executed SECTION/PARAGRAPH

-ftraceall Generate trace code

- Executed SECTION/PARAGRAPH/STATEMENTS

- Turned on by -debug

-fsyntax-only Syntax error checking only; don’t emit any output

-fdebugging-line Enable debugging lines

- ’D’ in indicator column or floating >>D

-fsource-location Generate source location code

- Turned on by -debug/-g/-ftraceall

-fimplicit-init Automatic initialization of the Cobol runtime system

-fstack-check PERFORM stack checking

- Turned on by -debug or -g

-fsyntax-extension Allow syntax extensions

- eg. Switch name SW1, etc.

3 June 2014 Chapter 8 - Interfacing With The OS



512 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

-fwrite-after Use AFTER 1 for WRITE of LINE SEQUENTIAL

- Default : BEFORE 1

-fmfcomment ’*’ or ’/’ in column 1 treated as comment

- FIXED format only

-fnotrunc Allow numeric field overflow

- Non-ANSI behaviour

-fodoslide Adjust items following OCCURS DEPENDING

- Requires implicit/explicit relaxed syntax

-fsingle-quote Use a single quote (apostrophe) for QUOTE

- Default : double quote

-frecursive-check Check recursive program call

-frelax-syntax Relax syntax checking

- eg. REDEFINES position

-foptional-file Treat all files as OPTIONAL

- unless NOT OPTIONAL specified

Each file specified on the "cobc" command constitutes a ’Compilation Unit ’. A compilation
unit may be a single GNU COBOL program — with or without nested subprograms(see
[Independent vs Contained vs Nested Subprograms], page 557) — or multiple GNU COBOL
programs, separated by "END PROGRAM" or "END FUNCTION" marker lines, as appropriate.
See [Independent vs Contained vs Nested Subprograms], page 557, for some examples of
these marker lines.

A compilation unit may also be a C-language source program, recognized as such by having
a file extension of ".c" or an assembly-language program, recognized by its file extension
of ".s". In such a case, COBOL compilation of that file will be bypassed by the "cobc"

command; instead, the file will be passed directly to the C compiler or assembler (executed
automatically by "cobc").

A compilation unit may also be an object-code module (output from the C compiler),
recognized as such by having a file extension of ".o". In these situations, all compilation
will be bypassed, and the object code will be "bound" into the generated executable by the
loader (an "ld" command executed internally by the "cobc" command).

Precompiled object-code subprograms may be automatically located by the GNU COBOL
compiler and the loader by using the "LD_LIBRARY_PATH" compilation-time environment
variable (see [Compilation Time Environment Variables], page 514). If they are locatable
through that environment variable, they need not be named on the "cobc" command.

The collection of compilation units supplied on a single "cobc" execution constitute a
’Compilation Group’. All executable code produced from a single compilation group will
be collected together into a single executable file, whose filename will be the same as that
of the first compilation unit specified on the "cobc" command.

The simplest mode of compilation is to generate a single executable file from one or more
GNU COBOL source files:

"cobc -x mainprog.cbl sub1.cbl sub2.cbl"

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 513

The main program must be the first program found in the first compilation unit ("main-
prog.cbl"). The remainder of that compilation unit as well as the rest of the files in the
compilation group ("sub1.cbl" and "sub2.cbl") must be independent and/or contained sub-
programs (see [Independent vs Contained vs Nested Subprograms], page 557).

This command assumes that all source files are in the directory from which the "cobc"

command was executed. You are, of course, free to include full pathnames with any filename,
if necessary.

With the "-x" switch on the compiler command, a single directly-executable executable
file (UNIX, Windows/Cygwin, OSX) or "exe" file (Windows, Windows/MinGW) will be
generated. This executable file has the compiled code for all COBOL programs contained
within the compilation group specified on the "cobc" command included in the file.

Any subroutines or user-defined functions that weren’t included in any of the source files
comprising the compilation group will be treated as dynamically loadable subprograms (see
[Dynamic vs Static Subprograms], page 559).

Optionally, the "-o" switch may be used in addition to "-x" to specify the name of the
generated executable file. If "-o" switch is not specified, the filename of the 1st compilation
unit will be used as the name of the executable file. The appropriate extension for the
generated file (".exe", on a Windows computer, for example) will be added to the filename
that is explicitly specified or implicitly assumed for the output file.

Compilations may be performed to generate dynamically-loadable modules (or dynamically-
loadable libraries, as they are frequently called). These compilations are performed by using
the "-m" switch instead of "-x" switch:

"cobc -m mainprog.cbl sub1.cbl sub2.cbl"

When the "-m" switch is used, an operating-system specific dynamically-loadable module is
generated for each individual compilation unit, using the filename of each compilation unit
as the it’s module filename and either an extension of ".so" (UNIX, Windows/Cygwin),
"dylib" (OSX) or ".dll" (Windows, Windows/MinGW).

You may compile GNU COBOL subprograms into assembler source code which can then
be assembled and linked with a main program when that main program is compiled. To
create such an assembler source file, compile the subprogram(s) as follows:

"cobc -S sprog1.cbl"

The above generates an assembler source file named "sprog1.s". If you have multiple sub-
programs to compile this way, just string their filenames out on the command — each will
be translated to it’s own assembler source file.

Later, when you wish to compile a calling program and combine any needed assembly
language subroutines in (as static subroutines — see [Dynamic vs Static Subprograms],
page 559), use a command such as this:

"cobc -x mainprog.cbl sprog1.s"

3 June 2014 Chapter 8 - Interfacing With The OS



514 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

8.1.2. Compilation Time Environment Variables

The following are the various environment variables that can play a role in the compilation
of GNU COBOL programs.

"COB_CC" *

Set to the name of the C compiler you wish GNU COBOL to use.

USE THIS FEATURE AT YOUR OWN RISK – YOU SHOULD ALWAYS
USE THE C COMPILER YOUR GNU COBOL BUILD WAS GENERATED
FOR

"COB_CFLAGS" *

Set to any switches that you’d like to pass on to the C compiler from the "cobc"
compiler (in addition to any that "cobc" will specify).

"COB_CONFIG_DIR" *

Set to the path to the folder where GNU COBOL "config" files are kept.

"COB_COPY_DIR" *

If copybooks your program needs are NOT stored in the same directory as your
program, set this environment variable to the folder in which the copybooks
may be found (IBM mainframe programmers will recognize this as "SYSLIB").

"COB_LDADD"

Set to any additional linker switches (ld) that can specify where standard li-
braries that must be linked with the program can be found. The default is ""
(null).

"COB_LDFLAGS"

Set to any linker/loader (ld) switches that you’d like to pass on to the C compiler
from the "cobc" compiler (in addition to any that cobc will specify).

"COB_LIBS" *

Set to any linker switches (ld) that specify where standard libraries that must
be linked with the program can be found.

"COBCPY"

This environment variable provides an additional means of specifying where
copybooks may be found by the compiler (see also COB COPY DIR, above).

"LD_LIBRARY_PATH"

If you are planning on using static-linked subroutine libraries, set this variable
to the path of the directory containing your libraries.

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 515

"TMPDIR"

"TMP"

Set to a directory/folder appropriate to create temporary files in. The inter-
mediate working files created by the compiler will be created here (and deleted
once they’re no longer needed). The variable "TMPDIR" is checked for a valid
path first; if that isn’t set, then "TMP" is checked.

On a Windows system, the "TMP" environment variable is normally set for you
when you logon. If you wish to use a different temporary folder, you may set
"TMPDIR" yourself and have no fear of disrupting other Windows software that
relies on TMP.

* These environment variables have default values established for them when the version
of GNU COBOL you are using was built. To see these default values, as well as other
build-specific information, execute the command:

"cobc -i"

8.1.3. Locating Copybooks

The GNU COBOL compiler will attempt to locate copybooks by searching for them in the
following folders. The search will occur in the sequence shown below, and will terminate
once a copybook is found.

1. The folder named as the <library-name-1> on the "COPY" statement (see [COPY],
page 40).

2. The folder in which the program being compiled resides.

3. The folder named on the "-I" switch.

4. Each of the folders named on the "COBCPY" compilation-time environment variable (see
[Compilation Time Environment Variables], page 514).

A single folder may be named or multiple folders may be specified, separated by a
system-appropriate delimiter character. When multiple folders are specified, they will
be searched in the order they are named on the environment variable.

If the GNU COBOL compiler you are using was built to utilize a native Windows
environment, use a semicolon (;) as the delimiter character.

If, however, the GNU COBOL compiler was built for a Unix, OSX or Linux environ-
ment, or was built for a Windows environment utilizing either the Cygwin or MinGW
Unix emulators, use a colon character (:) as the delimiter.

5. The single folder specified on the COB COPY DIR environment variable.

3 June 2014 Chapter 8 - Interfacing With The OS



516 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

As each of the above folders is searched for a copybook — "COPY XXXXXXXX.", for example
— the GNU COBOL compiler will attempt to locate the copybook file by any of the
following names, in the sequence shown:

1. XXXXXXXX.CPY

2. XXXXXXXX.CBL

3. XXXXXXXX.COB

4. XXXXXXXX.cpy

5. XXXXXXXX.cbl

6. XXXXXXXX.cob

7. XXXXXXXX

The "COPY" statement is case-sensitive on UNIX systems; "COPY copybookname" and "COPY

COPYBOOKNAME" will both fail to locate the "CopyBookName" copybook on a UNIX system.

Windows implementations of GNU COBOL may, or may not, be similarly case sensitive
with regard to copybook names, depending upon the Windows version and GNU COBOL
build options — it is safest to simply treat the COPY command as case-sensitive in all
environments.

It is possible, however, to automatically cause all "COPY" statements to ’fold’ the names
of all copybooks to uppercase by specifying the "-ffold-copy" switch with the "upper"
option (i.e. "--fold-copy=upper") to the GNU COBOL compiler. Similarly, names could
be folded to lowercase by using the "lower" option (i.e. "--fold-copy=lower". If copybook
libraries are maintained entirely using upper- or lower-case filenames and extensions, either
of these options will allow copybooks to be found regardless of how the programmer entered
their names on "COPY" statements.

Case-folding may also be turned on and off within the program source code using the CDF
">>SET" statement (see [>>SET], page 49).

8.1.4. Compiler Configuration Files

GNU COBOL uses compiler configuration files to define various options that will control the
compilation process. These configuration files are specified using the "-conf" switch compi-
lation switch and are found in the folder defined by the "COB_CONFIG_DIR" compilation-time
environment variable (see [Compilation Time Environment Variables], page 514).

The following is a verbatim listing of the "default" configuration file (the one used if you
don’t specify the "-conf" switch), just to show you the types of settings that may appear:

# COBOL compiler configuration -*- sh -*-

# Value: any string

name: "GNU COBOL"

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 517

# Value: enum

standard-define 0

# CB_STD_OC = 0,

# CB_STD_MF,

# CB_STD_IBM,

# CB_STD_MVS,

# CB_STD_BS2000,

# CB_STD_85,

# CB_STD_2002

# Value: int

tab-width: 8

text-column: 72

# Value: ’mf’, ’ibm’

#

assign-clause: mf

# If yes, file names are resolved at run time using

# environment variables.

# For example, given ASSIGN TO "DATAFILE", the file name will be

# 1. the value of environment variable ’DD_DATAFILE’ or

# 2. the value of environment variable ’dd_DATAFILE’ or

# 3. the value of environment variable ’DATAFILE’ or

# 4. the literal "DATAFILE"

# If no, the value of the assign clause is the file name.

#

filename-mapping: yes

# Alternate formatting of numeric fields

pretty-display: yes

# Allow complex OCCURS DEPENDING ON

complex-odo: no

# Allow REDEFINES to other than last equal level number

indirect-redefines: no

# Binary byte size - defines the allocated bytes according to PIC

# Value: signed unsigned bytes

# ------ -------- -----

# ’2-4-8’ 1 - 4 same 2

# 5 - 9 same 4

# 10 - 18 same 8

#

# ’1-2-4-8’ 1 - 2 same 1

3 June 2014 Chapter 8 - Interfacing With The OS



518 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

# 3 - 4 same 2

# 5 - 9 same 4

# 10 - 18 same 8

#

# ’1--8’ 1 - 2 1 - 2 1

# 3 - 4 3 - 4 2

# 5 - 6 5 - 7 3

# 7 - 9 8 - 9 4

# 10 - 11 10 - 12 5

# 12 - 14 13 - 14 6

# 15 - 16 15 - 16 7

# 17 - 18 17 - 18 8

#

binary-size: 1-2-4-8

# Numeric truncation according to ANSI

binary-truncate: yes

# Binary byte order

# Value: ’native’, ’big-endian’

binary-byteorder: big-endian

# Allow larger REDEFINES items

larger-redefines-ok: no

# Allow certain syntax variations (eg. REDEFINES position)

relaxed-syntax-check: no

# Perform type OSVS - If yes, the exit point of any currently

# executing perform is recognized if reached.

perform-osvs: no

# If yes, linkage-section items remain allocated

# between invocations.

sticky-linkage: no

# If yes, allow non-matching level numbers

relax-level-hierarchy: no

# If yes, allow reserved words from the 85 standard

cobol85-reserved: no

# Allow Hex ’F’ for NUMERIC test of signed PACKED DECIMAL field

hostsign: no

# not-reserved:

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 519

# Value: Word to be taken out of the reserved words list

# (case independent)

# Words that are in the (proposed) standard but may conflict

# Dialect features

# Value: ’ok’, ’archaic’, ’obsolete’, ’skip’, ’ignore’, ’unconformable’

alter-statement: obsolete

author-paragraph: obsolete

data-records-clause: obsolete

debugging-line: obsolete

eject-statement: skip

entry-statement: obsolete

goto-statement-without-name: obsolete

label-records-clause: obsolete

memory-size-clause: obsolete

move-noninteger-to-alphanumeric: error

multiple-file-tape-clause: obsolete

next-sentence-phrase: archaic

odo-without-to: ok

padding-character-clause: obsolete

section-segments: ignore

stop-literal-statement: obsolete

synchronized-clause: ok

top-level-occurs-clause: ok

value-of-clause: obsolete

8.2. Running Programs

Once GNU COBOL programs have been compiled into either directly-executable programs
(created via the "-x" switch) or dynamically-loadable libraries (created via the "-m" switch),
those programs may be executed from any shell environment. The exact manner in which
the two are executed will differ, as described in the upcoming sections.

8.2.1. Direct Execution

GNU COBOL programs compiled with the "-x" switch will be generated as directly-
executable programs. For example, a native Windows or Windows/MinGW build of GNU
COBOL will generate an ".exe" file when the "-x" switch switch is specified to the compiler.

On Unix, OSX, or Windows/Cygwin builds, the "-x" switch switch will generate an exe-
cutable binary file, usually with no particular extension unless one is explicitly requested
of the compiler via the "-o" switch.

On a UNIX system this means the programs may be executed from a command shell such
as bash, csh, ksh and so forth. When a GNU COBOL program runs on a Windows system,

3 June 2014 Chapter 8 - Interfacing With The OS



520 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

it runs within a console window (i.e. "cmd.exe"). OSX versions of GNU COBOL programs
run within a "terminal.app" window.

Interactions between the program and the user will take place using the standard input,
standard output and standard error streams. Any screen section I/O performed by the
program will take place within the command shell "window".

Direct program execution syntax is as follows:

"[path]program [arguments]"

For example:

"/usr/local/printaccount ACCT=6625378"

or

"C:\\Users\\Me\\Documents\\Programs\\printaccount.exe ACCT=6625378"

8.2.2. Executing Dynamically-Loadable Libraries

As discussed previously, dynamically-loadable libraries are created via the compiler’s "-m"
switch. Once so created, the program(s) in these libraries are executed from the command
line (via the GNU COBOL "cobcrun" utility), or as dynamically-loadable subprograms.

8.2.2.1. cobcrun - Command-line Execution

It is possible to generate executable modules for all GNU COBOL programs, not just
subprograms, by choosing to use the "-m" switch option to specify the loader output format,
even for main programs.

Some may prefer to compile their GNU COBOL main programs into these dynamically-
loadable modules in the interests of using the same general compilation command for all
programs without having to think "Is it a main program or a subprogram?".

Main programs compiled in this manner should be executed as follows:

"[path]cobcrun program [arguments]"

Do not specify the ".so" or ".dll" extension on the program name. The program value
must exactly match the primary entry-point name of the main program (including upper-
and lower-case letters), unless you are planning on using "Call Folding" (see [Dynamically
Loaded Subprograms], page 521).

The general usage and syntax of cobcrun is as follows:

Usage: cobcrun PROGRAM [param ...]

or : cobcrun --help (-h)

Print this help

or : cobcrun --version (-V)

Print version information

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 521

or : cobcrun --info (-i)

Print build information

Here are two examples of using "cobcrun". First, on a Unix, OSX or Windows/Cygwin
system:

cd /usr/local

cobcrun printaccount acct=6625378

Or, on a Native Windows or Windows/MinGW system:

cd C:\Users\Me\Documents\Programs

cobcrun printaccount.exe acct=6625378

Note how the "cobcrun" command does not allow a path to be specified with the program
name — the directory in which the programs dynamically loadable module exists must
either be the current directory or must be defined in the current PATH.

8.2.2.2. Dynamically Loaded Subprograms

Dynamically-loaded subprograms are executed (from a COBOL syntax point of view) just
like any other subprograms. What makes them unique, however, is that they are loaded into
memory only when they are actually used the first time during the execution of a program.

When a dynamically-loadable module needs to be loaded (because it is not already in
memory from a previous subprogram execution), the dynamically-loadable library will be
sought in the same directory from which the main program was loaded. If it cannot be
found there, each directory named in the "PATH" run-time environment variable (see [Run
Time Environment Variables], page 522) will be searched. If it was not located in any of
those directories, the library specified by the "COB_LIBRARY_PATH" run-time environment
variable will be searched. Finally, if it still cannot be located, execution will be terminated
with an error message ("libcob: Cannot find module ’xxxxxxxx’").

The process of locating dynamically-loadable modules is case-sensitive on UNIX systems;
"CALL "dynsub"" and "CALL "DYNSUB"" will both fail to locate the "DynSub.so" library
on a UNIX system.

Windows implementations of GNU COBOL may, or may not, be similarly case sensitive
with regard to library names, depending upon the Windows version and GNU COBOL build
options — it is safest to simply treat library names as case-sensitive in all environments.

It is possible, however, to automatically cause all library names to ’fold’ to uppercase by
specifying the "-ffold-call" switch with the "upper" option (i.e. "--fold-call=upper")
to the GNU COBOL compiler. Similarly, library names could be folded to lowercase by
using the "lower" option (i.e. "--fold-call=lower". If libraries are maintained entirely
using upper- or lower-case filenames, either of these options will allow libraries to be found
regardless of how the programmer entered their names on "CALL" statements.

3 June 2014 Chapter 8 - Interfacing With The OS



522 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

See [Sub-Programming], page 557, for a complete discussion of sub-programming.

8.2.3. Run Time Environment Variables

The following is a list of the various environment variables that can play a role in the
execution of GNU COBOL programs.

"COB_DISPLAY_WARNINGS"

If set to a value of "Y", any run-time warnings (such as noting the implicit
closing of open files when a "GOBACK" statement (see [GOBACK], page 393) or
"STOP" statement (see [STOP], page 461) with the "RUN" option is executed)
will be displayed. Any other value for this environment variable (including not
setting the variable at all) will suppress such messages.

"COB_LIBRARY_PATH"

At runtime, GNU COBOL will attempt to locate and load any application
dynamically-loadable libraries using from the directory in which the program
executable was found or, if it wasn’t found there, using the "PATH" environment
variable. If these library files could be somewhere else, specify the directory path
using this variable.

"COB_LOAD_CASE"

If set to either "UPPER" or "LOWER", this environment variable will internally
convert referenced entry-point names to either upper- or lower-case before ini-
tiating searches for dynamically-loadable modules. The "UPPER" and "LOWER"

values of the environment variable are actually case-insensitive.

"COB_PHYSICAL_CANCEL"

If set to "Y", "y" or "1", a "CANCEL" statement (see [CANCEL], page 363) will
physically unload a subprogram dynamically-loadable module.

If set to anything else, a "CANCEL" statement (see [CANCEL], page 363) log-
ically unloads a module so that subsequent use will re-initialize the module
as if it had actually been reloaded, but the overhead of actually reloading the
module will be avoided.

"COB_PRE_LOAD"

If set to any non-null value, this variable will cause all dynamically-loadable
libraries to be loaded when the program begins execution (rather than searching
for and loading the module upon first use).

"COB_SET_DEBUG"

If a "USE FOR DEBUGGING" (see [DECLARATIVES], page 208) section exists,
the code within it will be disabled unless this environment variable is set to a
value of "Y", "y" or "1".

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 523

"COB_SET_TRACE"

If the "-ftrace" switch or "-ftraceall" switch was used when the program
was compiled, setting this environment variable to a value of "Y" will activate
the trace at the point the program begins execution. Setting this environment
variable to any other value (or never setting it to ANY value) will disable
tracing. See the "READY TRACE" statement (see [READY TRACE], page 433)
and "RESET TRACE" statement (see [RESET TRACE], page 435) for additional
ways to control tracing.

"COB_SCREEN_ESC"

If set to any non-blank value, this variable allows a "ACCEPT

screen-data-item" statement (see [ACCEPT screen-data-item],
page 342) to detect the "Esc" key.

"COB_SCREEN_EXCEPTIONS"

Setting this variable to any non-blank value will allow the "ACCEPT

screen-data-item" statement (see [ACCEPT screen-data-item], page 342) to
detect the pressing of the "Esc", "PgUp" and "PgDn" keys.

"COB_SORT_MEMORY"

The value of this variable (an integer) will be used to define how much memory
will be allocated for use in sorting. If the value is 1048576 or greater, that value
will be used "as is" as the amount of memory (in bytes) to allocate. If the value
is less than 1048576, the value will spefify how many MB of memory will be
allocated. The default sort memory amount is 128 MB.

"COB_SWITCH_n"

(n=0 to 15); These environment variables correspond to "SWITCH-0" through
"SWITCH-15", defined in the "SPECIAL-NAMES" (see [SPECIAL-NAMES],
page 62) paragraph. Setting them to "ON" will activate them; any other value
turns them off.

"COB_SYNC"

If set to a value of upper- or lowercase "p", this variable will force a file commit
every time a file is written to (ensuring that data is immediately written to the
file rather than retained in memory until a future commit occurs). This will
slow-down update access to files, but will provide for better integrity in the
event of a program failure.

"COB_TRACE_FILE"

If set to any non-null value, this environment variable specifies the file to which
all "-ftrace" switch and "-ftraceall" switch output will be written.

3 June 2014 Chapter 8 - Interfacing With The OS



524 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

If this is NOT set to a value, all "-ftrace" switch and "-ftraceall" switch
output will be written to STDERR, where it may be piped via a "2> filename"
on the command that executes the program.

"DB_HOME"

If your GNU COBOL build uses the Berkeley Database (BDB) package, use
this environment variable to specify the folder in which the lock manage-
ment files to be associated with all non-SORT files opened by the program
will be stored. "ORGANIZATION INDEXED" (see [ORGANIZATION INDEXED],
page 84) files will also have their data file allocated in the folder pointed
to by this environment variable, if it exists.. Having this variable defined
will activate record locking features on the "READ" statement (see [READ],
page 428), "REWRITE" statement (see [REWRITE], page 437) and "WRITE"

statement (see [WRITE], page 479). Even with DB HOME, locking will not
work with "ORGANIZATION SEQUENTIAL" (see [ORGANIZATION SEQUEN-
TIAL], page 78), "ORGANIZATION LINE SEQUENTIAL" (see [ORGANIZATION
LINE SEQUENTIAL], page 80) or ORGANIZATION RELATIVE files with
GNU COBOL builds created for Windows/MinGW. "ORGANIZATION INDEXED"

locks will work with Windows/MinGW + BDB and all locks will work for all
file organizations with UNIX GNU COBOL builds.

"PATH"

The GNU COBOL "bin" directory should be defined in the PATH.

"TMPDIR"

"TMP"

"TEMP"

One of these environment variables must be set to a directory/folder appropriate
to create temporary files in. They will be checked in the order shown. This
will be used by the "SORT" statement (see [SORT], page 453) and "MERGE"

statement (see [MERGE], page 411) to create temporary work files. You may
also use this folder for any temporary files your application may require.

8.2.4. Program Arguments

Regardless of the manner in which a main program is executed (i.e. directly or via
"cobcrun"), any arguments specified to the program may be retrieved via any of the fol-
lowing:

• "ACCEPT FROM COMMAND-LINE" (see [ACCEPT FROM COMMAND-LINE], page 339)

• "PROCEDURE DIVISION CHAINING" (see [PROCEDURE DIVISION CHAINING],
page 204)

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 525

8.3. Built-In System Subroutines

There are a number of built-in system subroutines included with GNU COBOL. Generally,
these routines are intended to match those available in Micro Focus COBOL (CBL . . . ) or
ACUCOBOL (C$. . . ).

These routines, all executed via their UPPERCASE NAMES via the "CALL" statement (see
[CALL], page 359), are capable of performing the following Functions:

• Changing the current directory

• Copying files

• Creating a directory

• Creating, Opening, Closing, Reading and Writing byte-stream files

• Deleting directories (folders)

• Deleting files

• Determining how many arguments were passed to a subroutine

• Getting file information (size and last-modification date/time)

• Getting the length (in bytes) of an argument passed to a subroutine

• Justifying a field left-, right- or center-aligned

• Moving files (a destructive "copy")

• Putting the program ’to sleep’, specifying the sleep time in seconds

• Putting the program ’to sleep’, specifying the sleep time in nanoseconds; CAVEAT:
although you’ll express the time in nanoseconds, Windows systems will only be able to
sleep at a millisecond granularity

• Retrieving information about the currently-executing program

• Submitting a command to the shell environment appropriate for the version of GNU
COBOL you are using for execution

Early versions of Micro Focus COBOL allowed programmers to access various runtime
library routines by using a single two-digit hexadecimal number as the entry-point name.
These were known as call-by-number routines. Over time, Micro Focus COBOL evolved,
replacing most of the call-by-number routines with ones accessible using a more conventional
call-by-name technique.

Most of the call-by-number routines have evolved into even more powerful call-by-name
routines, many of which are supported by GNU COBOL.

Some of the original call-by-number routines never evolved call-by-name equivalents; GNU
COBOL supports some of these routines.

3 June 2014 Chapter 8 - Interfacing With The OS



526 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

The following sections describe the various built-in subroutines. ALL SUBROUTINE AR-
GUMENTS ARE MANDATORY EXCEPT WHERE EXPLICITLY NOTED TO THE
CONTRARY. Any subroutine returning a value to the "RETURN-CODE" special register (see
[Special Registers], page 243) could utilize the "RETURNING" clause on the "CALL" statement
to return the result back to the full-word binary data item of your choice.

8.3.1. C$CALLEDBY� �
C$CALLEDBY Built-In Subroutine Syntax
 	

CALL "C$CALLEDBY" USING prog-name-area

~~~~ ~~~~~

————————————————————————————————————————

This routine returns the name of the program that called the currently-executing program.
The program name will be returned, left-justified and space filled, in the specified <prog-
name-area> argument, which should be a "PIC X" elementary item or a group item. If
<prog-name-area> is too small to receive the entire program name, the program name value
will be truncated (on the right) to fit.

The "RETURN-CODE" special register (see [Special Registers], page 243) will be set to one of
the following values:

-1 An error occurred. The <prog-name-area> contents will be unchanged.
0 The program calling "C$CALLEDBY" was not called by any other program (in other

words, it is a main program). The <prog-name-area> contents will be set entirely to
spaces.

1 The program calling "C$CALLEDBY" was indeed called by another program, and that
program’s name has been saved in <prog-name-area>.

8.3.2. C$CHDIR� �
C$CHDIR Built-In Subroutine Syntax
 	

CALL "C$CHDIR" USING directory-path, result

~~~~ ~~~~~

————————————————————————————————————————

This routine makes <directory-path> (an alphanumeric literal or identifier) the current di-
rectory.

The return code of the operation is returned both in the <result> argument (any non-edited
numeric identifier) as well as in the "RETURN-CODE" special register (see [Special Registers],
page 243). The return code of the operation will be either 0=Success or 128=failure.

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 527

The directory change remains in effect until the program terminates (in which the original
current directory at the time the program was started will be automatically restored)
or until another "C$CHDIR" or a "CBL_CHANGE_DIR" built-in system subroutine (see
[CBL CHANGE DIR], page 532) is executed.

8.3.3. C$COPY� �
C$COPY Built-In Subroutine Syntax
 	

CALL "C$COPY" USING src-file-path, dest-file-path, 0

~~~~ ~~~~~

————————————————————————————————————————

Use this subroutine to copy file <src-file-path> to <dest-file-path> as if it were done via the
"CP" (Unix/OSX) or "COPY" (Windows) command.

Both file path arguments may be alphanumeric literals or identifiers.

The third argument is required, but is unused.

If the attempt to copy the file fails (for example, it or the destination directory doesn’t
exist), the "RETURN-CODE" special register (see [Special Registers], page 243) will be set to
128; on successful completion it will be set to 0.

8.3.4. C$DELETE� �
C$DELETE Built-In Subroutine Syntax
 	

CALL "C$DELETE" USING file-path, 0

~~~~ ~~~~~

————————————————————————————————————————

This routine deletes the file specified by the <file-path> argument (an alphanumeric literal
or identifier) just as if that were done using the "RM" (Unix/OSX) or "ERASE" (Windows)
command.

The second argument is required, but is unused.

If the attempt to delete the file fails (for example, it doesn’t exist), the "RETURN-CODE"

special register (see [Special Registers], page 243) will be set to 128; on successful completion
it will be set to 0.

8.3.5. C$FILEINFO

3 June 2014 Chapter 8 - Interfacing With The OS



528 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

� �
C$FILEINFO Built-In Subroutine Syntax
 	

CALL "C$FILEINFO" USING file-path, file-info

~~~~ ~~~~~

————————————————————————————————————————

With this routine you may retrieve the size of the file specified as the <file-path> argument
(an alphanumeric literal or identifier) and the date/time that file was last modified. File size
information may not be available in the particular GNU COBOL build / Operating System
combination you are using and may therefore always be returned as zero. The information
is returned to the <file-info> argument, which is defined as the following 16-byte area:

01 File-Info.

05 File-Size-In-Bytes PIC 9(18) COMP.

05 Mod-YYYYMMDD PIC 9(8) COMP. *> Modification Date

05 Mod-HHMMSS00 PIC 9(8) COMP. *> Modification Time

The last two decimal digits in the modification time will always be 00.

If the subroutine is successful, a value of 0 will be returned in the "RETURN-CODE" special
register (see [Special Registers], page 243). Failure to retrieve the needed statistics on the
file will cause a "RETURN-CODE" special register value of 35 to be passed back. Supplying
less than two arguments will generate a 128 "RETURN-CODE" special register value.

8.3.6. C$GETPID� �
C$GETPID Built-In Subroutine Syntax
 	

CALL "C$GETPID"

~~~~

————————————————————————————————————————

Use this subroutine to return the PID (process ID) of the executing GNU COBOL program.
The PID value is returned into the "RETURN-CODE" special register (see [Special Registers],
page 243).

As you can see, there are no arguments to this routine.

8.3.7. C$JUSTIFY� �
C$JUSTIFY Built-In Subroutine Syntax
 	

CALL "C$JUSTIFY" USING data-item, "justification-type"

~~~~ ~~~~~

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 529

————————————————————————————————————————

Use C$JUSTIFY to left, right or center-justify an alphabetic, alphanumeric or numeric
edited data-item. The optional justification-type argument indicates the type of the justi-
fication to be performed. The value of that argument will be interpreted as follows:

• If it begins with a capital "C", the value will be centered

• If it begins with a capital "R", the value will be right-justified, space-filled to the left

• If it begins with a capital "L", the value will be left-justified, space-filled to the right

• If it begins with anything else, or is absent, it will be treated as if it is present and
begins with a capital "R"

8.3.8. C$MAKEDIR� �
C$MAKEDIR Built-In Subroutine Syntax
 	

CALL "C$MAKEDIR" USING dir-path

~~~~ ~~~~~

————————————————————————————————————————

With this routine you may create a new directory — the name of which is supplied as the
<dir-path> argument (an alphanumeric literal or identifier).

Only the lowest-level directory (last) in the specified path can be created — all others must
already exist. This subroutine will NOT behave as a "mkdir -p" (Unix) or "mkdir /p"

(Windows).

The "RETURN-CODE" special register (see [Special Registers], page 243) will be set to the
return code of the operation; the value will be either 0=Success or 128=failure.

8.3.9. C$NARG� �
C$NARG Built-In Subroutine Syntax
 	

CALL "C$NARG" USING arg-count-result

~~~~ ~~~~~

————————————————————————————————————————

This subroutine returns the number of arguments passed to the program that calls it back
to in the numeric field <arg-count-result>. When called from within a user-defined function,
a value of one (1) is returned if any arguments were passed to the function or a zero (0)
otherwise.

3 June 2014 Chapter 8 - Interfacing With The OS



530 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

When called from a main program, the returned value will always be 0.

8.3.10. C$PARAMSIZE� �
C$PARAMSIZE Built-In Subroutine Syntax
 	

CALL "C$PARAMSIZE" USING argument-number

~~~~ ~~~~~

————————————————————————————————————————

This subroutine returns the size (in bytes) of the subroutine argument supplied using the
<argument-number> parameter (a numeric literal or data item).

The size is returned in the "RETURN-CODE" special register (see [Special Registers], page 243).

If the specified argument does not exist, or an invalid argument number is specified, a value
of 0 is returned.

8.3.11. C$PRINTABLE� �
C$PRINTABLE Built-In Subroutine Syntax
 	

CALL "C$PRINTABLE" USING data-item [ , char ]

~~~~ ~~~~~

————————————————————————————————————————

The "C$PRINTABLE" subroutine converts the contents of the data-item specified as the first
argument to printable characters. Those characters that are deemed printable (as defined
by the characterset used by <data-item>) will remain unchanged, while those that are NOT
printable will be converted to the character specified as the second argument.

If no <char> argument is provided, a period (".") will be used.

8.3.12. C$SLEEP� �
C$SLEEP Built-In Subroutine Syntax
 	

CALL "C$SLEEP" USING seconds-to-sleep

~~~~ ~~~~~

————————————————————————————————————————

"C$SLEEP" puts the program to sleep for the specified number of seconds. The <seconds-
to-sleep> argument may be a numeric literal or data item.

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 531

Sleep times less than 1 will be interpreted as 0, which immediately returns control to the
calling program without any sleep delay.

8.3.13. C$TOLOWER� �
C$TOLOWER Built-In Subroutine Syntax
 	

CALL "C$TOLOWER" USING data-item, BY VALUE convert-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

This routine will converts the <convert-length> (a numeric literal or data item) leading
characters of <data-item> (an alphanumeric identifier) to lower-case.

The <convert-length> argument must be specified "BY VALUE" (see [CALL], page 359). Any
characters in <data-item> after the <convert-length> point will remain unchanged.

If <convert-length> is negative or zero, no conversion will be performed.

8.3.14. C$TOUPPER� �
C$TOUPPER Built-In Subroutine Syntax
 	

CALL "C$TOUPPER" USING data-item, BY VALUE convert-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

This routine will converts the <convert-length> (a numeric literal or data item) leading
characters of <data-item> (an alphanumeric identifier) to upper-case.

The <convert-length> argument must be specified "BY VALUE" (see [CALL], page 359). Any
characters in <data-item> after the <convert-length> point will remain unchanged.

If <convert-length> is negative or zero, no conversion will be performed.

8.3.15. CBL AND� �
CBL AND Built-In Subroutine Syntax
 	

CALL "CBL_AND" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

3 June 2014 Chapter 8 - Interfacing With The OS



532 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 0

0 1 0

1 0 0

1 1 1

This subroutine performs a bit-by-bit logical AND operation
between the left-most 8*<byte-length> corresponding bits of
<item-1> and <item-2>, storing the resulting bit string into
<item-2>. The truth table shown to the left documents the
AND process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 359).

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 243).

8.3.16. CBL CHANGE DIR� �
CBL CHANGE DIR Built-In Subroutine Syntax
 	

CALL "CBL_CHANGE_DIR" USING directory-path

~~~~ ~~~~~

————————————————————————————————————————

This routine makes <directory-path> (an alphanumeric literal or identifier) the current di-
rectory.

The return code of the operation, which will be either 0=Success or 128=failure, is returned
in the "RETURN-CODE" special register (see [Special Registers], page 243).

The directory change remains in effect until the program terminates (in which the original
current directory at the time the program was started will be automatically restored) or until
another "CBL_CHANGE_DIR" or a "C$CHDIR" built-in system subroutine (see [C$CHDIR],
page 526) is executed.

8.3.17. CBL CHECK FILE EXIST� �
CBL CHECK FILE EXIST Built-In Subroutine Syntax
 	

CALL "CBL_CHECK_FILE_EXIST" USING file-path, file-info

~~~~ ~~~~~

————————————————————————————————————————

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 533

With this routine you may retrieve the size of the file specified as the <file-path> argument
(an alphanumeric literal or identifier) and the date/time that file was last modified. File
size information may not be available in the particular GNU COBOL build / Operating
System combination you are using and may therefore always be returned as zero.

The information is returned to the <file-info> argument, which is defined as the following
16-byte area:

01 file-info.

05 File-Size-In-Bytes PIC 9(18) COMP.

05 Mod-DD PIC 9(2) COMP. *> Modification Time

05 Mod-MO PIC 9(2) COMP.

05 Mod-YYYY PIC 9(4) COMP. *> Modification Date

05 Mod-HH PIC 9(2) COMP.

05 Mod-MM PIC 9(2) COMP.

05 Mod-SS PIC 9(2) COMP.

05 FILLER PIC 9(2) COMP. *> Always 00

If the subroutine is successful, a value of 0 will be returned in the "RETURN-CODE" special
register (see [Special Registers], page 243). Failure to retrieve the needed statistics on the
file will cause a "RETURN-CODE" special register value of 35 to be passed back. Supplying
less than two arguments will generate a 128 "RETURN-CODE" special register value.

8.3.18. CBL CLOSE FILE� �
CBL CLOSE FILE Built-In Subroutine Syntax
 	

CALL "CBL_CLOSE_FILE" USING file-handle

~~~~ ~~~~~

————————————————————————————————————————

The "CBL_CLOSE_FILE" subroutine closes a bytestream file previously opened by either
the "CBL_OPEN_FILE" built-in system subroutine (see [CBL OPEN FILE], page 545) or
"CBL_CREATE_FILE" built-in system subroutine (see [CBL CREATE FILE], page 534) sub-
routines.

If the file defined by the <file-handle> argument (a "PIC X(4) USAGE COMP-X" data item)
was opened for output, an implicit "CBL_FLUSH_FILE" built-in system subroutine (see
[CBL FLUSH FILE], page 540) will be performed before the file is closed.

If the subroutine is successful, a value of 0 will be returned in the "RETURN-CODE" special
register (see [Special Registers], page 243). Failure will cause a "RETURN-CODE" special
register value of -1 to be passed back.

8.3.19. CBL COPY FILE

3 June 2014 Chapter 8 - Interfacing With The OS



534 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

� �
CBL COPY FILE Built-In Subroutine Syntax
 	

CALL "CBL_COPY_FILE" USING src-file-path, dest-file-path

~~~~ ~~~~~

————————————————————————————————————————

Use this subroutine to copy file <src-file-path> to <dest-file-path> as if it were done via the
"CP" (Unix/OSX) or "COPY" (Windows) command.

Both arguments may be alphanumeric literals or identifiers.

If the attempt to copy the file fails (for example, it or the destination directory doesn’t
exist), the "RETURN-CODE" special register (see [Special Registers], page 243) will be set to
128; on successful completion it will be set to 0.

8.3.20. CBL CREATE DIR� �
CBL CREATE DIR Built-In Subroutine Syntax
 	

CALL "CBL_CREATE_DIR" USING dir-path

~~~~ ~~~~~

————————————————————————————————————————

With this routine you may create a new directory — the name of which is supplied as the
<dir-path> argument (an alphanumeric literal or identifier).

Only the lowest-level directory (last) in the specified path can be created — all others must
already exist. This subroutine will NOT behave as a "mkdir -p" (Unix) or "mkdir /p"

(Windows).

The "RETURN-CODE" special register (see [Special Registers], page 243) will be set to the
return code of the operation; the value will be either 0=Success or 128=failure.

8.3.21. CBL CREATE FILE� �
CBL CREATE FILE Built-In Subroutine Syntax
 	

CALL "CBL_CREATE_FILE" USING file-path, 2, 0, 0, file-handle

~~~~ ~~~~~

————————————————————————————————————————

The "CBL_CREATE_FILE" subroutine creates the new file specified using the file-path argu-
ment and opens it for output as a byte-stream file usable by "CBL_WRITE_FILE" built-in
system subroutine (see [CBL WRITE FILE], page 548).

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 535

Arguments 2, 3 and 4 should be coded as the constant values shown. "CBL_CREATE_FILE"
is actually a special-case of the "CBL_OPEN_FILE" built-in system subroutine (see
[CBL OPEN FILE], page 545) routine — see that routine for a description of the meanings
of arguments 2, 3 and 4.

A <file-handle> ("PIC X(4) USAGE COMP-X)" will be returned, for use on any subsequent
"CBL_WRITE_FILE" built-in system subroutine (see [CBL WRITE FILE], page 548) or
"CBL_CLOSE_FILE" built-in system subroutine (see [CBL CLOSE FILE], page 533) calls.

The success or failure of the subroutine will be reported back in the "RETURN-CODE" special
register (see [Special Registers], page 243), with a value of -1 indicating an invalid argument
and a value of 0 indicating success.

8.3.22. CBL DELETE DIR� �
CBL DELETE DIR Built-In Subroutine Syntax
 	

CALL "CBL_DELETE_DIR" USING dir-path

~~~~ ~~~~~

————————————————————————————————————————

This subroutine deletes an empty directory.

The only argument — <dir-path> (an alphanumeric literal or identifier) — is the name of
the directory to be deleted.

Only the lowest-level directory (last) in the specified path will be deleted, and that directory
must be empty to be deleted.

The "RETURN-CODE" special register (see [Special Registers], page 243) will be set to the
return code of the operation; the value will be either 0=Success or 128=failure.

8.3.23. CBL DELETE FILE� �
CBL DELETE FILE Built-In Subroutine Syntax
 	

CALL "CBL_DELETE_FILE" USING file-path

~~~~ ~~~~~

————————————————————————————————————————

This routine deletes the file specified by the <file-path> argument (an alphanumeric literal
or identifier) just as if that were done using the "RM" (Unix/OSX) or "ERASE" (Windows)
command.

3 June 2014 Chapter 8 - Interfacing With The OS



536 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

If the attempt to delete the file fails (for example, it doesn’t exist), the "RETURN-CODE"

special register (see [Special Registers], page 243) will be set to 128; on successful completion
it will be set to 0.

8.3.24. CBL EQ� �
CBL EQ Built-In Subroutine Syntax
 	

CALL "CBL_EQ" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 1

0 1 0

1 0 0

1 1 1

This subroutine performs a bit-by-bit comparison between the
left-most 8*<byte-length> corresponding bits of <item-1> and
<item-2>, storing the resulting bit string into <item-2>. The
truth table shown to the left documents the EQ process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 359).

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 243).

8.3.25. CBL ERROR PROC� �
CBL ERROR PROC Built-In Subroutine Syntax
 	

CALL "CBL_ERROR_PROC" USING function, program-pointer

~~~~ ~~~~~

————————————————————————————————————————

This routine registers a general error-handling routine.

The <function> argument must be a numeric literal or a 32-bit binary data item ("USAGE
BINARY-LONG", for example) with a value of 0 or 1. A value of 0 means that you will be
registering ("installing") an error procedure while a value of 1 indicates you’re deregistering
("uninstalling") a previously-installed error procedure.

The <program-pointer> must be a data item with a "USAGE" (see [USAGE], page 186) of
"PROGRAM-POINTER" containing the address of your error procedure. This item should be

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 537

given a value using the "SET Program-Pointer" statement (see [SET Program-Pointer],
page 446). If the error procedure is written in GNU COBOL, it must be a subroutine, not
a user-defined function.

A success (0) or failure (non-0) result will be passed back in the "RETURN-CODE" special
register (see [Special Registers], page 243).

A custom error procedure will trigger when a runtime error condition is encountered. An
error procedure may be registered by a main program or a subprogram, but regardless
of from where it was registered, it applies to the overall program compilation group and
will trigger when a runtime error occurs anywhere in the executable program. If the error
procedure was defined by a subprogram, that program must be loaded at the time the error
procedure is executed.

An error procedure may be used to take whatever actions might be warranted to display
additional information or to gracefully close down work in progress, but it cannot prevent
the termination of program execution; should the error procedure not issue its own "STOP

RUN", control will return back to the standard error routine when the error procedure exits.

The code within the handler will be executed and — once the handler issues a "return", if
it was written in C, or an "EXIT PROGRAM" statement (see [EXIT], page 387) or "GOBACK"
statement, if it was written in GNU COBOL, the system-standard error handling routine
will be executed.

Only one user-defined error procedure may be in effect at any time.

The following is a sample GNU COBOL program that registers an error procedure. The
output of that program is shown as well. As as you can see, the error handler’s messages
appear followed by the standard GNU COBOL message.

1. IDENTIFICATION DIVISION.

2. PROGRAM-ID. DemoERRPROC.

3. ENVIRONMENT DIVISION.

4. DATA DIVISION.

5. WORKING-STORAGE SECTION.

6. 01 Err-Proc-Address USAGE PROGRAM-POINTER.

7. PROCEDURE DIVISION.

8. S1.

9. DISPLAY ’Program is starting’

10. SET Err-Proc-Address TO ENTRY ’ErrProc’

11. CALL ’CBL_ERROR_PROC’ USING 0, Err-Proc-Address

12. CALL ’Tilt’ *> THIS DOESN’T EXIST!!!!

13. DISPLAY ’Program is stopping’

14. STOP RUN

15. .

16. END PROGRAM DemoERRPROC.

17.

18. IDENTIFICATION DIVISION.

3 June 2014 Chapter 8 - Interfacing With The OS



538 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

19. PROGRAM-ID. ErrProc.

20. PROCEDURE DIVISION.

21. 000-Main.

22. DISPLAY ’Error: ’ FUNCTION EXCEPTION-LOCATION

23. DISPLAY ’ ’ FUNCTION EXCEPTION-STATEMENT

24. DISPLAY ’ ’ FUNCTION EXCEPTION-FILE

25. DISPLAY ’ ’ FUNCTION EXCEPTION-STATUS

26. DISPLAY ’*** Returning to Standard Error Routine ***’

27. EXIT PROGRAM

28. .

29. END PROGRAM ErrProc.

When executed, this sample program generates the following console output.

E:\Programs\Demos>demoerrproc

Program is starting

Error: DemoERRPROC; S1; 12

CALL

00

EC-PROGRAM-NOT-FOUND

*** Returning to Standard Error Routine ***

DEMOERRPROC.cbl: 27: libcob: Cannot find module ’Tilt’

E:\Programs\Demos>

8.3.26. CBL EXIT PROC� �
CBL EXIT PROC Built-In Subroutine Syntax
 	

CALL "CBL_EXIT_PROC" USING function, program-pointer

~~~~ ~~~~~

————————————————————————————————————————

This routine registers a general exit-handling routine.

The <function> argument must be a numeric literal or a 32-bit binary data item ("USAGE
BINARY-LONG", for example) with a value of 0 or 1. A value of 0 means that you will be
registering ("installing") an exit procedure while a value of 1 indicates you’re deregistering
("uninstalling") a previously-installed exit procedure.

The <program-pointer> must be a data item with a "USAGE" (see [USAGE], page 186) of
"PROGRAM-POINTER" containing the address of your exit procedure.

A success (0) or failure (non-0) result will be passed back in the "RETURN-CODE" special
register (see [Special Registers], page 243).

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 539

An exit procedure, once registered, will trigger whenever a "STOP RUN" statement (see
[STOP], page 461) or a "GOBACK" statement (see [GOBACK], page 393) is executed any-
where in the program. The exit procedure may execute whatever code is desired to under-
take an orderly shutdown of the program. Once the exit procedure terminates by executing
an "EXIT PROGRAM" statement (see [EXIT], page 387) or a "GOBACK" statement, the system-
standard program termination routine will be executed.

Only one user-defined exit procedure may be in effect at any time.

The following is a sample GNU COBOL program that registers an exit procedure. The
output of that program is shown as well.

IDENTIFICATION DIVISION.

PROGRAM-ID. demoexitproc.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Exit-Proc-Address USAGE PROGRAM-POINTER.

PROCEDURE DIVISION.

000-Register-Exit-Proc.

SET Exit-Proc-Address TO ENTRY "ExitProc"

CALL "CBL_EXIT_PROC" USING 0, Exit-Proc-Address

IF RETURN-CODE NOT = 0

DISPLAY ’Error: Could not register Exit Procedure’

END-IF

.

099-Now-Test-Exit-Proc.

DISPLAY

’Executing a STOP RUN...’

END-DISPLAY

GOBACK

.

END PROGRAM demoexitproc.

IDENTIFICATION DIVISION.

PROGRAM-ID. ExitProc.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Display-Date PIC XXXX/XX/XX.

01 Display-Time PIC XX/XX/XX.

01 Now PIC X(8).

01 Today PIC X(8).

PROCEDURE DIVISION.

000-Main.

DISPLAY ’*** STOP RUN has been executed ***’

ACCEPT Today FROM DATE YYYYMMDD

ACCEPT Now FROM TIME

MOVE Today TO Display-Date

3 June 2014 Chapter 8 - Interfacing With The OS



540 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

MOVE Now TO Display-Time

INSPECT Display-Time REPLACING ALL ’/’ BY ’:’

DISPLAY ’*** ’ Display-Date ’ ’ Display-Time ’ ***’

GOBACK

.

END PROGRAM ExitProc.

8.3.27. CBL FLUSH FILE� �
CBL FLUSH FILE Built-In Subroutine Syntax
 	

CALL "CBL_FLUSH_FILE" USING file-handle

~~~~ ~~~~~

————————————————————————————————————————

In Micro Focus COBOL, calling this subroutine flushes any as-yet unwritten memory buffers
for the (output) file whose file-handle is specified as the argument to disk.

This routine is non-functional in GNU COBOL. It exists only to provide compatibility for
applications that may have been developed for Micro Focus COBOL.

8.3.28. CBL GET CSR POS� �
CBL GET CSR POS Built-In Subroutine Syntax
 	

CALL "CBL_GET_CSR_POS" USING cursor-locn-buffer

~~~~ ~~~~~

————————————————————————————————————————

This subroutine will retrieve the current cursor location on the screen, returning a 2-byte
value into the supplied <cursor-locn-buffer>. The first byte of <cursor-locn-buffer> will
receive the current line (row) location while the second receives the current column location.

The returned location data will be in binary form, and will be based upon starting values
of 0, meaning that if the cursor is located at line 15, column 12 at the time this routine is
called, a value of (14,11) will be returned.

The following is a typical <cursor-locn-buffer> definition:

01 CURSOR-LOCN-BUFFER.

05 CURSOR-LINE USAGE BINARY-CHAR.

05 CURSOR-COLUMN USAGE BINARY-CHAR.

Values of 1 (Line) and 1 (column) will be returned if GNU COBOL was not generated to
include screen I/O.

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 541

8.3.29. CBL GET CURRENT DIR� �
CBL GET CURRENT DIR Built-In Subroutine Syntax
 	

CALL "CBL_GET_CURRENT_DIR" USING BY VALUE 0,

~~~~ ~~~~~ ~~~~~

BY VALUE length,

~~~~~

BY REFERENCE buffer

~~~~~~~~~

————————————————————————————————————————

This retrieves the fully-qualified pathname of the current directory, saving up to <length>
characters of that name into the specified <buffer>.

The first argument is unused, but must be specified. It must be specified "BY VALUE" (see
[CALL], page 359).

The <length> argument must be specified "BY VALUE". The <buffer> argument must be
specified "BY REFERENCE".

The value specified for the <length> argument (a numeric literal or data item) should not
exceed the actual length of the <buffer> argument.

If the value specified for the <length> argument is LESS THAN the actual length of the
<buffer> argument, the current directory path will be left-justified and space filled within the
first <length> bytes of <buffer> — any bytes in <buffer> after that point will be unchanged.

If the routine is successful, a value of 0 will be returned to the "RETURN-CODE" special
register (see [Special Registers], page 243). If the routine failed because of a problem with
an argument (such as a negative or 0 length), a value of 128 will result. Finally, if the 1st
argument value is anything but zero, the routine will fail with a 129 value.

8.3.30. CBL GET SCR SIZE� �
CBL GET SCR SIZE Built-In Subroutine Syntax
 	

CALL "CBL_GET_SCR_SIZE" USING no-of-lines, no-of-cols

~~~~ ~~~~~

————————————————————————————————————————

Use this subroutine to retrieve the current console screen size.

When the system is running in a windowed environment, this will be the sizing of the console
window in which the program is executing. When the system is not running a windowing

3 June 2014 Chapter 8 - Interfacing With The OS



542 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

environment, the physical console screen attributes will be returned. In environments such
as a Windows console window, where the logical size of the window may far exceed that of
the physical console window, the size returned will be that of the physical console window.
Two one-byte values will be returned — the first will be the current number of lines (rows)
while the second will be the number of columns.

The returned size data will be in binary form.

The following are typical <no-of-lines> and <no-of-columns> definitions:

01 NO-OF-LINES USAGE BINARY-CHAR.

01 NO-OF-COLUMNS USAGE BINARY-CHAR.

GNU COBOL run-time screen management must have been initialized prior to CALLing
this routine in order to receive meaningful values. This means that a "DISPLAY

screen-data-item" statement (see [DISPLAY screen-data-item], page 374) or a "ACCEPT

screen-data-item" statement (see [ACCEPT screen-data-item], page 342) must have
been executed prior to executing the "CALL" statement.

Zero values will be returned if the screen has not been initialized and values of 24 (lines)
and 80 (columns) will be returned if GNU COBOL was not generated to include screen
I/O.

8.3.31. CBL IMP� �
CBL IMP Built-In Subroutine Syntax
 	

CALL "CBL_IMP" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 1

0 1 1

1 0 0

1 1 1

This subroutine performs a bit-by-bit logical "implies" pro-
cess between the left-most 8*<byte-length> corresponding bits
of <item-1> and <item-2>, storing the resulting bit string into
<item-2>. The truth table shown to the left documents the
IMP process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 359).

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 243).

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 543

8.3.32. CBL NIMP� �
CBL NIMP Built-In Subroutine Syntax
 	

CALL "CBL_NIMP" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 0

0 1 0

1 0 1

1 1 0

This subroutine performs the negation of a bit-by-bit logi-
cal "implies" process between the left-most 8*<byte-length>
corresponding bits of <item-1> and <item-2>, storing the re-
sulting bit string into <item-2>. The truth table shown to the
left documents the NIMP process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 359).

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 243).

8.3.33. CBL NOR� �
CBL NOR Built-In Subroutine Syntax
 	

CALL "CBL_NOR" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 1

0 1 0

1 0 0

1 1 0

This subroutine performs the negation of a bit-by-bit logi-
cal "or" process between the left-most 8*<byte-length> corre-
sponding bits of <item-1> and <item-2>, storing the resulting
bit string into <item-2>. The truth table shown to the left
documents the NOR process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 359).

3 June 2014 Chapter 8 - Interfacing With The OS



544 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 243).

8.3.34. CBL NOT� �
CBL NOT Built-In Subroutine Syntax
 	

CALL "CBL_NOT" USING item-1, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

This subroutine "flips" the left-most 8*<byte-length> bits of <item-1>, changing 0 bits to
1s and 1s to 0s. The changes are made directly im <item-1>.

The <item-1> argument must be a data item. The length of <item-1> must be at least
8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be passed
using "BY VALUE" (see [CALL], page 359).

Any bits in <item-1> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 243).

8.3.35. CBL OC NANOSLEEP� �
CBL OC NANOSLEEP Built-In Subroutine Syntax
 	

CALL "CBL_OC_NANOSLEEP" USING nanoseconds-to-sleep

~~~~ ~~~~~

————————————————————————————————————————

This subroutine puts the program to sleep for the specified number of nanoseconds. The
effective granularity of <nanoseconds-to-sleep> values will depend upon the granularity of
the system clock your computer is using and the timing granularity of the operating system
that computer is running. For example, I donæt expect youæll see any difference whatsoever
between values of 1, 100, 500 or 1000, but you should see a difference between values such
as 250000000 and 500000000.

The <nanoseconds-to-sleep> argument is a numeric literal or data item.

There are one BILLION nanoseconds in a second, so if you wanted to put the program to
sleep for 1/4 second you’d use a <nanoseconds-to-sleep> value of 250000000.

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 545

8.3.36. CBL OPEN FILE� �
CBL OPEN FILE Built-In Subroutine Syntax
 	

CALL "CBL_OPEN_FILE" USING file-path, access-mode, 0, 0, handle

~~~~ ~~~~~

————————————————————————————————————————

This routine opens an existing file for use as a byte-stream file usable by CBL WRITE FILE
or CBL READ FILE.

The <file-path> argument is an alphanumeric literal or data-item.

The <access-mode> argument is a numeric literal or data item with a PIC X USAGE
COMP-X (or USAGE BINARY-CHAR) definition; it specifies how you wish to use the file,
as follows:

1 = input (read-only)
2 = output (write-only)
3 = input and/or output

The third and fourth arguments would specify a locking mode and device specification,
respectively, but they’re not implemented in GNU COBOL (currently, at least) — just
specify each as 0.

The final argument (<handle>) is a "PIC X(4) USAGE COMP-X" item that will receive the
handle to the file. That handle is used on all other byte-stream functions to reference this
specific file.

A "RETURN-CODE" special register (see [Special Registers], page 243) value of -1 indicates
an invalid argument, while a value of 0 indicates success. A value of 35 means the file does
not exist.

8.3.37. CBL OR� �
CBL OR Built-In Subroutine Syntax
 	

CALL "CBL_OR" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

3 June 2014 Chapter 8 - Interfacing With The OS



546 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 0

0 1 1

1 0 1

1 1 1

This subroutine performs a bit-by-bit logical "or" process
between the left-most 8*<byte-length> corresponding bits of
<item-1> and <item-2>, storing the resulting bit string into
<item-2>. The truth table shown to the left documents the
OR process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 359).

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 243).

8.3.38. CBL READ FILE� �
CBL READ FILE Built-In Subroutine Syntax
 	

CALL "CBL_READ_FILE" USING handle, offset, nbytes, flag, buffer

~~~~ ~~~~~

————————————————————————————————————————

This routine reads <nbytes> of data starting at byte number <offset> from the byte-stream
file defined by <handle> into the specified <buffer>.

The <handle> argument ("PIC X(4) USAGE COMP-X") must have been populated by a prior
call to "CBL_OPEN_FILE" built-in system subroutine (see [CBL OPEN FILE], page 545).

The <offset> argument ("PIC X(8) USAGE COMP-X") defines the location in the file of the
first byte to be read. The first byte of a file is byte offset 0.

The <nbytes> argument ("PIC X(4) USAGE COMP-X") specifies how many bytes (maximum)
will be read. If the <flag> argument is specified as 128, the size of the file (in bytes) will
be returned into the file offset argument (argument 2) upon completion. Not all operating
system/GNU COBOL environments may be able to retrieve file sizes æ in such cases, a
value of zero will be returned. The only other valid value for flags is 0. This argument may
be specified either as a numeric literal or as a "PIC X USAGE COMP-X" data item.

Upon completion, the "RETURN-CODE" special register (see [Special Registers], page 243)
will be set to 0 if the read was successful or to 10 if an "end-of-file" condition occurred. If
a value of -1 is returned, a problem was identified with the subroutine arguments.

8.3.39. CBL RENAME FILE

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 547

� �
CBL RENAME FILE Built-In Subroutine Syntax
 	

CALL "CBL_RENAME_FILE" USING old-file-path, new-file-path

~~~~ ~~~~~

————————————————————————————————————————

You may use this subroutine to rename a file.

The file specified by <old-file-path> will be "renamed" to the name specified as <new-file-
path>. Each argument may be an alphanumeric literal or data item.

Despite what the name of this routine might make you believe, this routine is more than
just a simple "rename" — it will actually move the file supplied as the 1st argument to the
file specified as the 2nd argument. Think of it as a two-step sequence, first copying the <old-
file-path> file to the <new-file-path> file and then a second step where the <old-file-path> is
deleted.

If the attempt to move the file fails (for example, it doesn’t exist), the "RETURN-CODE" special
register (see [Special Registers], page 243) will be set to 128; on successful completion it
will be set to 0.

8.3.40. CBL TOLOWER� �
CBL TOLOWER Built-In Subroutine Syntax
 	

CALL "CBL_TOLOWER" USING data-item, BY VALUE convert-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

This routine will convert the first <convert-length> (a numeric literal or data item) characters
of <data-item> (an alpha-numeric identifier) to lower-case.

The <convert-length> argument must be specified "BY VALUE" (see [CALL], page 359). It
specifies how many (leading) characters in data-item will be converted — any characters
after that will remain unchanged.

If <convert-length> is negative or zero, no conversion will be performed.

8.3.41. CBL TOUPPER� �
CBL TOUPPER Built-In Subroutine Syntax
 	

CALL "CBL_TOUPPER" USING data-item, BY VALUE convert-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

3 June 2014 Chapter 8 - Interfacing With The OS



548 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

This routine will convert the first <convert-length> (a numeric literal or data item) characters
of <data-item> (an alpha-numeric identifier) to upper-case.

The <convert-length> argument must be specified "BY VALUE" (see [CALL], page 359). It
specifies how many (leading) characters in data-item will be converted — any characters
after that will remain unchanged.

If <convert-length> is negative or zero, no conversion will be performed.

8.3.42. CBL WRITE FILE� �
CBL WRITE FILE Built-In Subroutine Syntax
 	

CALL "CBL_WRITE_FILE" USING handle, offset, nbytes, 0, buffer

~~~~ ~~~~~

————————————————————————————————————————

This routine writes <nbytes> of data from the specified <buffer> to the byte-stream file
defined by <handle> starting at byte number <offset> within the file.

The <handle> argument ("PIC X(4) USAGE COMP-X") must have been populated by a prior
call to CBL OPEN FILE. The offset argument ("PIC X(4) USAGE COMP-X") defines the
location in the file of the first byte to be written to. The first byte of a file is byte offset 0.

The <nbytes> argument ("PIC X(4) USAGE COMP-X") specifies how many bytes (maximum)
will be written.

Currently, the only allowable value for the flags argument is 0. This argument may be
specified either as a numeric literal or as a "PIC X(1) USAGE COMP-X" data item.

Upon completion, the "RETURN-CODE" special register (see [Special Registers], page 243)
will be set to 0 if the write was successful or to 30 if an I/O error condition occurred. If a
value of -1 is returned, a problem was identified with the subroutine arguments.

8.3.43. CBL XOR� �
CBL XOR Built-In Subroutine Syntax
 	

CALL "CBL_XOR" USING item-1, item-2, BY VALUE byte-length

~~~~ ~~~~~ ~~~~~

————————————————————————————————————————

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 549

Old Old New

Arg 1 Arg 2 Arg 2

Bit Bit Bit

===== ===== =====

0 0 0

0 1 1

1 0 1

1 1 0

This subroutine performs a bit-by-bit logical "exclusive or"
process between the left-most 8*<byte-length> corresponding
bits of <item-1> and <item-2>, storing the resulting bit string
into <item-2>. The truth table shown to the left documents
the XOR process.

The <item-1> argument may be an alphanumeric literal or a
data item and <item-2> must be a data item. The length of
both <item-1> and <item-2>must be at least 8*<byte-length>.

The <byte-length> argument may be a numeric literal or data item, and must be specified
using "BY VALUE" (see [CALL], page 359).

Any bits in <item-2> after the 8*<byte-length> point will be unaffected.

A result of zero will be passed back in the "RETURN-CODE" special register (see [Special
Registers], page 243).

8.3.44. SYSTEM� �
SYSTEM Built-In Subroutine Syntax
 	

CALL "SYSTEM" USING command

~~~~ ~~~~~

————————————————————————————————————————

This subroutine submits the specified <command> (an alphanumeric literal or data item)
to a command shell for execution as if it were typed into a console/terminal window.

A shell will be opened subordinate to the GNU COBOL program issuing the call to
"SYSTEM".

Output from the command (if any) will appear in the command window in which the GNU
COBOL program was executed.

On a Unix system, the shell environment will be established using the default shell program.
This is also true when using a GNU COBOL build created with and for OSX or the Cygwin
Unix emulator.

With native Windows Windows/MinGW builds, the shell environment will be the Windows
console window command processor (usually "cmd.exe") appropriate for the version of
Windows you’re using.

To trap output from the executed command and process it within the GNU COBOL pro-
gram, use a pipe (>) to send the command output to a temporary file which you read from
within the program once control returns.

3 June 2014 Chapter 8 - Interfacing With The OS



550 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

8.3.45. X"91"� �
X"91" Built-In Subroutine Syntax
 	

CALL X"91" USING return-code, function-code, binary-variable-arg

~~~~ ~~~~~

————————————————————————————————————————

The original Micro Focus version of this routine is capable of providing a wide variety of
functions. GNU COBOL supports just three of them:

• Turning runtime switches (SWITCH-1, . . . , SWITCH-8) on.

• Turning runtime switches (SWITCH-1, . . . , SWITCH-8) off.

• Retrieving the number of arguments passed to a subroutine.

The <return-code> argument must be a one-byte binary numeric data item ("USAGE
BINARY-CHAR" is recommended). It will receive a value of 0 if the operation was successful,
1 otherwise.

The <function-code> argument must be either a numeric literal or a one-byte binary numeric
data item ("USAGE BINARY-CHAR" is recommended).

The third argument — <variable-arg> — is defined differently depending upon the
<function-code> value, as follows:

11

Sets and/or clears all eight of the COBOL switches (SWITCH-1 through
SWITCH-8). See [SPECIAL-NAMES], page 62, for an explanation of those
switches.

The <variable-arg> argument should be an "OCCURS 8 TIMES" table of "USAGE
BINARY-CHAR".

Each occurrence that is set to a value of zero prior to the "CALL X"91"" will
cause the corresponding switch to be cleared. Each occurrence set to 1 prior to
the "CALL X"91"" will cause the corresponding switch to be set.

Values other than 0 or 1 will be ignored.

12

Reads all eight of the COBOL switches (SWITCH-1 through SWITCH-8)

The <variable-arg> argument should be an "OCCURS 8 TIMES" table of "USAGE
BINARY-CHAR".

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 551

Each of the 1st eight occurrences of the array will be set to either 0 or 1 — 1
if the corresponding switch is set, 0 otherwise.

16

Retrieves the number of arguments passed to the program executing the CALL
X"91", saving that number into the <variable-arg> argument. That should be
a binary numeric data item ("USAGE BINARY-CHAR" is recommended).

8.3.46. X"E4"� �
X"E4" Built-In Subroutine Syntax
 	

CALL X"E4"

~~~~

————————————————————————————————————————

Use X"E4" to clear the screen. There are no arguments and no returned value.

8.3.47. X"E5"� �
X"E5" Built-In Subroutine Syntax
 	

CALL X"E5"

~~~~

————————————————————————————————————————

The X"E5" routine will sound the PC "bell". There are no arguments and no returned
value.

8.3.48. X"F4"� �
X"F4" Built-In Subroutine Syntax
 	

CALL X"F4" USING byte, table

~~~~ ~~~~~

————————————————————————————————————————

This routine packs the low-order (rightmost) bit from each of the eight 1-byte items in
<table> into the corresponding bit positions of the single-byte data item <byte>.

The <byte> data item need be only a single byte in size. If it is longer, the excess will be
unaffected by this subroutine.

3 June 2014 Chapter 8 - Interfacing With The OS



552 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

The <table> data item must be at least 8 bytes long. If it is longer, the excess will be
ignored by this subroutine.

Typically, table is defined similarly to the following:

01 Table-Arg.

05 Each-Byte OCCURS 8 TIMES USAGE BINARY-CHAR.

8.3.49. X"F5"� �
X"F5" Built-In Subroutine Syntax
 	

CALL X"F5" USING byte, table

~~~~ ~~~~~

————————————————————————————————————————

This routine unpacks each bit of the single-byte data item <byte> into the low-order (right-
most) bit of each of the corresponding eight 1-byte items in <table>. The other seven bit
positions of each of the first eight entries in <table> will be set to zero.

The <byte> data item need be only a single byte in size. If it is longer, the excess will be
unaffected by this subroutine.

The <table> data item must be at least 8 bytes long. If it is longer, the excess will be
ignored by this subroutine.

Typically, table is defined similarly to the following:

01 Table-Arg.

05 Each-Byte OCCURS 8 TIMES USAGE BINARY-CHAR.

8.4. Binary Truncation

By default, the GNU COBOL compiler will truncate binary data items to the precision
indicated by their "PICTURE" (see [PICTURE], page 162) clause, if they have one. For
example, the following data item will have 2 bytes of storage allocated for it:

01 Comp-5-Item PIC 9(3) COMP-5.

Because of truncation, even though this field has enough bits allocated (16) to store values
from 0 to 65535, it will be limited to values of 0 to 999 because of its "PICTURE".

Or is it?

Take a look at the small demo program shown here. This program will perform three
different types of operations against a binary field, displaying the results of each:

IDENTIFICATION DIVISION.

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 553

PROGRAM-ID. DEMOTRUNC.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Bin-Item-1 PIC 9(3) COMP-5 VALUE 32760.

01 Disp-Item-1 PIC 9(6).

PROCEDURE DIVISION.

000-Main.

MOVE Bin-Item-1 TO Disp-Item-1

DISPLAY ’Bin-Item-1=’ Bin-Item-1 ’ Disp-Item-1=’ Disp-Item-1

ADD 5 TO Bin-Item-1

MOVE Bin-Item-1 TO Disp-Item-1

DISPLAY ’Bin-Item-1=’ Bin-Item-1 ’ Disp-Item-1=’ Disp-Item-1

MOVE 32767 TO Bin-Item-1

MOVE Bin-Item-1 TO Disp-Item-1

DISPLAY ’Bin-Item-1=’ Bin-Item-1 ’ Disp-Item-1=’ Disp-Item-1

STOP RUN

.

Here are the results when the program is compiled (with truncation in-effect by default)
and executed:

Bin-Item-1=760 Disp-Item-1=032760

Bin-Item-1=765 Disp-Item-1=032765

Bin-Item-1=767 Disp-Item-1=032767

You can see that truncation affected the "DISPLAY" statements but appears to have had no
impact whatsoever on the "MOVE" and "ADD" statements. This is the hidden secret about
truncation in GNU COBOL: it doesn’t really truncate the internally-stored values — it just
truncates the "DISPLAY" of them!

If that same program is recompiled without truncation (by adding the "-fnotrunc" switch
switch to the ’cobc’ command), the results are as follows:

Bin-Item-1=32760 Disp-Item-1=032760

Bin-Item-1=32765 Disp-Item-1=032765

Bin-Item-1=32767 Disp-Item-1=032767

If this was all there was to the binary truncation issue it wouldn’t be worth a section in
this document. The fact is, however, that binary truncation has a significant effect on the
performance of GNU COBOL programs. When binary truncation is in effect, arithmetic
operations performed against all types of numeric data items (even "USAGE DISPLAY") are
slowed down.

Before continuing, it’s worth making the point that we’re NOT talking about astronomical
performance degradations here. Today’s computers are FAST, and a user sitting at the
keyboard, running a GNU COBOL program is unlikely to notice. BUT . . . if you have

3 June 2014 Chapter 8 - Interfacing With The OS



554 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

a GNU COBOL program that has to process large amounts of data, performing some
significant "number crunching" against that data as it goes, the impact of truncation could
become noticeable.

The following program compares the performance of performing arithmetic operations (in a
totally non-scientific, non-rigorous way) against data items with a "USAGE" (see [USAGE],
page 186) of "DISPLAY", "COMP", "COMP-5" and "BINARY-LONG". It was actually my intent
when I first wrote the program to merely demonstrate the relative performance differences
between different types of numeric data storage, and it certainly met that objective.

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMOMATH.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Begin-Time.

05 BT-HH PIC 9(2).

05 BT-MM PIC 9(2).

05 BT-SS PIC 9(2).

05 BT-HU PIC 9(2).

01 Binary-Item BINARY-LONG SIGNED VALUE 0.

01 Comp-Item COMP PIC S9(9) VALUE 0.

01 Comp-5-Item COMP-5 PIC S9(9) VALUE 0.

01 Display-Item DISPLAY PIC S9(9) VALUE 0.

01 End-Time.

05 ET-HH PIC 9(2).

05 ET-MM PIC 9(2).

05 ET-SS PIC 9(2).

05 ET-HU PIC 9(2).

78 Repeat-Count VALUE 10000000.

01 Time-Diff PIC ZZ9.99.

PROCEDURE DIVISION.

010-Test-Usage-DISPLAY.

ACCEPT Begin-Time FROM TIME

PERFORM Repeat-Count TIMES

ADD 7 TO Display-Item

END-PERFORM

PERFORM 100-Determine-Time-Diff

DISPLAY ’USAGE DISPLAY: ’ Time-Diff ’ SECONDS’

.

020-Test-Usage-COMP.

ACCEPT Begin-Time FROM TIME

PERFORM Repeat-Count TIMES

ADD 7 TO Comp-Item

END-PERFORM

PERFORM 100-Determine-Time-Diff

DISPLAY ’USAGE COMP: ’ Time-Diff ’ SECONDS’

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 555

.

030-Test-Usage-COMP-5.

ACCEPT Begin-Time FROM TIME

PERFORM Repeat-Count TIMES

ADD 7 TO Comp-5-Item

END-PERFORM

PERFORM 100-Determine-Time-Diff

DISPLAY ’USAGE COMP-5: ’ Time-Diff ’ SECONDS’

.

040-Test-Usage-BINARY.

ACCEPT Begin-Time FROM TIME

PERFORM Repeat-Count TIMES

ADD 7 TO Binary-Item

END-PERFORM

PERFORM 100-Determine-Time-Diff

DISPLAY ’USAGE BINARY: ’ Time-Diff ’ SECONDS’

.

099-Done.

STOP RUN

.

100-Determine-Time-Diff.

ACCEPT End-Time FROM TIME

COMPUTE Time-Diff =

( (ET-HH * 360000 + ET-MM * 6000 + ET-SS * 100 + ET-HU)

- (BT-HH * 360000 + BT-MM * 6000 + BT-SS * 100 + BT-HU) )

/ 100

.

Each data item has 7 added to it ten million times.

The time (to one-one-hundredth of a second) will be retrieved before and after each test
and the difference between the two is displayed. This is why the computations were done so
many times — it was to make sure the timing was "measurable" with only a 1/100 second
"stopwatch".

I also ran the tests multiple times, just to make sure I had consistent results (I did). Like I
mentioned earlier, this is not a rigorous, scientific benchmark of numeric performance; it’s
just a quick-and-dirty comparison.

Here are the results:

USAGE DISPLAY: 3.83 SECONDS

USAGE COMP: 1.23 SECONDS

USAGE COMP-5: 0.04 SECONDS

USAGE BINARY: 0.04 SECONDS

The results I saw here were consistent with those that would have been obtained from

3 June 2014 Chapter 8 - Interfacing With The OS



556 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

most of the COBOL implementations I have ever worked with — "USAGE COMP" has a sig-
nificant performance advantage over "USAGE DISPLAY", "USAGE COMP-5" has a significant
performance advantage over "USAGE COMP" and "USAGE BINARY-LONG" (and presumably
the other "BINARY-xxx" usages as well) perform identically, within the measurement toler-
ances of the test, as "COMP-5". This was expected since "COMP-5" and "BINARY-xxx" both
allocate data the same way.

Imagine my surprise, however, when I discovered that the use of "-fnotrunc" switch also
made a significant difference:

USAGE DISPLAY: 3.85 SECONDS

USAGE COMP: 0.09 SECONDS

USAGE COMP-5: 0.04 SECONDS

USAGE BINARY: 0.04 SECONDS

As you can see, there was a huge drop in "USAGE COMP" timings by turning off truncation.
As a result, I see absolutely no reason whatsoever why the "-fnotrunc" switch option
shouldn’t be used on all GNU COBOL compilations.

If you want to squeeze every last bit of performance out of your GNU COBOL programs,
don’t forget to investigate the "-O" switch, "-O2" switch and the "-Os" switch, all of
which influence the optimization of compiled code. Actually run programs using various
optimization switches (or not) and compare execution times against those of unoptimized
compiled versions of your programs. Don’t just compare the generated C code because
sometimes the differences can’t be "seen" at the C source-code level.

————————————————————
End of Chapter 8 — Interfacing With The OS

Chapter 8 - Interfacing With The OS 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 557

9. Sub-Programming

9.1. Subprogram Types

Simply stated, a ’Subprogram’ is a program that is invoked by another program; the sub-
program performs whatever its designed operations are and — when complete — typically
returns control back to the program that invoked it. There are two different types of subpro-
grams supported by GNU COBOL, subroutines and user-defined functions. The distinction
between these two subprogram types lies in the manner in which they are executed.

When program "A" invokes subprogram "B" as a ’Subroutine’, it does so using a special
statement dedicated to that function (the "CALL" statement (see [CALL], page 359), just
as if "B" were one of the built-in system subroutines.

When program "A" invokes program "B" as a ’User-Defined Function’, it does so in a
manner identical to how "B" would have been invoked had it been one of the many built-in
intrinsic functions.

In either instance, program "A" is referred to as the ’Calling Program’ while program "B"
is known as the ’Called Program’. GNU COBOL programs may be a calling program, a
called program or both.

A program written in the C programming language may serve as either the calling or called
program too. A called program may act as a calling program to another called program.
When a calling program does not serve as a called program to any program, that calling
program is known as a ’Main Program’.

Both subroutines and user-defined functions may return a value. The value they return
must be an integer in the range -2147483648 to +2147483647. This value will be available
in the "RETURN-CODE" special register (see [Special Registers], page 243) and also as the
value of the data item specified on the "RETURNING" (see [CALL], page 359) clause of a
subroutine’s CALL.

9.2. Independent vs Contained vs Nested Subprograms

Subprograms (either subroutines or user-defined functions) can be implemented in three
different ways.

’Independent Subprograms’

These are subprograms that are coded as the only COBOL program in their
Compilation Unit (see [Compilation Unit], page 512).

’Contained Subprograms’

These are subprograms which occur in the same Compilation Unit as a main
program and/or other subprograms. Each contained subprogram is separated
from the next via an "END PROGRAM" marker line. As an example. . .

3 June 2014 Chapter 9 - Sub-Programming



558 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

IDENTIFICATION DIVISION.

PROGRAM-ID. SUB1.

...

END PROGRAM SUB1.

IDENTIFICATION DIVISION.

PROGRAM-ID. SUB2.

...

END PROGRAM SUB2.

Program source code may be concatenated as shown here, provided an "END

PROGRAM" marker naming the "PROGRAM-ID" of the just-completed program is
used to separate one program from another.

There’s no reason that user-defined functions cannot be included too — they’ll
just have "FUNCTION-ID"s and will be ended by "END FUNCTION" markers.

The last program in any GNU COBOL source file need not have an "END"

marker.

When multiple programs occur in a source file, it is assumed that the programs
are related to one another in that they will be CALLed or executed as functions
from the others.

’Nested Subprograms’

It is also possible to create source files where GNU COBOL programs are nested
inside each other. Take for example these four GNU COBOL programs:

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG1.

...

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG2.

...

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG3.

...

END PROGRAM PROG3.

END PROGRAM PROG2.

IDENTIFICATION DIVISION.

PROGRAM-ID. PROG4.

...

END PROGRAM PROG4.

END PROGRAM PROG1.

Here we see that PROG2 is nested inside of PROG1 because there is no "END

PROGRAM" marker separating them. This means that data items or files defined
within PROG1 can be used within PROG2 simply by attaching the "GLOBAL"

Chapter 9 - Sub-Programming 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 559

(see [GLOBAL], page 146) attribute to them back in PROG1 when they are
defined.

Similarly, since there is no "END PROGRAM" marker separating PROG3 from
PROG2, it is possible for PROG3 to access "GLOBAL" files and data items
defined within PROG2. Since PROG2 is nested within PROG1, any "GLOBAL"

resources defined within PROG1 will be available to PROG3 as well.

The two "END PROGRAM" markers for PROG3 and PROG2 (note their sequence)
mean that PROG4 is nested within PROG1 only. It will not have access to any
"GLOBAL" resources defined within either PROG2 or PROG3.

The "END PROGRAM PROG1." marker, since it is the last line in the source file,
is entirely optional.

9.3. Alternate Entry Points

Any subroutine may have multiple entry-points defined within it. This means the subrou-
tine could be called either via a "CALL ’<program-id>’" or a "CALL ’<entry-point>’"

statement. There may be any number of alternate entry-points defined within a subroutine.

Alternate entry-points provide multiple ways in which the same subroutine may be called;
presumably, each entry-point will provide some different functionality to the calling pro-
gram. For example, if you wished to write a subroutine that manipulates "student" records
in a database, you might have the primary entry-point name retrieve a student record
from the database, while the alternate entry points "Add-Student", "Update-Student"
and "Delete-Student" could provide the alternate functions implied by their entry-point
names.

The alternative to using multiple entry points in your subroutine, by the way, would be to
include an additional argument to the primary (and only) entry point of the subroutine; this
new argument might be named "STUDENT-FUNCTION" and might have values of "FETCH",
"ADD", "UPDATE" or "DELETE".

The primary entry-point for any subroutine is always the first executable statement following
any "DECLARATIVES" (see [DECLARATIVES], page 208) in the procedure division. The
name of that entry-point (the name that will be called) is the subroutine’s "PROGRAM-ID"
(see [IDENTIFICATION DIVISION], page 53).

An alternate entry point is added to a subroutine using the "ENTRY" statement (see
[ENTRY], page 382).

When an alternate entry-point is called, execution within the subroutine will begin at the
first executable statement following the "ENTRY" statement.

9.4. Dynamic vs Static Subprograms

Any subprogram may be either statically or dynamically loaded into memory.

3 June 2014 Chapter 9 - Sub-Programming



560 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

A ’Static Subprogram’ is one which was in the same Compilation Unit (see [Compilation
Unit], page 512) as the other program(s) which call it, therefore meaning that it’s executable
object code is part of the same executable file as it’s calling program. The static subprogram
was therefore loaded into memory as part of and at the same time as the calling program.

A ’Dynamic Subprogram’ is one whose executable object code exists as an executable file
separate from that containing the calling program; these two programs were therefore each
compiled in their own separate Compilation Group (see [Compilation Group], page 512).
Dynamic subprograms are located and loaded into memory the first time they are executed.
Dynamic subprograms may be unloaded from memory via the "CANCEL" statement (see
[CANCEL], page 363), if desired.

GNU COBOL subprograms may be created as either static or dynamic subprograms, as
desired by the programmer.

To demonstrate, assume that a GNU COBOL Main Program (whose code resides in the
file "M.cbl") will be calling three subprograms, named "A", "B" and "C" (these are the
"PROGRAM-ID"s of the three subprograms, and their source code may be found in the files
"A.cbl", "B.cbl" and "C.cbl", respectively.

Here is how these four programs would be compiled if the three subprograms are to be
static:

"cobc -x M.cbl A.cbl B.cbl C.cbl"

This command informs the compiler (cobc) that four programs are to be compiled (the first
named on the command must always be the main program), and a single executable file is
to be created (due to the "-x" switch).

Here is how the main program and the three subprograms could be compiled if the three
subprograms are to be dynamic:

"cobc -x M.cbl"

"cobc -m A.cbl B.cbl C.cbl"

These commands will create an executable file for the main program ("-x" switch) and
three separate dynamically-loadable libraries ("-m" switch), one for each of the three sub-
programs. Had we wished, we could have created a single dynamically-loadable library
containing all three subprograms by adding the "-b" switch to their compilation:

"cobc -m -b A.cbl B.cbl C.cbl"

Dynamically-loadable libraries are also known by the term dynamically-loadable modules
— the two terms are synonymous.

Here are the rules about GNU COBOL dynamically-loadable modules:

1. There may be multiple GNU COBOL subprograms contained within a single
dynamically-loadable library if the "-b" switch is used in addition to "-m". If not,
each subprogram will be compiled to a separate dynamically-loadable library.

Chapter 9 - Sub-Programming 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 561

2. Dynamically-loadable modules will be named "xxxxxxxx.dll" on a Windows system,
"xxxxxxxx.so" on a Unix system or "xxxxxxxx.dylib" on an OSX system, where
"xxxxxxxx" exactly matches, including the usage of upper- and lower-case letters, the
primary entry-point name ("PROGRAM-ID" or "FUNCTION-ID") or an alternate entry
point name defined via the "ENTRY" statement (see [ENTRY], page 382) of any one of
the GNU COBOL programs included in that module.

3. The first time any of the GNU COBOL subprograms in a dynamically-loadable module
are invoked, the entry-point referenced must be the one for which the ".dll", ".so" or
".dylib" file is named.

4. When a dynamically-loadable module needs to be loaded (because it is not already in
memory from a previous subprogram execution), the dynamically-loadable library will
be sought in the same directory from which the main program was loaded. If it cannot
be found there, each directory named in the "PATH" run-time environment variable (see
[Run Time Environment Variables], page 522) will be searched. If it was not located
in any of those directories, the library specified by the "COB_LIBRARY_PATH" run-time
environment variable will be searched. Finally, if it still cannot be located, execution
will be terminated with an error message ("libcob: Cannot find module ’xxxxxxxx’").

5. Once the dynamically-loadable module has been successfully loaded, any of the entry-
points contained within it are now available for reference.

6. Dynamically-loadable modules may be removed from memory via the "CANCEL" state-
ment (see [CANCEL], page 363).

7. Once a dynamically-loadable module is actually loaded into memory, even if it is subse-
quently unloaded (via the "CANCEL" statement), it’s list of entry-points remain available
to the GNU COBOL run-time library and subsequent re-executions of any of those en-
try points will be able to bypass the search (rule #4) as well as the "first-execution
rule" (rule #3).

Consult the documentation on the "COB_PRE_LOAD" run-time environment variable,
"COB_PHYSICAL_CANCEL" run-time environment variable and "COB_LOAD_CASE" run-time
environment variable run-time environment variables (see [Run Time Environment
Variables], page 522) for additional options when using dynamically-loadable modules.

9.5. Subprogram Execution Flow

When a subprogram is invoked, the flow of execution will differ slightly depending on
whether the subprogram is a subroutine or a user-defined function.

9.5.1. Subroutine Execution Flow

When a subroutine is "CALL"ed:

1. The calling program issues a statement of the form "CALL ’<entry-point>’ USING

..." to transfer control to the subroutine.

3 June 2014 Chapter 9 - Sub-Programming



562 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

2. The executable for the called program will be located and loaded into memory:

A. If it is a static subroutine, it will already be part of the executable program issuing
the "CALL" (see [CALL], page 359).

B. If it is a dynamic subroutine, the GNU COBOL run-time system will check to
see if a dynamically-loadable module containing the subprogram’s entry point was
already located. If it was, no further "location" activity is needed. If not, the
dynamically-loadable module will be located (see [Locating Dynamically-Loadable
Modules], page 561).

C. Once the module has been located (if location was needed), it will be loaded into
memory (if not already loaded).

3. Execution of the calling program is suspended and control will transfer to the called
program, as follows:

A. If the "PROGRAM-ID" (see [IDENTIFICATION DIVISION], page 53) clause of the
subprogram included the "INITIAL" clause, the program will be reinitialized back
to its compile-time state. This will happen regardless of the "INITIAL" clause the
first time the subprogram is executed.

B. Local-storage, if any, will be allocated and initialized.

C. Execution will begin at the first executable statement following the subprograms
entry-point. The entry point will be either the first executable statement following
any "DECLARATIVES" (see [DECLARATIVES], page 208) that might be present
(if the subprogram was invoked using its primary entry-point name) or the first
executable statement following the "ENTRY" statement (see [ENTRY], page 382)
naming the entry-point specified on the "CALL" if the subprogram was invoked
using an alternate entry point.

4. The flow of execution will then progress through the coding of the subprogram as it
would with any other program.

5. If the subprogram issues a "STOP" statement (see [STOP], page 461) with the "RUN" op-
tion, program execution ceases and control returns to the operating system or whatever
execution shell invoked the main program.

6. If the subprogram wishes to return control back to the calling program, it will do so us-
ing either the "GOBACK" statement (see [GOBACK], page 393) or the "EXIT PROGRAM"

statement (see [EXIT], page 387). At this time:

A. If the subprograms procedure division header or "ENTRY" statement included a
"RETURNING", the value of the data item found on that clause is moved to the
"RETURN-CODE" special register (see [Special Registers], page 243); this behav-
ior can be altered utilizing the "CALL-CONVENTION" (see [SPECIAL-NAMES],
page 62) feature to leave "RETURN-CODE" unchanged.

B. Local-storage, if any, is de-allocated.

C. If the calling program included a "RETURNING" clause on the "CALL" statement

Chapter 9 - Sub-Programming 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 563

that invoked the subprogram, the value of the "RETURNING" data item in the
subroutine is moved to that data item. If there was no "RETURNING" specified in
the subroutine, the value of the "RETURN-CODE" special register is moved to that
data item.

D. Execution will resume back in the calling program with the first executable state-
ment following the "CALL" that invoked the subprogram.

9.5.2. User-Defined Function Execution Flow

When a user-defined function is executed:

1. The object code for the called program (the user-defined function) will be located, as
follows:

A. If it is a static user-defined function, it will already be part of the executable file
containing the calling program.

B. If it is a dynamic user-defined function, the GNU COBOL run-time system will
check to see if a dynamically-loadable module containing the function’s entry point
was already located. If it was, no further "location" activity is needed. If not, the
dynamically-loadable module will be located (see [Locating Dynamically-Loadable
Modules], page 561).

C. Once the module has been located (if location was needed), it will be loaded into
memory (if not already loaded).

2. Execution of the calling program is suspended and control will transfer to the called
program, as follows:

A. Local-storage, if any, will be allocated and initialized.

B. Execution will begin with the first executable statement in the procedure division
following any "DECLARATIVES" (see [DECLARATIVES], page 208) that might be
present.

3. The flow of execution will then progress through the coding of the function as it would
with any other program.

4. If the function issues a "STOP" statement (see [STOP], page 461) with the "RUN" option,
program execution ceases and control returns to the operating system or whatever
execution shell invoked the main program.

5. If the function wishes to return control back to the calling program, it will do so using
either the "GOBACK" statement (see [GOBACK], page 393) or the "EXIT FUNCTION"

statement (see [EXIT], page 387). At this time:

A. The value of the data item found on the user-defined functions "PROCEDURE

DIVISION RETURNING" (see [PROCEDURE DIVISION RETURNING], page 206)
clause is moved to the "RETURN-CODE" special register (see [Special Registers],
page 243).

3 June 2014 Chapter 9 - Sub-Programming



564 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

B. Local-storage, if any, is de-allocated.

C. Execution will resume back in the calling program at the point where the returned
value of the function is needed. At that point, the value in the "RETURN-CODE"

special register will be used for the function’s value.

Chapter 9 - Sub-Programming 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 565

9.6. Sharing Data Between Calling and Called Programs

9.5.1. Subprogram Arguments

9.6.1.1. Calling Program Considerations

Data items defined in a calling program may be passed to either type of called program
(subroutine or user-defined function) as arguments.

Arguments must be described in both the calling and called programs, and while they don’t
need to have the same names in both programs, they should be described in an identical
manner with regard to the following characteristics:

• "PICTURE" (see [PICTURE], page 162) (including both type and length)

• "SIGN" (see [SIGN], page 319)

• "SYNCRONIZED" (see [SYNCRONIZED], page 181)

• "USAGE" (see [USAGE], page 186)

A subroutine may be passed a maximum of 36 arguments; if you build the GNU COBOL
software yourself from the distributed source, you CAN change this value by altering the
defined value of "COB_MAX_FIELD_PARAMS" in the "common.h" header file. There is no
built-in GNU COBOL limit to how many arguments a user-defined function may be passed.

Whether or not changes made to an argument within a subroutine will be "visible" to the
calling program depends on how the argument was passed. There are three ways in which
arguments may be passed from a calling program to a subroutine, as defined by the use of
optional "BY" clauses in the "CALL" (see [CALL], page 359) statement’s list of arguments.

As an example, the following statement passes three arguments to a subroutine — each
argument is passed differently.

CALL "subroutine" USING BY REFERENCE arg-1

BY CONTENT arg-2

BY VALUE arg-3

END-CALL

The three ways arguments are passed are as follows.

"BY REFERENCE"

When a subroutine argument is passed "BY REFERENCE", the subroutine is
passed the address of the actual data item being passed as an argument. The
item may anything defined within the data division of the program. If the sub-
routine modifies the contents of this argument, the calling program will "see"
the results of that change when the subroutine returns control. This is the de-

3 June 2014 Chapter 9 - Sub-Programming



566 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

fault manner in which GNU COBOL passes arguments to a subroutine, should
no "BY" clauses be included on the "CALL".

"BY CONTENT"

When a subroutine is passed an argument "BY CONTENT", the subroutine is
passed the address of a copy of the actual data being passed as an argument.
The item may anything defined within the data division of the program. The
copy is made each time the "CALL" statement is executed, immediately before
the "CALL" actually takes place. If the subroutine modifies the contents of this
argument, it will be the copy that is modified, not the original data item; the
calling program will therefore not "see" the results of that change when the
subroutine returns control.

"BY VALUE"

Passing a subroutine argument "BY VALUE" passes the actual value of the data
being passed as an argument. The item may be any elementary binary numeric
item defined within the data division of the program. If the subroutine modifies
the contents of this argument, the calling program will not "see" the results of
that change when the subroutine returns control.

The first two ways in which arguments may be passed ("BY REFERENCE" and "BY CONTENT")
are intended for use when a GNU COBOL program is being called, while the first and third
("BY REFERENCE" and "BY VALUE") are intended for use when a C program is being called.
You can use "BY VALUE" arguments when calling GNU COBOL subroutines, but remember
that those arguments are limited to being a numeric binary data item.

Arguments to user-defined functions are always passed "BY REFERENCE".

9.6.1.2. Called Program Considerations

When coding a GNU COBOL subprogram (a subroutine or user-defined function), all ar-
guments to the subprogram must be defined in the subprogram’s linkage section.

These arguments must be explicitly included on the "PROCEDURE DIVISION USING" (see
[PROCEDURE DIVISION USING], page 202) clause that lists the arguments in the se-
quence in which they will be passed to the subprogram.

These arguments described in the "PROCEDURE DIVISION USING" clause may each be
defined as either "BY REFERENCE", if the calling program is passing them either "BY

REFERENCE" or "BY CONTENT", or as "BY VALUE" if they are being passed "BY VALUE".

By default, all arguments are assumed to be "BY REFERENCE" unless explicitly stated oth-
erwise on the procedure division header.

Arguments to a user-defined function are always to be specified as "BY REFERENCE" (either
explicitly or by not using any "BY").

Chapter 9 - Sub-Programming 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 567

If the subprogram returns a value, the data item in which the value is returned must also
be defined in the subprogram’s linkage section, with a "USAGE" (see [USAGE], page 186) of
"BINARY-LONG SIGNED", or it’s equivalent.

9.6.2. GLOBAL Data Items

Another way in which a data item may be shared between a calling program ("A") and a
called program ("B") is by defining the data item in the calling program and attaching the
"GLOBAL" (see [GLOBAL], page 146) clause to it so that it may be used within the called
program. In order for this to work, program "B" (the one called by program "A") must be
a nested subprogram within program "A".

Here’s a small example:

IDENTIFICATION DIVISION.

PROGRAM-ID. DemoGLOBAL.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Arg GLOBAL PIC X(10).

PROCEDURE DIVISION.

000-Main.

MOVE ALL "X" TO Arg

CALL "DemoSub" END-CALL

DISPLAY "DemoGLOBAL: " Arg END-DISPLAY

GOBACK

.

IDENTIFICATION DIVISION.

PROGRAM-ID. DemoSub.

PROCEDURE DIVISION.

000-Main.

MOVE ALL "*" TO Arg.

GOBACK

.

END PROGRAM DemoSub.

END PROGRAM DemoGLOBAL.

When the program runs, it produces the output:

DemoGLOBAL: **********

9.6.3. EXTERNAL Data Items

The final way in which a data item may be shared between a calling program ("A") and a
called program ("B") is by defining the data item (with the same name) in both programs
and attaching the "EXTERNAL" (see [EXTERNAL], page 141) clause to it (again, in both

3 June 2014 Chapter 9 - Sub-Programming



568 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

programs). This approach works regardless of whether the called program is nested within
the calling program or not. It also works even if the two programs are compiled separately.

Here’s a demonstration:

IDENTIFICATION DIVISION.

PROGRAM-ID. DemoEXTERNAL.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Arg EXTERNAL PIC X(10).

PROCEDURE DIVISION.

000-Main.

MOVE ALL "X" TO Arg

CALL "DemoSub" END-CALL

DISPLAY "DemoEXTERNAL: " Arg END-DISPLAY

GOBACK

.

END PROGRAM DemoEXTERNAL.

IDENTIFICATION DIVISION.

PROGRAM-ID. DemoSub.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Arg EXTERNAL PIC X(10).

PROCEDURE DIVISION.

000-Main.

MOVE ALL "*" TO Arg.

GOBACK

.

END PROGRAM DemoSub.

When the program runs, it produces the output:

DemoEXTERNAL: **********

9.7. Recursive Subprograms

A subroutine may "CALL" itself, either directly or indirectly from another subroutine or
user-defined function that it "CALL"s. Any subroutine that indulges in this sort of behavior
(called recursion) is called a ’Recursive Subprogram’.

Any GNU COBOL subroutine can be recursively invoked only if it is defined to the
GNU COBOL compiler as being a recursive subroutine. This is accomplished by adding
the "RECURSIVE" attribute to it’s "PROGRAM-ID" (see [IDENTIFICATION DIVISION],
page 53).

All User-defined functions are automatically capable of being executed recursively.

Chapter 9 - Sub-Programming 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 569

Here is an example of a main program (DEMOFACT) that calls both a subprogram (SUB)
and a user-defined function (FUNC) to compute the factorial value of a number.

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMOFACT.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

REPOSITORY.

FUNCTION RECURSIVEFUNC.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Result USAGE BINARY-LONG.

01 Arg USAGE BINARY-LONG.

PROCEDURE DIVISION.

000-Main.

MOVE 6 TO Arg

CALL "RECURSIVESUB"

USING BY CONTENT Arg

RETURNING Result

DISPLAY Arg "! = "

Result

DISPLAY Arg "! = "

RECURSIVEFUNC(Arg)

GOBACK

.

END PROGRAM DEMOFACT.

IDENTIFICATION DIVISION.

PROGRAM-ID. SUB RECURSIVE.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Result USAGE BINARY-LONG.

01 Next-Arg USAGE BINARY-LONG.

01 Next-Result USAGE BINARY-LONG.

LINKAGE SECTION.

01 Arg USAGE BINARY-LONG.

PROCEDURE DIVISION USING Arg

RETURNING Result.

000-Main.

DISPLAY "Entering SUB"

" Arg=" Arg

IF Arg = 1

MOVE 1 TO Result

DISPLAY "Leaving SUB"

" Returning " Result

ELSE

SUBTRACT 1 FROM Arg

3 June 2014 Chapter 9 - Sub-Programming



570 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

GIVING Next-Arg

CALL "SUB"

USING BY CONTENT Next-Arg

RETURNING Next-Result

COMPUTE Result =

Arg * Next-Result

DISPLAY "Leaving SUB"

" Returning "

Result "=" Arg "*"

Next-Result

END-IF

GOBACK

.

END PROGRAM SUB.

IDENTIFICATION DIVISION.

FUNCTION-ID. FUNC.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

REPOSITORY.

FUNCTION RECURSIVEFUNC.

DATA DIVISION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

01 Arg USAGE BINARY-LONG.

01 Result USAGE BINARY-LONG

SIGNED.

PROCEDURE DIVISION USING Arg

RETURNING Result.

000-Main.

DISPLAY "Entering FUNC"

" Arg=" Arg

IF Arg = 1

MOVE 1 TO Result

ELSE

COMPUTE Result = Arg *

FUNC(Arg - 1)

END-IF

DISPLAY "Leaving FUNC"

" Returning " Result

GOBACK

.

END FUNCTION FUNC.

When DEMOFACT is executed, the output shown below is generated.

E:\Programs\Demos>demofact

Chapter 9 - Sub-Programming 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 571

Entering RECURSIVESUB Arg=+0000000006

Entering RECURSIVESUB Arg=+0000000005

Entering RECURSIVESUB Arg=+0000000004

Entering RECURSIVESUB Arg=+0000000003

Entering RECURSIVESUB Arg=+0000000002

Entering RECURSIVESUB Arg=+0000000001

Leaving RECURSIVESUB Returning +0000000001

Leaving RECURSIVESUB Returning +0000000002=+0000000002*+0000000001

Leaving RECURSIVESUB Returning +0000000006=+0000000003*+0000000002

Leaving RECURSIVESUB Returning +0000000024=+0000000004*+0000000006

Leaving RECURSIVESUB Returning +0000000120=+0000000005*+0000000024

Leaving RECURSIVESUB Returning +0000000720=+0000000006*+0000000120

+0000000006! = +0000000720

Entering RECURSIVEFUNC Arg=+0000000006

Entering RECURSIVEFUNC Arg=+0000000005

Entering RECURSIVEFUNC Arg=+0000000004

Entering RECURSIVEFUNC Arg=+0000000003

Entering RECURSIVEFUNC Arg=+0000000002

Entering RECURSIVEFUNC Arg=+0000000001

Leaving RECURSIVEFUNC Returning +0000000001

Leaving RECURSIVEFUNC Returning +0000000002

Leaving RECURSIVEFUNC Returning +0000000006

Leaving RECURSIVEFUNC Returning +0000000024

Leaving RECURSIVEFUNC Returning +0000000120

Leaving RECURSIVEFUNC Returning +0000000720

+0000000006! = +0000000720

9.8. Combining GNU COBOL and C Programs

The upcoming sections deal the issues pertaining to calling C language programs from GNU
COBOL programs, and vice versa. Two additional sections provide samples illustrating
specifics as to how those issues are overcome in actual program code.

9.9.1. GNU COBOL Run-Time Library Requirements

Like most other implementations of the COBOL language, GNU COBOL utilizes a run-time
library. When the first program executed in a given execution sequence is a GNU COBOL
program, any run-time library initialization will be performed by the compiled COBOL code
in a manner that is transparent to the C-language programmer. If, however, a C program is
the first to execute, the burden of performing GNU COBOL run-time library initialization
falls upon the C program. See [C Main Programs Calling GNU COBOL Subprograms],
page 575, for an example of how to do this.

3 June 2014 Chapter 9 - Sub-Programming



572 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

9.9.2. String Allocation Differences Between GNU COBOL and C

Both languages store strings as a fixed-length continuous sequence of characters.

COBOL stores these character sequences up to a specific quantity limit imposed by the
"PICTURE" (see [PICTURE], page 162) clause of the data item. For example: "01 LastName

PIC X(15).".

There is never an issue of exactly what the length of a string contained in a "USAGE

DISPLAY" (see [USAGE], page 186) data item is — there are always exactly how ever many
characters as were allowed for by the "PICTURE" clause. In the example above, "LastName"
will always contain exactly fifteen characters; of course, there may be anywhere from 0 to
15 trailing SPACES as part of the current LastName value.

C actually has no "string" datatype; it stores strings as an array of "char" datatype items
where each element of the array is a single character. Being an array, there is an upper
limit to how many characters may be stored in a given "string". For example:

char lastName[15]; /* 15 chars: lastName[0] thru lastName[14] */

C provides a robust set of string-manipulation functions to copy strings from one char
array to another, search strings for certain characters, compare one char array to another,
concatenate char arrays and so forth. To make these functions possible, it was necessary
to be able to define the logical end of a string. C accomplishes this via the expectation
that all strings (char arrays) will be terminated by a NULL character (x’00’). Of course, no
one forces a programmer to do this, but if [s]he ever expects to use any of the C standard
functions to manipulate that string they had better be null-terminating their strings!

So, GNU COBOL programmers expecting to pass strings to or receive strings from C
programs had best be prepared to deal with the null-termination issue, as follows:

1. Pass a quoted literal string from GNU COBOL to C as a zero-delimited string literal
(Z’<string>’).

2. Pass alphanumeric (PIC X) or alphabetic (PIC A) data items to C subroutines by
appending an ASCII NULL character (X’00’) to them. For example, to pass the 15-
character LastName data item described above to a C subroutine:

on

01 LastName-Arg-to-C PIC X(16).

...

MOVE FUNCTION CONCATENATE(LastName,X’00’) TO LastName-Arg-to-C

And then pass LastName-Arg-to-C to the C subprogram!

3. When a COBOL program needs to process string data prepared by a C program, the
imbedded null character must be accounted for. This can easily be accomplished with
an "INSPECT" statement (see [INSPECT], page 405) such as the following:

INSPECT Data-From-a-C-Program

Chapter 9 - Sub-Programming 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 573

REPLACING FIRST X’00’ BY SPACE

CHARACTERS BY SPACE AFTER INITIAL X’00’

9.9.3. Matching C Data Types with GNU COBOL USAGEs

Matching up GNU COBOL numeric USAGEs with their C language data type equivalents
is possible via the following chart:

COBOL C
BINARY-CHAR [ UNSIGNED ] unsigned char
BINARY-CHAR SIGNED signed char
BINARY-SHORT [ UNSIGNED ] unsigned

unsigned int
unsigned short
unsigned short int

BINARY-CHAR [ UNSIGNED ] unsigned char
BINARY-CHAR SIGNED signed char
BINARY-SHORT [ UNSIGNED ] unsigned

unsigned int
unsigned short
unsigned short int

BINARY-SHORT SIGNED int
short
short int
signed int
signed short
signed short int

BINARY-LONG [ UNSIGNED ] unsigned long
unsigned long int

BINARY-LONG SIGNED
BINARY-INT

long
long int
signed long
signed long int

BINARY-C-LONG SIGNED long
BINARY-DOUBLE [ UNSIGNED ] unsigned long long

unsigned long long int

BINARY-DOUBLE SIGNED
BINARY-LONG-LONG

long long int
signed long long int

COMPUTATIONAL-1 float
COMPUTATIONAL-2 double
N/A (no GNU COBOL equivalent) long double

These are the ANSI2002 standard specifications for C-program data compatibility and GNU
COBOL programmers should get used to using them when data is being shared with C

3 June 2014 Chapter 9 - Sub-Programming



574 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

programs (they’re good documentation too, highlighting the fact that the data will be
"shared" with a C program).

9.9.4. GNU COBOL Main Programs CALLing C Subprograms

Here’s a sample of a GNU COBOL program that CALLs a C subprogram.
COBOL Calling Program C Called Program

================================== ===============================

IDENTIFICATION DIVISION. #include <stdio.h>

PROGRAM-ID. maincob. int subc(char *arg1,

DATA DIVISION. char *arg2,

WORKING-STORAGE SECTION. unsigned long *arg3) {

01 Arg1 PIC X(7). char nu1[7]="New1";

01 Arg2 PIC X(7). char nu2[7]="New2";

01 Arg3 USAGE BINARY-LONG. printf("Starting subc\n");

PROCEDURE DIVISION. printf("Arg1=%s\n",arg1);

000-Main. printf("Arg2=%s\n",arg2);

DISPLAY ’Starting maincob’ printf("Arg3=%d\n",*arg3);

MOVE Z’Arg1’ TO Arg1 arg1[0]=’X’;

MOVE Z’Arg2’ TO Arg2 arg2[0]=’Y’;

MOVE 123456789 TO Arg3 *arg3=987654321;

CALL ’subc’ return 2;

USING BY CONTENT Arg1, }

BY REFERENCE Arg2,

BY REFERENCE Arg3

DISPLAY ’Back’

DISPLAY ’Arg1=’ Arg1

DISPLAY ’Arg2=’ Arg2

DISPLAY ’Arg3=’ Arg3

DISPLAY ’Returned value=’

RETURN-CODE

STOP RUN

.

The idea is to pass two string and one full-word unsigned arguments to the subprogram,
have the subprogram print them out, change all three and pass a return code of 2 back to
the caller. The caller will then re-display the three arguments (showing changes only to the
two "BY REFERENCE" arguments), display the return code and halt.

While simple, these two programs illustrate the techniques required quite nicely.

Note how the COBOL program ensures that a null end-of-string terminator is present on
both string arguments.

Since the C program is planning on making changes to all three arguments, it declares all
three as pointers in the function header and references the third argument as a pointer in
the function body. It actually had no choice for the two string (char array) arguments –
they must be defined as pointers in the function even though the function code references
them without the leading * that normally signifies pointers.

These programs are compiled and executed as follows.

$ cobc -x maincob.cbl subc.c

Chapter 9 - Sub-Programming 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 575

$ maincob

Starting maincob

Starting subc

Arg1=Arg1

Arg2=Arg2

Arg3=123456789

Back

Arg1=Arg1

Arg2=Yrg2

Arg3=+0987654321

Returned value=+000000002

$

Remember that the null characters are actually in the GNU COBOL "Arg1" and "Arg2"
data items. They don’t appear in the output, but they ARE there.

Did you notice the output showing the contents of "Arg1" after the subroutine was called?
Those contents were unchanged! The subroutine definitely changed that argument, but
since the COBOL program passed that argument "BY CONTENT", the change was made to
a copy of the argument, not to the "Arg1" data item itself.

9.9.5. C Main Programs Calling GNU COBOL Subprograms

Now, the roles of the two languages in the previous section will be reversed, having a C
main program execute a GNU COBOL subprogram.

C Calling Program GNU-COBOL Called Program

============================================= =================================

#include <libcob.h> /* COB RUN-TIME */ IDENTIFICATION DIVISION.

#include <stdio.h> PROGRAM-ID. subcob.

int main (int argc, char **argv) { DATA DIVISION.

int returnCode; LINKAGE SECTION.

char arg1[7] = "Arg1"; 01 Arg1 PIC X(7).

char arg2[7] = "Arg2"; 01 Arg2 PIC X(7).

unsigned long arg3 = 123456789; 01 Arg3 USAGE BINARY-LONG.

printf("Starting mainc...\n"); PROCEDURE DIVISION USING

cob_init (argc, argv); /* COB RUN-TIME */ BY VALUE Arg1,

returnCode = subcob(arg1,arg2,&arg3); BY REFERENCE Arg2,

printf("Back\n"); BY REFERENCE Arg3.

printf("Arg1=%s\n",arg1); 000-Main.

printf("Arg2=%s\n",arg2); DISPLAY ’Starting cobsub.cbl’

printf("Arg3=%d\n",arg3); DISPLAY ’Arg1=’ Arg1

printf("Returned value=%d\n",returnCode); DISPLAY ’Arg2=’ Arg2

return returnCode; DISPLAY ’Arg3=’ Arg3

} MOVE ’X’ TO Arg1 (1:1)

MOVE ’Y’ TO Arg2 (1:1)

MOVE 987654321 TO Arg3

MOVE 2 TO RETURN-CODE

GOBACK

.

3 June 2014 Chapter 9 - Sub-Programming



576 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Since the C program is the one that will execute first, before the GNU COBOL subroutine,
the burden of initializing the GNU COBOL run-time environment lies with that C program;
it will have to invoke the "cob init" function, which is part of the "libcob" library. The
two required C statements are shown highlighted.

The arguments to the "cob init" routine are the argument count and value parameters
passed to the main function when the program began execution. By passing them into
the GNU COBOL subprogram, it will be possible for that GNU COBOL program to re-
trieve the command line or individual command-line arguments. If that won’t be necessary,
"cob init(0,NULL);" could be specified instead.

Since the C program wants to allow "arg3" to be changed by the subprogram, it prefixes
it with a "&" to force a CALL BY REFERENCE for that argument. Since "arg1" and
"arg2" are strings (char arrays), they are automatically passed by reference.

Here’s the output of the compilation process as well as the program’s execution. The
example assumes a Windows system with a GNU COBOL build that uses the GNU C
compiler on that system; the technique works equally well regardless of which C compiler
and which operating system you’re using.

C:\Users\Gary\Documents\Programs> cobc -S subcob.cbl

C:\Users\Gary\Documents\Programs> gcc mainc.c subcob.s -o mainc.exe -llibcob

C:\Users\Gary\Documents\Programs> mainc.exe

Starting mainc...

Starting cobsub.cbl

Arg1=Arg1

Arg2=Arg2

Arg3=+0123456789

Back

Arg1=Xrg1

Arg2=Yrg2

Arg3=987654321

Returned value=2

C:\Users\Gary\Documents\Programs>

Note that even though we told GNU COBOL that the 1st argument was to be "BY VALUE",
it was treated as if it were "BY REFERENCE" anyway. String (char array) arguments passed
from C callers to GNU COBOL subprograms will be modifiable by the subprogram. It’s
best to pass a copy of such data if you want to ensure that the subprogram doesn’t change
it.

The third argument is different, however. Since it’s not an array you have the choice of
passing it either "BY REFERENCE" or "BY VALUE".

————————————————————

Chapter 9 - Sub-Programming 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 577

End of Chapter 9 — Sub-Programming

3 June 2014 Chapter 9 - Sub-Programming





GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 579

10. Programming Style Suggestions

This chapter deals with a variety of stylistic issues that may be of interest to someone who
is just starting out learning and using COBOL. Much of this chapter makes recommenda-
tions and suggestions for how to write your own programs. The sample programs in the
"Sample Programs" document (see Sample Programs) were coded using almost all of these
recommendations.

There’s no particular order of importance to the topics presented here.

10.1. Marking Changes in Programs

For quite a while now (back to the 1970s), the "sequence number area" of a COBOL
statement (columns 1-6) has come to be used as a change indicator area. Programmers
would place a code in columns 1-6 of every line they changed in a program. The author
works in a COBOL shop where change indicators of the form "xxmmyy" are required on
every altered line of a program — "xx" is the initials of the programmer while "mmyy"
are the month and two-digit year of the date the change was made. This is frequently
accompanied by a comment block at or near the top of a COBOL program providing
general documentation of what changes were made and what change indicator was used to
mark that change.

The GCic sample program source listing (see Section “GCic” in GNU COBOL Sample
Programs) provides an excellent example of such documentation.

This technique of using columns 1-6 as a change indicator will ONLY work if fixed source-
record format is in effect.

Some COBOL shops prefer to use the eight-character Program Name Area (columns 73-80)
as a change code area.

Marking changes becomes more of a challenge when free-format source code is in effect.
Creating a top-of-program comment block to generically describe changes that have been
made isn’t difficult, even in free-form. What IS difficult, however, is coming up with a
scheme for per-statement markup of changes that doesn’t introduce a ridiculously excessive
number of source lines to the program. I’m not sure there is a good answer to this problem
(if a reader has one, please let me know). Generally, I’ve noticed that shops using free-
format conventions for their COBOL source tend to stick with just the top-of-program
comment block combined with minimal comment blocks sprinkled throughout the program
noting areas that underwent major changes.

10.2. Data Item Coding and Naming Conventions

When programs get very large, it becomes more and more challenging to keep track of the
data items that will be used in the program. Here, in no particular order of importance,
are a variety of conventions that can simplfy that problem.

3 June 2014 Chapter 10 - Programming Style Suggestions



580 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Remember that the points described here are intended to make things easier for you, the
programmer. No COBOL compiler cares one way or another whether any of these sugges-
tions are followed.

1. Avoid the use of level 77 data items in new programs. Once (1968 and before) there
were valid reasons for creating level-77 data items, but since the 1974 ANSI standard
of COBOL there really hasn’t been any reason why an elementary level-01 data item
couldn’t have been used instead of a level-77 item.

2. Allocate level-01 data items in alphabetical sequence in the program source wherever
practical. This will make it vastly easier to locate the definitions of 01-level items in
the program source without having to resort to a compilation cross-reference listing
and/or text editor "find" command to locate them.

3. Consider prefixing data items with an indication of where in the program structure
they were created. For example:

• Start everything defined in the file section with "F-"

• Start everything defined in working-storage with "WS-"

• Start everything defined in local-storage with "LS-"

• Start everything defined in the linkage section with "L-"

• Start everything defined in the screen section with "S-"

• Start everything defined in the report section with "R-"

A convention such as this makes it simple, when you’re reviewing code in the procedure
division, to know in which section of the data division you should look in when locating
the detailed description of a data item. Once you’re in the right division, coding
convention #2 will assist in locating the data item definition.

4. Consider including a trailing descriptor of the nature of all data items in their names.
The following chart presents a variety of such descriptors the author has encountered
and used through the years.

-ADDR

The data item contains all or a part of an Address (City-ADDR, State-
ADDR, Street-ADDR, . . . )

-BOOL

A level-88 data item (which only has the value TRUE or FALSE)

-CD

A CODE whose value denotes information content above and beyond that
of the mere value itself. Some examples could be "Error-CD", "Status-
CD", "Billing-CD"

Chapter 10 - Programming Style Suggestions 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 581

-CHR

A data item containing a single character of data.

-CONST

A constant, specified as a level-78 data item, a level-01 item with the
CONST attribute

-DT

The data item contains a complete or partial date (Birth-DT, Birth-Month-
DT, Birth-Year-DT, . . . )

-DTTM

A data item containing both a date and a time

-FILE

A file name. Note that these items would probably also have a "F-" prefix.

-IDX

A data item used as a table index (see section 10.3)

-NM

All or a portion of a person’s name. These could be extended to include
business names, product names, etc.

-PTR

A data item whose USAGE is POINTER

-NUM

A generic numeric data item that doesn’t fit into any of the other categories

-QTY

A count of something

-REC

An 01-level item defined in the FILE SECTION (constituting the layout
of a record within a file). Note that these items would probably also have
a "F-" prefix.

-SCR

The data item contains a complete or partial screen description (appropri-
ate for SCREEN SECTION 01-level data items).

3 June 2014 Chapter 10 - Programming Style Suggestions



582 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

-SUB

A numeric item used as a table subscript (see section 10.3)

-TEL

All or part of a telephone number

-TM

The data item contains a complete or partial time value

-TXT

The data item contains generic alphanumeric text that doesn’t fit into any
of the other categories.

The above is by no means an exhaustive list, but good programmers will use as few of
these descriptors as possible as having too many defeats any benefits of such classifica-
tion/documentation efforts.

5. Consider including an acronym to be inserted into the name of any data item defined
directly or indirectly subordinate to an 01-level item, typically to be specified after any
section-level tag, if you’re using them. For example, consider the names used in the
following structure:

01 WS-File-Status-Message-TXT.

05 FILLER PIC X(13) VALUE ’Status Code: ’.

05 WS-FSM-Status-CD PIC 9(2).

05 FILLER PIC X(11) VALUE ’, Meaning: ’.

05 WS-FSM-Msg-TXT PIC X(25).

The "-FSM-" acronyms make it easier to locate the description of the 01-item the
status code and message text items belong to.

10.3. Table Subscripting versus Table Indexing

The elements of a table may be referenced either using a subscript or an index. Syntactically,
this is coded using parenthesis, as per the following three examples, all of which store the
letter "A" into the 17th occurrence of a data item named WSS-Output-Image-TXT:

1. MOVE ’A’ TO WSS-Output-Image-TXT (17)

2. MOVE 17 TO WSS-OI-SUB

MOVE ’A’ TO WSS-Output-Image-TXT (WSS-OI-SUB)

3. SET WSS-OI-IDX TO 17

MOVE ’A’ TO WSS-Output-Image-TXT (WSS-OI-IDX)

Chapter 10 - Programming Style Suggestions 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 583

The 1st and 2nd examples are referred to as ’Subscripting ’ while the 3rd is known as
’Indexing ’. The distinction is fairly simple.

Indexing is the process of referencing an element of a table utilizing a data item with an
explicitly or implicitly defined "USAGE" (see [USAGE], page 186) of "INDEX" to select the
desired occurrence, while . . .

Subscripting is the process of referencing an element of a table utilizing either a numeric
constant or an unedited numeric data item to select the desired occurrence.

Various implementations of COBOL generate object code that is quite different in each of
these three situations, and GNU COBOL is no exception.

In general, table references such as example #1 (constant subscript) generate the smallest,
simplest and fastest object code while table references such as example #2 (numeric data
item subscript) generate the largest, most-complicated and slowest object code.

Table references such as example #3 (table indexing) generate object code that falls in the
middle of the other two but is far closer in efficiency to example #1 than #2.

Some COBOL statements ("SEARCH" (see [SEARCH], page 440), "SEARCH ALL" (see
[SEARCH ALL], page 442) and the table-based "SORT" (see [Table SORT], page 457))
require you to index the affected table and to utilize that index with those statements.
With any other references to tables, the choice is left to the programmer as to which
approach should be used. In general, follow these rules:

1. Use constant subscripts (example #1) wherever possible/practical.

2. If references to table elements are going to be performed many, many times (tens or
hundreds of thousands of times or more) during program execution, you will proba-
bly see a noticeable reduction in program execution time if you use indexing versus
subscripting.

It’s impossible to perform any arithmetic operation against an index data item directly
(other than a simple incrementation or decrementation operation via the "SET UP/DOWN"

statement (see [SET UP/DOWN], page 449)). Situations where any non-trivial computa-
tions are required to calculate the effective occurrence number for a table reference will
require you to use a conventional unedited numeric data item as the receiving field for the
calculation. That calculated value would then need to be saved into the index data item
via a "SET Index" statement.

If you only need to use the computed occurrence number once, you might as well just use
the computed occurrence number data item as a subscript. If, however, you will need to use
a computed "subscript" many more times than once, the run-time overhead of converting
that occurrence value to an index (via "SET Index") will be worth the coding effort.

Whew!

3 June 2014 Chapter 10 - Programming Style Suggestions



584 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

If references to table elements are not going to be performed many, many times it probably
won’t make much difference whether you use indexing or subscripting.

If you are comfortable with the "C" programming language, you might find the following
simple GNU COBOL program useful in exploring the differences between subscripting and
indexing:

IDENTIFICATION DIVISION.

PROGRAM-ID. SUBVSINDEX.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 WS-TABLE-SUB BINARY-LONG.

01 WS-TABLE.

05 WS-TABLE-ENTRY OCCURS 20 TIMES

INDEXED BY WS-TABLE-IDX

PIC X(1).

PROCEDURE DIVISION.

000-Main SECTION.

E1. MOVE ’A’ TO WS-TABLE-ENTRY (17)

.

E2. MOVE 17 TO WS-TABLE-SUB

MOVE ’A’ TO WS-TABLE-ENTRY (WS-TABLE-SUB)

.

E3. SET WS-TABLE-IDX TO 17

MOVE ’A’ TO WS-TABLE-ENTRY (WS-TABLE-SUB)

.

Compile this program as follows (the assumption is made that you are executing the "cobc"
command from the directory in which the above program source code (subvsindex.cbl)
exists.

cobc -C -save-temps subvsindex.cbl

After this command is executed, the file "subvsindex.c" will contain the procedure division
C code and "subvsindex.c.1.h" will contain the working-storage C code. Compare the
generated C code for each of the three "MOVE" statements.

10.4. Copybook Naming Conventions and Usage

Since the intent of a copybook is to introduce COBOL code into a particular spot in a
program via the "COPY" statement (see [COPY], page 40), it is always a good idea to prefix
copybook names with a character sequence that identifies where in a program it’s contents
are intended to be copyed.

For example:

Chapter 10 - Programming Style Suggestions 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 585

"IDxxxxxxxx"

Copybooks containing code intended for the identification division. These will
be rare as you almost never encounter copied code in the identification division.

"EDxxxxxxxx"

Copybooks containing code intended for use in the environment division. These
copybooks are generally used for predefined "SPECIAL-NAMES" (see [SPECIAL-
NAMES], page 62) or "FILE-CONTROL" (see [INPUT-OUTPUT SECTION],
page 72) syntax,

"DDxxxxxxxx"

Copybooks that contain data definitions.

"PDxxxxxxxx"

Copybooks that contain executable instructions.

10.5. PROCEDURE DIVISION Sections Versus Paragraphs

The issue of whether to use section and/or paragraph names (collectively referred to as
procedure names) within the procedure division is one of near religious significance with
many COBOL programmers.

COBOL programming standards used by many organizations that use the language gener-
ally call for procedure names to:

1. Contain a leading numeric component (for example: "2000-Update-Customer"),
AND. . .

2. Be defined in the procedure division in non-decreasing sequence of that numeric com-
ponent.

When you are looking at or editing any large COBOL program that has been created with
programming standards that include these two rules, it is always a simple thing to know
whether a reference to a procedure is being made to code that exists before or after your
current location in the program, simply by comparing the numeric component of the current
procedure’s name with the one in question.

Technically, GNU COBOL does not require ANY procedure names be defined unless:

1. You are using the "ALTER" statement (see [ALTER], page 358) (the use of which should
be avoided at all costs)

2. You are using a procedural "PERFORM" statement (see [Procedural PERFORM],
page 422)

3. You are using a "GO TO" statement (see [GO TO], page 394)

4. You are using a "MERGE" statement (see [MERGE], page 411) with an "OUTPUT

PROCEDURE"

3 June 2014 Chapter 10 - Programming Style Suggestions



586 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

5. You are using a "SORT" statement (see [SORT], page 453) with either (or both) an
"INPUT PROCEDURE" or "OUTPUT PROCEDURE"

6. You are using "DECLARATIVES" (see [DECLARATIVES], page 208)

Since it is difficult to write any non-trivial COBOL program that uses none of the above,
lets assume you will be including at least one section or paragraph in your GNU COBOL
programs.

I like to use procedure division paragraphs and sections as follows:

1. The very first procedure defined in the procedure division of my programs, assuming
no "DECLARATIVES" (see [DECLARATIVES], page 208) are defined, will be a section
named "000-Main". The declaration of this procedure will immediately follow the
procedure division header (or "END DECLARATIVES" if "DECLARATIVES" are used).

2. Any procedures referenced by "MERGE", "PERFORM", or "SORT" statements will be de-
fined as sections.

3. Any procedures referenced by "GO TO" statements will be defined as paragraphs, and
those paragraphs will be defined in the same section as the "GO TO" statements that
reference them. In other words, "GO TO" statements may not be used to transfer control
to a point in a different section. This is NOT a GNU COBOL rule — this is my own
personal programming practice intended to improve the readability and maintainability
of my programs.

4. I always include a numeric prefix to all procedure names I define, for the reasons stated
earlier.

5. I do not use "THRU" on any "MERGE", "PERFORM" or "SORT" statement unless the pro-
gramming standards of the shop in which I am working require it. My reasoning for
this is that it is too easy to accidentally introduce a new procedure into the scope of a
"THRU".

10.6. COMPUTE Versus ADD-SUBTRACT-MULTIPLY-
DIVIDE

Over the years, there has been much debate over the efficiency and arithmetic accuracy
of using the "COMPUTE" statement (see [COMPUTE], page 366) rather than the four basic
arithmetic operation statements.

Here are the facts — draw your own conclusions as to which approach is more appropriate
under which circumstances.

1. The "COMPUTE" statement supports exponentiation (via the "**" operator) — there
is no equivalent basic arithmetic statement. Although you could simulate integral
exponentiation (raising a value to the third power, for example) using "MULTIPLY"

statements, and you may use the "SQRT" intrinsic function (see [SQRT], page 321) to

Chapter 10 - Programming Style Suggestions 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 587

find a square root, there’s just no (easy) way to find the cube-root of a value without
using the "COMPUTE" statement.

2. For non-trivial computations, "COMPUTE" statements "read" better. Take this, for
example:

COMPUTE R = (A + B * C) / D

As compared to:

MULTIPLY B BY C GIVING TEMP

ADD A TO TEMP

DIVIDE TEMP BY D GIVING R

For non-trivial computations, "COMPUTE" statements may execute faster than the equiv-
alent chain of basic arithmetic statements. For example, the COMPUTE statement
shown above executes about 25% faster on my computer using GNU COBOL than does
the MULTIPLY-ADD-DIVIDE sequence.

3. For trivial computations, on the other hand, I prefer the inherent readability of a
statement such as this:

ADD 1 TO WSS-Input-Trans-QTY

to this:

COMPUTE WS-Input-Trans-QTY = WS-Input-Trans-QTY + 1

————————————————————
End of Chapter 10 — Programming Style Suggestions

3 June 2014 Chapter 10 - Programming Style Suggestions





GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 589

Appendix A - Glossary of Terms

’Alphabetic Data Item’

A data item whose "PICTURE" clause allows it to contain only upper- and/or
lower-case letters. See [PICTURE], page 162.

’Alphanumeric Data Item’

A data item whose "PICTURE" clause allows it to contain absolutely any char-
acter whatsoever. See [PICTURE], page 162. Group items (see [Structured
Data], page 10) are also implicitly considered to be alphanumeric data items.

’Alphanumeric Literal ’

A string of characters enclosed within a pair of quotation marks (") or apos-
trophes (’). See [Alphanumeric Literals], page 33.

’Called Program’

Another way to refer to a subprogram. Note that a called program may also
be a calling program.

’Calling Program’

A program that executes a subprogram. Note that a calling program may also
be a called program.

’Collating Sequence’

The sequence in which the characters that are acceptable to a computer are
ordered for purposes of all types of sorting, merging, comparing, and processing.
GNU COBOL programs may utilize standard character-set collating sequences
(such as that defined by the ASCII or EBCDIC charactersets) or programmer-
defined custom sequences as specified in the OBJECT-COMPUTER paragraph
(section 4.1.2) and defined in the SPECIAL-NAMES paragraph (section 4.1.4).

’Compilation Group’

The collection of all compilation units being compiled by a single execution of
the GNU COBOL compiler.

’Compilation Unit ’

A single source file being compiled by the GNU COBOL compiler. A compila-
tion unit may contain one or more programs.

’Control Break ’

An event that is triggered when a control field on an RWCS-generated report
changes value. It is these events that trigger the generation of control heading
and control footing groups.

3 June 2014 Appendix A - Glossary of Terms



590 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

’Control Field ’

A field of data being presented within a detail group; as the various detail
groups that comprise the report are presented, they are presumed to appear
in sorted sequence of the control fields contained within them. As an example,
a department-by-department sales report for a chain of stores would probably
be sorted by store number and – within like store numbers – be further sorted
by department number. The store number will undoubtedly serve as a control
field for the report, allowing control heading groups to be presented before each
sequence of detail groups for the same store and control footing groups to be
presented after each such sequence.

’Control Footing ’

A report group that appears immediately after one or more detail groups of
an RWCS-generated report. Such are produced automatically as a result of a
control break. This type of group typically serves as a summary of the detail
group(s) that preceed it, as might be the case on a sales report for a chain
of stores, where the detail groups documenting sales for each department (one
department per detail group) from the same store might be followed by a control
footing that provides a summation of the department-by-department sales for
that store.

’Control Heading ’

A report group that appears immediately before one or more detail groups of
an RWCS-generated report. Such are produced automatically as a result of a
control break. This type of group typically serves as an introduction to the
detail group(s) that follow, as might be the case on a sales report for a chain
of stores, where the detail groups documenting sales for each department (one
department per detail group) from the same store might be preceeded by a
control heading that states the full name and location of the store.

’Control Hierarchy ’

The natural hierarchy of control breaks within a RWCS-controlled report based
upon the manner in which the data the report is being generated from is sorted.

’Copybook ’

A segment of program code that may be utilized by multiple programs simply
by having that program use the COPY statement to import that code into
the program. Although similar to the "include" facility present in many other
programming languages, the COBOL copybook mechanism is actually consid-
erably more powerful. See [Copybooks], page 10, for a general discussion. See
[COPY], page 40, for the specifics of the COPY statement.

Appendix A - Glossary of Terms 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 591

’Data Item’

A contiguous area of storage within the memory space of a program that may
be referenced, by name, in a COBOL program. Other programming languages
use the term variable, property or attribute to describe the same concept. See
[Structured Data], page 10.

’Detail Group’

A report group that contains the detailed data being presented for the report.

’Detail Report ’

An RWCS-generated report to which at least one type of detail group is pre-
sented.

’Division’

A collection of zero, one, or more sections of paragraphs, called the division
body, that are formed and combined in accordance with a specific set of rules.
Each division consists of the division header and the related division body.
There are four divisions in a GNU COBOL program: Identification, Environ-
ment, Data, and Procedure (coded in that sequence). See [Program Structure],
page 29.

’Dynamic Subprogram’

A subprogram whose executable object code is contained in a different exe-
cutable file as its calling program. Dynamic subprograms are therefore loaded
into memory as needed.

’Elementary Item’

A data item that isn’t itself comprised of other data items. See [Structured
Data], page 10.

’Entry-point ’

A spot in the procedure division where a program may begin execution when
it is executed from the operating system, invoked as a user-defined function or
called by another program.

Every program has at least one entry-point — known as the primary entry-
point — which corresponds to the first executable statement in the procedure
division following the declaratives area, if any.

Additional entry-points may be defined via the "ENTRY" statement (see
[ENTRY], page 382).

’Entry-point Name’

Every entry-point has a name. That name must be unique for all programs that
comprise an executable program. Entry-point names are defined using a sub-

3 June 2014 Appendix A - Glossary of Terms



592 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

routine’s "PROGRAM-ID" paragraph, a user-defined function’s "FUNCTION-ID"

paragraph or via "ENTRY" (see [ENTRY], page 382) statements coded in a sub-
program’s procedure division.

’Executable File’

The GNU COBOL compiler can create operating-system appropriate files that
may be executed directly from the operating system environment. On Windows
systems, these will be ".exe" files whereas on UNIX systems they will have no
specific extensions. The compiler’s "-x" switch is used to create executable
files. Only main programs should be compiled in this manner.

’Execution Thread ’

The complete set of executable code that is run during the execution of a
program. This includes the main program as well as all executed subprograms,
including those that are both dynamically and statically loaded.

’Figurative Constants’

GNU COBOL, like other COBOL implementations, supports a number of re-
served words that may be used to represent a specific literal value. These are
known as figurative constants. See [Figurative Constants], page 35, for more
information.

’Fixed Format Mode’

A mode of the GNU COBOL compiler’s operation where source statements are
constrained to meeting the pre-2002 standard of limiting COBOL statements
to 80 columns, with various columns having limitations as to what sort of
COBOL syntax could be specified in them. See [Format of Program Source
Lines], page 26, for more information.

’Free Format Mode’

A mode of the GNU COBOL compiler’s operation where source statements are
allowed to be as long as 255 characters, with no restrictions or requirements
as to in which columns various syntax elements must appear. See [Format of
Program Source Lines], page 26, for more information.

’Group Item’

A hierarchical data structure where the group item — itself a data item —
actually consists of two or more other contiguously allocated data items. For
example, ’Employee-Name’ could be a 35-character data item consisting of a
20-character ’Last-Name’ data item followed by a 14-character ’First-Name’
and a 1-character ’Middle-Initial’. See [Structured Data], page 10.

’Hexadecimal Alphanumeric Literal ’

These are alphanumeric literals whose character sequence is specified by hex-
adecimal value. These literals are formed by a quote- or apostrophe-delimited

Appendix A - Glossary of Terms 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 593

sequence of an even number of hexadecimal digits (upper- or lower-case), pre-
fixed with the letter "X" (also upper- or lower-case). For example, the charac-
ter string "Demo" could be specified as the hexadecimal alphanumeric literal
"X’44656D6F’", assuming the ASCII characterset. See [Alphanumeric Liter-
als], page 33.

’Hexadecimal Numeric Literal ’

A numeric literal whose value is specified by hexadecimal value. These liter-
als are formed by a quote- or apostrophe-delimited sequence of from 1 to 16
hexadecimal digits (upper- or lower-case), prefixed with the letter "H" (also
upper- or lower-case). For example, the number 123456 could be specified as
the hexadecimal numeric literal "H’01E240’". See [Numeric Literals], page 33.

’Identifiers’

These are data items a COBOL program will be working with. The vast ma-
jority of identifiers are defined by the user (programmer) while a few are pre-
defined by the GNU COBOL compiler. Identifiers pre-defined by the compiler
are referred to as special registers. Other programming languages generally
refer to identifiers as "variables".

’Imperative Statement ’

Either a statement that begins with a non decision-making verb and speci-
fies an unconditional action to be taken or a conditional verb such as "IF"

or "EVALUATE", delimited by its explicit scope terminator (such as "END-IF"

or "END-EVALUATE"). An imperative statement can consist of a sequence of
imperative statements.

’Intrinsic Function’

A built-in routine that accepts arguments and returns a value; syntactically,
these may be used most places where GNU COBOL identifiers are valid. See
[Intrinsic Functions], page 245, for documentation on all the GNU COBOL
intrinsic functions.

’Level Number ’

A 1- or 2-digit number that indicates the hierarchical position of a data item
in a group item or the special properties of a data description entry.

Level numbers in the range 1 through 49 indicate the position of a data item
in the hierarchical structure of a logical record. Level numbers in the range 1
through 9 can be written either as a single digit or as a zero followed by the
significant digit.

Level numbers 66, 77, 78 and 88 identify special properties of a data description
entry.

’Literal ’

3 June 2014 Appendix A - Glossary of Terms



594 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

A generic term used for a constant value coded in a program that may be either
a numeric literal or an alphanumeric literal.

’Main program’

A program that is executed directly from an operating system or shell event.
Main programs are not executed from other programs (i.e. they are not called
programs).

’National Characterset ’

A characterset that supports symbols using other than the traditional roman al-
phabet symbols used by the ASCII characterset. Typically, such a characterset
uses a UTF-16 (i.e. 16 bits-per-character) encoding of the Unicode characterset.

Support for national charactersets in GNU COBOL is currently only partially
implemented, and the compile- and run-time effect of using the "N" symbol in
a "PICTURE" (see [PICTURE], page 162) clause to define a field as containing
national characters is the same as if "X(2)" had been coded, with the additional
effect that such a field will qualify as a "NATIONAL" or "NATIONAL-EDITED" field
on an "INITIALIZE" (see [INITIALIZE], page 399) statement.

’Numeric Data Item’

A data item whose "PICTURE" clause allows it to contain only the numeric
digit characters "0"-"9" (signed or unsigned), or a data item whose
"PICTURE"/"USAGE" combination allow it to contain actual binary numbers
in integer, fixed-point, floating-point or packed-decimal format. Numeric data
items are the only ones that may be used as table subscripts or as source
arguments on arithmetic statements. "PICTURE" (see [PICTURE], page 162),
or "USAGE" (see [USAGE], page 186).

’Numeric Edited Data Item’

An otherwise numeric data item whose "PICTURE" (see [PICTURE], page 162)
clause also contains any of the editing symbols "$", "*", "+", ",", "-", ".",
"/", "0" (zero), "B", "CR", "DB" or "Z". Numeric edited data items are not eli-
gible to serve as table subscripts or source arguments on arithmetic statements.

’Numeric Literal ’

A numeric constant. See [Numeric Literals], page 33.

’Page Footing ’

A report group that appears at the bottom of every page of an RWCS-generated
report. Information typically found within such a report group might be:

• The date the report was generated

• The current page number of the report

Appendix A - Glossary of Terms 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 595

’Page Heading ’

A report group that appears at the top of every page of an RWCS-generated
report. Information typically found sithin such a report group might be:

• A title for the report

• The date the report was generated

• The current page number of the report

• Column headings describing the fields within the detail group(s)

’Primary Entry-Point ’

See entry-point.

’Procedure’

All executable code statements within a single procedure division paragraph or
section.

’Procedure name’

A programmer-defined section or paragraph name in the procedure division as-
signed to a procedure. Procedure names serve as a means by which a statement
may refer to the statements that follow the procedure name.

’Program’

A GNU COBOL main program or subprogram.

’Qualification’

The process of establishing a unique reference to a data item whose name is
duplicated in a program. This takes the form of using the duplicated data name
and the name of any of its parent data items, connected by "OF" or "IN" such
that the combination of those two data names is unique within the program.

’Record ’

A group item that is not part of a higher-level group item. See [Data Definition
Principles], page 90. An elementary item with a level number of 01 can also be
referred to as a record if it’s definition occurs in the file section, provided that
it’s definition does not include the "CONSTANT" attribute. See [FILE-SECTION-
Data-Item], page 98.

’Report Footing ’

A report group that occurs only once in an RWCS-generated report — as the
very last presented report group of the report. These typically serve as a visual
indication that the report is finished.

3 June 2014 Appendix A - Glossary of Terms



596 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

’Report Group’

One or more consecutive lines on a report that serve a common informational
purpose or function. For example, lines of text that are displayed at the top or
bottom of every printed page of a report.

’Report Heading ’

A report group that occurs only once in an RWCS-generated report — as the
very first presented report group of the report. These typically serve as an
introduction to the report.

’Reserved Word ’

A word coded in a GNU COBOL program without any quote or apostrophe
characters around it (which would have transformed that sequence of characters
into a literal string) which has a very specific meaning to the compiler. See
[Language Reserved Words], page 6, for a general discussion of the concept.
See [Appendix B - Reserved Word List], page 599, for a complete list of GNU
COBOL reserved words.

’Sentence’

An arbitrarily long sequence of statements terminated by a period.

’Special Registers’

Special data items that are automatically defined for your use by the GNU
COBOL compiler. See [Special Registers], page 243, for a complete list.

’Statement ’

A single executable COBOL instruction. All statements start with a verb
("DISPLAY", "IF", "MOVE", ...) which is followed by the operands and addi-
tional syntax elements that describe the actions to be performed.

’Static Subprogram’

A subprogram whose executable object code is part of the same executable file
as its calling program. Static subprograms are therefore loaded into memory
at the same time as their caller.

’Subprogram’

A program invoked directly by another program in such a manner that it may
return control back to the other program, directly back to the point where the
subprogram was invoked.

’Subroutine’

A subprogram executed from another via a GNU COBOL "CALL" (see [CALL],
page 359) statement (or the equivalent in whatever programming language that
other program was written in).

Appendix A - Glossary of Terms 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 597

’Summary Report ’

An RWCS-generated report to which no detail groups are presented.

’User-Defined Function’

A subprogram written in GNU COBOL that is executed in a syntactically-
similar manner to that by which the various built-in intrinsic functions are
executed.

’User-Defined Names’

Either the name of an identifier or a procedure in the program. GNU COBOL
limits user-defined names to a maximum of 31 characters taken from the set
of numeric digits, upper- and lower-case letters, hyphens and underscores. A
user-defined name may neither begin nor end with a hyphen or underscore.
User-defined names used as file names may additionally not begin with a digit
although - unlike many other programming languages - user-defined names used
as identifiers or procedure names may.

’Verb’

The first reserved word of a COBOL statement.

’Zero-Delimited Alphanumeric Literals’

An alphanumeric literal prefixed with an upper- or lower-case "Z" character —
for example, "Z’ABC’". These literals are one character longer than the value
within apostrophes or quotes would make them appear. The extra character
(the last character) will be a null character (comprised entirely of zero bits).
These literals are ideal when defining or assigning values to alphanumeric data
items that will be passed as arguments to a C subroutine. See [Alphanumeric
Literals], page 33.

————————————————————
End of Appendix A — Glossary of Terms

3 June 2014 Appendix A - Glossary of Terms





GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 599

Appendix B - Reserved Word List

The following is the complete list of reserved words in the 23NOV2013 build of GNU COBOL
2.1. Even though the functionality behind some of these words may not be implimented in
this version of GNU COBOL, none may be used as any user-defined name.

A ABS, ACCEPT, ACCESS, ACOS, ACTIVE-CLASS, ADD, ADDRESS,
ADVANCING, AFTER, ALIGNED, ALL, ALLOCATE, ALPHABET,
ALPHABETIC, ALPHABETIC-LOWER, ALPHABETIC-UPPER,
ALPHANUMERIC, ALPHANUMERIC-EDITED, ALSO, ALTER,
ALTERNATE, AND, ANNUITY, ANY, ANYCASE, ARE, AREA,
AREAS, ARGUMENT-NUMBER, ARGUMENT-VALUE, ARITHMETIC,
AS, ASCENDING, ASCII, ASIN, ASSIGN, AT, ATAN, ATTRIBUTE,
AUTHOR, AUTO, AUTO-SKIP, AUTOMATIC, AUTOTERMINATE,
AWAY-FROM-ZERO

B B-AND, B-NOT, B-OR, B-XOR, BACKGROUND-COLOR, BACKGROUND-
COLOUR, BASED, BEEP, BEFORE, BELL, BINARY, BINARY-C-LONG,
BINARY-CHAR, BINARY-DOUBLE, BINARY-INT, BINARY-LONG,
BINARY-LONG-LONG, BINARY-SHORT, BIT, BLANK, BLINK, BLOCK,
BOOLEAN, BOOLEAN-OF-INTEGER, BOTTOM, BY, BYTE-LENGTH,
BYTE-LENGTH

C C01, C02, C03, C04, C05, C06, C07, C08, C09, C10, C11, C12, CALL,
CALL-CONVENTION, CANCEL, CAPACITY, CD, CENTER, CF,
CH, CHAIN, CHAINING, CHAR, CHAR-NATIONAL, CHARACTER,
CHARACTERS, CLASS, CLASS-ID, CLASSIFICATION, CLOSE, COB-
CRT-STATUS, CODE, CODE-SET, COL, COLLATING, COLS, COLUMN,
COLUMNS, COMBINED-DATETIME, COMMA, COMMAND-LINE,
COMMIT, COMMON, COMMUNICATION, COMP, COMP-1, COMP-2,
COMP-3, COMP-4, COMP-5, COMP-6, COMP-X, COMPUTATIONAL,
COMPUTATIONAL-1, COMPUTATIONAL-2, COMPUTATIONAL-3,
COMPUTATIONAL-4, COMPUTATIONAL-5, COMPUTATIONAL-X,
COMPUTE, CONCATENATE, CONDITION, CONFIGURATION,
CONSOLE, CONSTANT, CONTAINS, CONTENT, CONTINUE, CON-
TROL, CONTROLS, CONVERSION, CONVERTING, COPY, CORR,
CORRESPONDING, COS, COUNT, CRT, CRT-UNDER, CSP, CURRENCY,
CURRENCY-SYMBOL, CURRENT-DATE, CURSOR, CYCLE

D DATA, DATA-POINTER, DATE, DATE-COMPILED, DATE-MODIFIED,
DATE-OF-INTEGER, DATE-TO-YYYYMMDD, DATE-WRITTEN,
DAY, DAY-OF-INTEGER, DAY-OF-WEEK, DAY-TO-YYYYDDD, DE,
DEBUGGING, DECIMAL-POINT, DECLARATIVES, DEFAULT, DELETE,
DELIMITED, DELIMITER, DEPENDING, DESCENDING, DESTINATION,
DETAIL, DISABLE, DISC, DISK, DISPLAY, DISPLAY-OF, DIVIDE,
DIVISION, DOWN, DUPLICATES, DYNAMIC

3 June 2014 Appendix B - Reserved Word List



600 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

E E, EBCDIC, EC, EGI, ELSE, EMI, EMPTY-CHECK, ENABLE, END,
END-ACCEPT, END-ADD, END-CALL, END-CHAIN, END-COMPUTE,
END-DELETE, END-DISPLAY, END-DIVIDE, END-EVALUATE, END-IF,
END-MULTIPLY, END-OF-PAGE, END-PERFORM, END-READ,
END-RECEIVE, END-RETURN, END-REWRITE, END-SEARCH,
END-START, END-STRING, END-SUBTRACT, END-UNSTRING,
END-WRITE, ENTRY, ENTRY-CONVENTION, ENVIRONMENT,
ENVIRONMENT-NAME, ENVIRONMENT-VALUE, EO, EOL, EOP,
EOS, EQUAL, EQUALS, ERASE, ERROR, ESCAPE, ESI, EVALUATE,
EXCEPTION, EXCEPTION-FILE, EXCEPTION-FILE-N, EXCEPTION-
LOCATION, EXCEPTION-LOCATION-N, EXCEPTION-OBJECT,
EXCEPTION-STATEMENT, EXCEPTION-STATUS, EXCLUSIVE, EXIT,
EXP, EXP10, EXPANDS, EXTEND, EXTERNAL

F FACTORIAL, FACTORY, FALSE, FD, FILE, FILE-CONTROL, FILE-ID,
FILLER, FINAL, FIRST, FLOAT-BINARY-128, FLOAT-BINARY-32,
FLOAT-BINARY-64, FLOAT-DECIMAL-16, FLOAT-DECIMAL-34,
FLOAT-EXTENDED, FLOAT-INFINITY, FLOAT-LONG, FLOAT-NOT-A-
NUMBER, FLOAT-SHORT, FOOTING, FOR, FOREGROUND-COLOR,
FOREGROUND-COLOUR, FOREVER, FORMAT, FORMATTED-
CURRENT-DATE, FORMATTED-DATE, FORMATTED-DATETIME,
FORMATTED-TIME, FORMFEED, FRACTION-PART, FREE, FROM,
FULL, FUNCTION, FUNCTION-ID, FUNCTION-POINTER

G GENERATE, GET, GIVING, GLOBAL, GO, GOBACK, GREATER,
GROUP, GROUP-USAGE

H HEADING, HIGH-VALUE, HIGH-VALUES, HIGHEST-ALGEBRAIC, HIGH-
LIGHT

I I-O, I-O-CONTROL, ID, IDENTIFICATION, IF, IGNORE, IGNORING, IM-
PLEMENTS, IN, INDEX, INDEXED, INDICATE, INDIRECT, INHERITS,
INITIAL, INITIALISE, INITIALISED, INITIALIZE, INITIALIZED, INITI-
ATE, INPUT, INPUT-OUTPUT, INSPECT, INSTALLATION, INTEGER,
INTEGER-OF-BOOLEAN, INTEGER-OF-DATE, INTEGER-OF-DAY,
INTEGER-OF-FORMATTED-DATE, INTEGER-PART, INTERFACE,
INTERFACE-ID, INTERMEDIATE, INTO, INTRINSIC, INVALID,
INVOKE, IS

J JUST, JUSTIFIED

K KEPT, KEY, KEYBOARD

L LABEL, LAST, LC ALL, LC COLLATE, LC CTYPE, LC MESSAGES,
LC MONETARY, LC NUMERIC, LC TIME, LEADING, LEFT,
LEFT-JUSTIFY, LEFTLINE, LENGTH, LENGTH, LENGTH-AN,
LENGTH-CHECK, LESS, LIMIT, LIMITS, LINAGE, LINAGE-COUNTER,
LINE, LINE-COUNTER, LINES, LINKAGE, LOCAL-STORAGE, LOCALE,

Appendix B - Reserved Word List 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 601

LOCALE-COMPARE, LOCALE-DATE, LOCALE-TIME, LOCALE-TIME-
FROM-SECONDS, LOCK, LOG, LOG10, LOW-VALUE, LOW-VALUES,
LOWER, LOWER-CASE, LOWEST-ALGEBRAIC, LOWLIGHT

M MANUAL, MAX, MEAN, MEDIAN, MEMORY, MERGE, MESSAGE,
METHOD, METHOD-ID, MIDRANGE, MIN, MINUS, MOD, MODE,
MODULE-CALLER-ID, MODULE-DATE, MODULE-FORMATTED-DATE,
MODULE-ID, MODULE-PATH, MODULE-SOURCE, MODULE-TIME,
MONETARY-DECIMAL-POINT, MONETARY-THOUSANDS-
SEPARATOR, MOVE, MULTIPLE, MULTIPLY

N NAME, NATIONAL, NATIONAL-EDITED, NATIONAL-OF, NATIVE,
NEAREST-AWAY-FROM-ZERO, NEAREST-EVEN, NEAREST-TOWARD-
ZERO, NEGATIVE, NESTED, NEXT, NO, NO-ECHO, NONE, NORMAL,
NOT, NULL, NULLS, NUMBER, NUMBER-OF-CALL-PARAMETERS,
NUMBERS, NUMERIC, NUMERIC-DECIMAL-POINT, NUMERIC-
EDITED, NUMERIC-THOUSANDS-SEPARATOR, NUMVAL, NUMVAL-C,
NUMVAL-F

O OBJECT, OBJECT-COMPUTER, OBJECT-REFERENCE, OCCURS, OF,
OFF, OMITTED, ON, ONLY, OPEN, OPTIONAL, OPTIONS, OR, ORD,
ORD-MAX, ORD-MIN, ORDER, ORGANISATION, ORGANIZATION,
OTHER, OUTPUT, OVERFLOW, OVERLINE, OVERRIDE

P PACKED-DECIMAL, PADDING, PAGE, PAGE-COUNTER, PARAGRAPH,
PERFORM, PF, PH, PI, PIC, PICTURE, PLUS, POINTER, POSITION,
POSITIVE, PREFIXED, PRESENT, PRESENT-VALUE, PREVIOUS,
PRINTER, PRINTER, PRINTING, PROCEDURE, PROCEDURE-
POINTER, PROCEDURES, PROCEED, PROGRAM, PROGRAM-ID,
PROGRAM-POINTER, PROHIBITED, PROMPT, PROPERTY,
PROTOTYPE, PURGE

Q QUEUE, QUOTE, QUOTES

R RAISE, RAISING, RANDOM, RANDOM, RANGE, RD, READ, RECEIVE,
RECORD, RECORDING, RECORDS, RECURSIVE, REDEFINES, REEL,
REFERENCE, REFERENCES, RELATION, RELATIVE, RELEASE, REM,
REMAINDER, REMARKS, REMOVAL, RENAMES, REPLACE, REPLAC-
ING, REPORT, REPORTING, REPORTS, REPOSITORY, REQUIRED, RE-
SERVE, RESET, RESUME, RETRY, RETURN, RETURN-CODE, RETURN-
ING, REVERSE, REVERSE-VIDEO, REVERSED, REWIND, REWRITE,
RF, RH, RIGHT, RIGHT-JUSTIFY, ROLLBACK, ROUNDED, ROUNDING,
RUN

S SAME, SCREEN, SCROLL, SD, SEARCH, SECONDS, SECONDS-
FROM-FORMATTED-TIME, SECONDS-PAST-MIDNIGHT, SECTION,
SECURE, SECURITY, SEGMENT, SEGMENT-LIMIT, SELECT, SELF,
SEND, SENTENCE, SEPARATE, SEQUENCE, SEQUENTIAL, SET,

3 June 2014 Appendix B - Reserved Word List



602 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

SHARING, SIGN, SIGN, SIGNED, SIGNED-INT, SIGNED-LONG, SIGNED-
SHORT, SIN, SIZE, SORT, SORT-MERGE, SORT-RETURN, SOURCE,
SOURCE-COMPUTER, SOURCES, SPACE, SPACE-FILL, SPACES,
SPECIAL-NAMES, SQRT, STANDARD, STANDARD-1, STANDARD-2,
STANDARD-BINARY, STANDARD-COMPARE, STANDARD-DECIMAL,
STANDARD-DEVIATION, START, STATEMENT, STATIC, STATUS,
STDCALL, STDERR, STDIN, STDOUT, STEP, STOP, STORED-
CHAR-LENGTH, STRING, STRONG, SUB-QUEUE-1, SUB-QUEUE-2,
SUB-QUEUE-3, SUBSTITUTE, SUBSTITUTE-CASE, SUBTRACT, SUM,
SUM, SUPER, SUPPRESS, SW0, SW1, SW10, SW11, SW12, SW13,
SW14, SW15, SW2, SW3, SW4, SW5, SW6, SW7, SW8, SW9, SWITCH-0,
SWITCH-1, SWITCH-10, SWITCH-11, SWITCH-12, SWITCH-13,
SWITCH-14, SWITCH-15, SWITCH-2, SWITCH-3, SWITCH-4, SWITCH-5,
SWITCH-6, SWITCH-7, SWITCH-8, SWITCH-9, SYMBOL, SYMBOLIC,
SYNC, SYNCHRONISED, SYNCHRONIZED, SYSERR, SYSIN, SYSIPT,
SYSLIST, SYSLST, SYSOUT, SYSTEM-DEFAULT

T TABLE, TALLYING, TAN, TAPE, TERMINAL, TERMINATE, TEST,
TEST-DATE-YYYYMMDD, TEST-DAY-YYYYDDD, TEST-FORMATTED-
DATETIME, TEST-NUMVAL, TEST-NUMVAL-C, TEST-NUMVAL-F,
TEXT, THAN, THEN, THROUGH, THRU, TIME, TIME-OUT, TIMEOUT,
TIMES, TO, TOP, TOWARD-GREATER, TOWARD-LESSER, TRAILING,
TRAILING-SIGN, TRANSFORM, TRIM, TRUE, TRUNCATION, TYPE,
TYPEDEF

U UCS-4, UNDERLINE, UNIT, UNIVERSAL, UNLOCK, UNSIGNED,
UNSIGNED-INT, UNSIGNED-LONG, UNSIGNED-SHORT, UNSTRING,
UNTIL, UP, UPDATE, UPON, UPPER, UPPER-CASE, USAGE, USE,
USER, USER-DEFAULT, USING, UTF-16, UTF-8

V VAL-STATUS, VALID, VALIDATE, VALIDATE-STATUS, VALUE, VALUES,
VARIANCE, VARYING

W WAIT, WHEN, WHEN-COMPILED, WITH, WORDS, WORKING-
STORAGE, WRITE

Y YEAR-TO-YYYY, YYYYDDD, YYYYMMDD

Z ZERO, ZERO-FILL, ZEROES, ZEROS

————————————————————
End of Appendix B — Reserved Word List

Appendix B - Reserved Word List 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 603

Appendix C - GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

3 June 2014 Appendix C - GNU Free Documentation License

http://fsf.org/


604 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

Appendix C - GNU Free Documentation License 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 605

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

3 June 2014 Appendix C - GNU Free Documentation License



606 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

Appendix C - GNU Free Documentation License 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 607

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

3 June 2014 Appendix C - GNU Free Documentation License



608 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Appendix C - GNU Free Documentation License 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 609

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

3 June 2014 Appendix C - GNU Free Documentation License

http://www.gnu.org/copyleft/


610 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

————————————————————
End of Appendix C — GNU Free Documentation License

Appendix C - GNU Free Documentation License 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 611

Appendix D - Summary of Document Changes

GNU COBOL is an ever-evolving tool. While all reasonable attempts will be made to
maintain the currency of the information in this document, neither the author of this
document nor the authors of the GNU COBOL software extend any warranties of any
kind for this document or for the information contained therein.

3rd Edition - 09 APR 2014

1. The document has been converted to GNU Texinfo format, from which both GNU
"info" and PDF files may be created for distribution.

2. A new document — "Sample Programs" — has been created from the former "Sample
Programs" chapter of this document.

3. A new document — "Quick Reference" — has been introduced to provide a complete
summary of all syntax diagrams.

3rd Edition - 01 MAY 2014

1. Updated to include RWCS documentation, added with GNU COBOL 2.1.

2. Removed the "See Also" links from all sections; with the Index now being fully hyper-
linked, the maintenance of these links as well as the document size increase imposed
by them is no longer justified.

2nd Edition - 17 JUL 2012

1. Updated for version 23NOV2013 of GNU COBOL 2.0.

2. Corrected a problem with several bogus footnote references.

3. Added an International A4 page layout format version of the document, in addition to
the US Letter page format version.

4. The use of a slash character (/) in column 7 was documented this feature has existed
since at least the 06FEB2009 version of OpenCOBOL 1.1, but was undocumented.

5. Added documentation on the DEBUG-ITEM special register.

6. Updated DECLARATIVES documentation to better explain how to use it.

7. A new section was added to the documentation to discuss the ramifications, rules and
capabilities of sub-programming.

8. Documentation was added on the COB SET DEBUG environment variable.

9. The listings of all sample programs are now presented as listings generated by the GNU
COBOL Interactive Compiler utility (itself included as a sample program). This not
only shows full source listings of the sample programs but complete cross-reference
listings as well.

10. A new sample program – DAY-FROM-DATE – was introduced to illustrate how to
write a user-defined function.

3 June 2014 Appendix D - Summary of Document Changes



612 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

11. A reference to a new figure documenting error codes was added to the EXCEPTION-
STATUS function.

12. Documentation was added to the CLOSE statement to explicitly document how the
last record written to a LINE SEQUENTIAL or LINE ADVANCING file may have a
terminating delimiter sequence written at the time the file is closed.

13. Documentation was added to the WRITE statement to explicitly document how the
ADVANCING options are handled with LINE SEQUENTIAL and the new LINE AD-
VANCING files.

14. Additional documentation on the cobcrun command was added.

15. User-defined functions are now supported.

16. A new built-in subroutine – C$PRINTABLE – was introduced (the COBDUMP sample
program now uses it.

17. LINE ADVANCING files are now supported.

18. Floating-point literals of the form [+-]nn.nnE[+-]nn are now supported.

19. Zxxxxx null-delimited alphanumeric literals are now supported.

20. The COPY statement now supports the COBOL2002 standard LEADING and TRAIL-
ING options as well as the IN/OF library-name and SUPPRESS PRINTING options.

21. The REPLACE Compiler-Directing Facility (CDF) statement was introduced.

22. Conditional code generation is now supported through the use of >>DEFINE, >>IF,
>>SET, >>SOURCE and >>TURN Compiler-Directing Facility (CDF) directives.

23. The COB LINE TRACE environment variable was renamed to COB SET TRACE.

24. The COB DISPLAY WARNINGS environment variable was introduced.

25. SOURCE-COMPUTER WITH DEBUGGING MODE is now supported.

26. The CHARACTER CLASSIFICATION clause of the OBJECT-COMPUTER clause
is now supported.

27. Mnemonic names are now optional for SWITCH declarations in SPECIAL-NAMES;
Eight new switches (SWITCH-0, SWITCH-9 thru SWITCH-15) are now available;
Switches may be specified as SW0 thru SW15 as well as SWITCH-0 thru SWITCH-15;
a new print channel designation of CSP is now available; SYMBOLIC CHARACTERS
are now supported.

28. The device name DISC may now be used interchangeably with DISK in SELECT
statements.

29. Files may now be SELECTed with the NOT OPTIONAL designation in addition to
OPTIONAL.

30. New USAGEs of BINARY-INT, BINARY-LONG-LONG and COMPUTATIONAL-6
were introduced.

Appendix D - Summary of Document Changes 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 613

31. The LEFTLINE screen attribute was added to the SCREEN SECTION.

32. New intrinsic functions were introduced:

• MODULE-CALLER-ID

• MODULE-DATE

• MODULE-FORMATTED-DATE

• MODULE-ID

• MODULE-PATH

• MODULE-SOURCE

• MODULE-TIME

33. A new option — WITH KEPT LOCK — was added to the READ verb.

34. The following changes were made to the ACCEPT Statement:

• The TIMEOUT option was added to Format 4.

• The non-functional CONVERSION option was added to Format 4.

• The LINE NUMBER option (a synonym for LINES) and COLS option (a synonym
for COLUMNS) and ESCAPE KEY options were added to Format 6.

• A new format – Format 7 – was introduced.

35. The ALTER verb is now supported [Editorial Comment: this change was made only
because NIST tests need it and not because you should be using it!]

36. Options (mnemonic-name, STDCALL and STATIC) were added to the CALL verb.

37. The non-functional CONVERSION option was added to Format 4 of the DISPLAY
statement.

38. The REVERSED option for the OPEN statement is now supported syntactically, even
though it is non-functional.

39. The READY TRACE and RESET TRACE statements were introduced.

40. A new option – STATUS – was added to the STOP verb.

41. The following built-in named subroutines were added:

• C$CALLEDBY

• C$GETPID

• CBL GET CSR POS

• CBL GET SCR SIZE

42. The following built-in numbered subroutines were added:

• XE4

3 June 2014 Appendix D - Summary of Document Changes



614 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

• XE5

1st Edition (Rev 2) - 17 SEP 2010

1. Corrected section 0 broken hyperlinks in the document.

2. Introduced documentation for the hitherto undocumented "COBCPY" environment
variable.

1st Edition (Rev 1) - 1 APR 2010

1. Elaborated on the use of the GLOBAL clause in data item definitions.

1st Edition - 23 JAN 2010

1. INITIAL RELEASE OF DOCUMENT corresponds to OpenCOBOL 1.1, 06FEB2009
version.

————————————————————
End of Appendix D — Summary of Document Changes

Appendix D - Summary of Document Changes 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 615

Index

"
" (Quote) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

&
& (Literal Concatenation) . . . . . . . . . . . . . . . . . . . . . 34

’
’ (Apostrophe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

*
* (Multiplication) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
* In Column 7 (Comment) . . . . . . . . . . . . . . . . . . . . . 32
** (Exponentiation) . . . . . . . . . . . . . . . . . . . . . . . . . . 215
*> (Comment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

+
+ (Addition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
+ (Unary Sign Retention) . . . . . . . . . . . . . . . . . . . . . 215

,
, (Punctuation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

-
- (Character in Words/Names) . . . . . . . . . . . . . . . . . . 6
- (Subtraction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
- (Unary Sign Reversal) . . . . . . . . . . . . . . . . . . . . . . 215
- In Column 7 (Continuation) . . . . . . . . . . . . . . . . . . 34
-b Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
-conf Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . . 516
-debug Compiler Switch . . . . . . . . . . . . . 209, 264, 265
-fdebugging-line Compiler Switch . . . . . . 32, 57, 209
-ffold-call Compiler Switch . . . . . . . . . . . . . . . . . . . . 521
-ffold-copy Compiler Switch . . . . . . . . . . . . . . . 49, 516
-fintrinsics Compiler Switch . . . . . . . . . . . . . . . . . . . 245
-fintrinsics=ALL Compiler Switch . . . . . . . . . . . . . . 60
-fixed Compiler Switch . . . . . . . . . . . . . . . . . 26, 49, 50
-fnotrunc Compiler Switch . . . . . . . . . . . . . . . . . . . . 553
-foptional-file Compiler Switch . . . . . . . . . . . . . . . . . 74
-free Compiler Switch . . . . . . . . . . . . . . . . . . 26, 49, 50
-fsyntax-extension Compiler Switch . . . . . . . . . . . . 70
-ftrace Compiler Switch . . . . . . . . . . . . . 433, 435, 523
-ftraceall Compiler Switch . . . . . . 264, 265, 435, 523
-g Compiler Switch . . . . . . . . . . . . . . . . . . . . . . 264, 265
-I Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
-m Compiler Switch . . . . . . . . . . . . . . . . . . . . . 513, 520
-m Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 560

-o Compiler Switch . . . . . . . . . . . . . . . . . . . . . . 513, 519
-O Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 556
-O2 Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . . . 556
-Os Compiler Switch . . . . . . . . . . . . . . . . . . . . . . . . . 556
-Wobsolete Compiler Switch . . . . . . . . . . . . . . . . . . . 54
-x Compiler Switch . . . . . . . . . . . . . . . . . . . . . . 513, 519
-x Compiler Switch . . . . . . . . . . . . . . . . . . . . . . 560, 592

.

. (Punctuation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

/
/ (Division) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
/ In Column 7 (Comment) . . . . . . . . . . . . . . . . . . . . . 32

;
; (Punctuation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

>
>>D (Debugging Line) . . . . . . . . . . . . . . . . . . . . . . . . . 32
>>DEFINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
>>ELIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
>>ELSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
>>END-IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
>>IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
>>SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
>>SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
>>TURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

^
^ (Exponentiation) . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

(Character in user-defined words) . . . . . . . . . . . . . 6

0
01-Level Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6
66-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7
77-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . 122
78-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3 June 2014 Index



616 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

8
88-Level Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A
A Sample Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
ACCEPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
ACCEPT FROM COMMAND-LINE . . . . . . . . . 339
ACCEPT FROM CONSOLE . . . . . . . . . . . . . . . . . 338
ACCEPT FROM DATE/TIME . . . . . . . . . . . . . . . 347
ACCEPT FROM ENVIRONMENT . . . . . . . . . . 341
ACCEPT FROM Runtime-Info . . . . . . . . . . . . . . . 349
ACCEPT FROM Screen-Info . . . . . . . . . . . . . . . . . 348
ACCEPT screen-data-item . . . . . . . . . . . . . . . . . . . 342
ACCESS MODE DYNAMIC . . . . . . . . . . . . . . . 83, 85
ACCESS MODE RANDOM . . . . . . . . . . . . . . . . . . . 82
ACCESS MODE RANDOM . . . . . . . . . . . . . . . . . . . 85
ACCESS MODE SEQUENTIAL . . . . . . . . . . . . . . . 78
ACCESS MODE SEQUENTIAL . . . . . . . . . . . 81, 85
ACOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
ADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
ADD CORRESPONDING . . . . . . . . . . . . . . . . . . . . 354
ADD GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
ADD TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Additional Reference Sources . . . . . . . . . . . . . . . . . . . 1
ADDRESS OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
ADVANCING PAGE . . . . . . . . . . . . . . . . . . . . . . . . . 480
AFTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
AFTER ADVANCING . . . . . . . . . . . . . . . . . . . . . . . 480
AFTER EXCEPTION CONDITION . . . . . . . . . 208
ALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60, 198, 476
ALL INTRINSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
ALL OTHER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
ALL OTHER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
ALLOCATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
ALPHABET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Alphabet-Name-Clause . . . . . . . . . . . . . . . . . . . . . . . . 67
ALPHABETIC . . . . . . . . . . . . . . . . . . . . . . . . . . 219, 399
Alphabetic Data Item . . . . . . . . . . . . . . . . . . . . . . . . 589
Alphabetic Data Items . . . . . . . . . . . . . . . . . . . . . . . 163
ALPHABETIC-LOWER . . . . . . . . . . . . . . . . . . . . . 219
ALPHABETIC-UPPER . . . . . . . . . . . . . . . . . . . . . . 219
ALPHANUMERIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Alphanumeric Data Item . . . . . . . . . . . . . . . . . . . . . 589
Alphanumeric Data Items . . . . . . . . . . . . . . . . . . . . 163
Alphanumeric Literal . . . . . . . . . . . . . . . . . . . . . . . . . 589
Alphanumeric Literal (Hexadecimal) . . . . . . . . . . . 34
Alphanumeric Literal (Zero-Delimited) . . . . . . . . . 34
Alphanumeric Literals . . . . . . . . . . . . . . . . . . . . . . . . . 33
ALPHANUMERIC-EDITED . . . . . . . . . . . . . . . . . 399
ALSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43, 384
ALTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Alternate Entry Points . . . . . . . . . . . . . . . . . . . . . . . 559
ALTERNATE RECORD KEY . . . . . . . . . . . . . . . . . 85
An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

ANNUITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
ANY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
ANY LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Area "A" (Columns 8-11) . . . . . . . . . . . . . . . . . . . . . . 28
Area "B" (Columns 12-72) . . . . . . . . . . . . . . . . . . . . . 28
ARGUMENT-NUMBER . . . . . . . . . . . . . . . . . . . . . 339
ARGUMENT-NUMBER . . . . . . . . . . . . . . . . . . . . . 372
ARGUMENT-VALUE . . . . . . . . . . . . . . . . . . . . . . . . 339
Arithmetic Expressions . . . . . . . . . . . . . . . . . . . . . . . 215
ASCENDING KEY . . . . . . . . . . . . . . . . . . . . . . . . . . 442
ASCII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
ASIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
AT END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
AT END + NOT AT END . . . . . . . . . . . . . . . . . . . . 235
ATAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
AUTHOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
AUTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
AUTO-SKIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
AUTOTERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . 128

B
BACKGROUND-COLOR . . . . . . . . . . . . . . . . . . . . 129
BASED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
BEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
BEFORE ADVANCING . . . . . . . . . . . . . . . . . . . . . . 480
BELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Binary Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
BLANK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
BLANK WHEN ZERO . . . . . . . . . . . . . . . . . . . . . . . 134
BLINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
BLOCK CONTAINS . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Built-In System Subroutines . . . . . . . . . . . . . . . . . . 525
BY CONTENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
BY CONTENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
BY REFERENCE . . . . . . . . . . . . . . . . . . 202, 362, 565
BY REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
BY VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203, 362
BY VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
BYTE-LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
BYTE-LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

C
C Main Programs Calling GNU COBOL

Subprograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
C$CALLEDBY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
C$CHDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
C$COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
C$DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
C$FILEINFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
C$GETPID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
C$JUSTIFY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
C$MAKEDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
C$NARG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
C$PARAMSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
C$PRINTABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

Index 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 617

C$SLEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
C$TOLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
C$TOUPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
CALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
CALL-CONVENTION . . . . . . . . . . . . . . . . . . . . . . . . 63
Called Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Called Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
Called Program Considerations . . . . . . . . . . . . . . . 566
Calling Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Calling Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
Calling Program Considerations . . . . . . . . . . . . . . 565
CANCEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Case Insensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
CBL AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
CBL CHANGE DIR . . . . . . . . . . . . . . . . . . . . . . . . . 532
CBL CHECK FILE EXIST . . . . . . . . . . . . . . . . . . 532
CBL CLOSE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
CBL COPY FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
CBL CREATE DIR . . . . . . . . . . . . . . . . . . . . . . . . . . 534
CBL CREATE FILE . . . . . . . . . . . . . . . . . . . . . . . . . 534
CBL DELETE DIR . . . . . . . . . . . . . . . . . . . . . . . . . . 535
CBL DELETE FILE . . . . . . . . . . . . . . . . . . . . . . . . . 535
CBL EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
CBL ERROR PROC . . . . . . . . . . . . . . . . . . . . . . . . . 536
CBL EXIT PROC . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
CBL FLUSH FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
CBL GET CSR POS . . . . . . . . . . . . . . . . . . . . . . . . 540
CBL GET CURRENT DIR . . . . . . . . . . . . . . . . . . 541
CBL GET SCR SIZE . . . . . . . . . . . . . . . . . . . . . . . . 541
CBL IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
CBL NIMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
CBL NOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
CBL NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
CBL OC NANOSLEEP . . . . . . . . . . . . . . . . . . . . . . 544
CBL OPEN FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
CBL OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
CBL READ FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
CBL RENAME FILE . . . . . . . . . . . . . . . . . . . . . . . . 546
CBL TOLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
CBL TOUPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
CBL WRITE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . 548
CBL XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
CDF - Compiler Directing Facility . . . . . . . . . . . . . 39
CHAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Class Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Class-Definition-Clause . . . . . . . . . . . . . . . . . . . . . . . . 69
CLASSIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
CLOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
COB-CRT-STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
COB CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
COB CFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
COB CONFIG DIR . . . . . . . . . . . . . . . . . . . . . . . . . . 514
COB CONFIG DIR Environment Variable . . . 516
COB COPY DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
COB DISPLAY WARNINGS . . . . . . . . . . . . . . . . 522
COB LDADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
COB LDFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

COB LIBRARY PATH . . . . . . . . . . . . . . . . . . . . . . . 522
COB LIBRARY PATH Environment Variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
COB LIBRARY PATH Environment Variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
COB LIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
COB LOAD CASE . . . . . . . . . . . . . . . . . . . . . . . . . . 522
COB LOAD CASE Environment Variable . . . . 561
COB PHYSICAL CANCEL . . . . . . . . . . . . . . . . . . 522
COB PHYSICAL CANCEL Environment Variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
COB PHYSICAL CANCEL Environment Variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
COB PRE LOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
COB PRE LOAD Environment Variable . . . . . 361
COB PRE LOAD Environment Variable . . . . . 561
COB SCREEN ESC . . . . . . . . . . . . . . . . . . . . . . . . . 523
COB SCREEN ESC Environment Variable . . . 344
COB SCREEN EXCEPTIONS . . . . . . . . . . . . . . . 523
COB SCREEN EXCEPTIONS Environment

Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
COB SET DEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . 522
COB SET DEBUG Environment Variable . . . . 209
COB SET TRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
COB SET TRACE Environment Variable . . . . 433,

435
COB SORT MEMORY . . . . . . . . . . . . . . . . . . . . . . 523
COB SORT MEMORY Environment Variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
COB SWITCH n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
COB SWITCH n Environment Variable . . . . . . . 70
COB SYNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
COB TRACE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . 523
cobc - The GNU COBOL Compiler . . . . . . . . . . . 509
COBCPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
COBCPY Environment Variable . . . . . . . . . . . . . . 515
cobcrun - Command-line Execution . . . . . . . . . . . 520
CODE IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
CODE-SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Collating Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
COLLATING SEQUENCE . . . . . . . . . . . . 58, 73, 412
Color Palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Color Palette and Video Attributes . . . . . . . . . . . . 20
COLUMN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Column 7 (Indicator Area) . . . . . . . . . . . . . . . . . . . . . 27
COLUMNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107, 348
Columns 1-6 (Sequence Number Area) . . . . . . . . . 27
Columns 12-72 (Area "B") . . . . . . . . . . . . . . . . . . . . . 28
Columns 73-80 (Program Name Area) . . . . . . . . . 28
Columns 8-11 (Area "A") . . . . . . . . . . . . . . . . . . . . . . 28
Combined Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 225
COMBINED-DATETIME . . . . . . . . . . . . . . . . . . . . 253
Combining GNU COBOL and C Programs . . . . 571
COMMAND-LINE . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
COMMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
COMMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 June 2014 Index



618 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Common Clauses on Executable Statements . . 235
Compilation Group . . . . . . . . . . . . . . . . . . . . . . 512, 589
Compilation Time Environment Variables . . . . . 514
Compilation Unit . . . . . . . . . . . . . . . . . . . . . . . . 512, 589
Compiler Configuration Files . . . . . . . . . . . . . . . . . 516
Compiler Switches, -b . . . . . . . . . . . . . . . . . . . . . . . . 560
Compiler Switches, -conf . . . . . . . . . . . . . . . . . . . . . . 516
Compiler Switches, -debug . . . . . . . . . . 209, 264, 265
Compiler Switches, -fdebugging-line . . . 32, 57, 209
Compiler Switches, -ffold-call . . . . . . . . . . . . . . . . . 521
Compiler Switches, -ffold-copy . . . . . . . . . . . . 49, 516
Compiler Switches, -fintrinsics . . . . . . . . . . . . . . . . 245
Compiler Switches, -fintrinsics=ALL . . . . . . . . . . . 60
Compiler Switches, -fixed . . . . . . . . . . . . . . . 26, 49, 50
Compiler Switches, -fnotrunc . . . . . . . . . . . . . . . . . 553
Compiler Switches, -foptional-file . . . . . . . . . . . . . . 74
Compiler Switches, -free . . . . . . . . . . . . . . . . 26, 49, 50
Compiler Switches, -fsyntax-extension . . . . . . . . . . 70
Compiler Switches, -ftrace . . . . . . . . . . . 433, 435, 523
Compiler Switches, -ftraceall . . . 264, 265, 435, 523
Compiler Switches, -g . . . . . . . . . . . . . . . . . . . . 264, 265
Compiler Switches, -I . . . . . . . . . . . . . . . . . . . . . . . . . 515
Compiler Switches, -m . . . . . . . . . . . . . . . . . . . 513, 520
Compiler Switches, -m . . . . . . . . . . . . . . . . . . . . . . . . 560
Compiler Switches, -o . . . . . . . . . . . . . . . . . . . . 513, 519
Compiler Switches, -O . . . . . . . . . . . . . . . . . . . . . . . . 556
Compiler Switches, -O2 . . . . . . . . . . . . . . . . . . . . . . . 556
Compiler Switches, -Os . . . . . . . . . . . . . . . . . . . . . . . 556
Compiler Switches, -Wobsolete . . . . . . . . . . . . . . . . . 54
Compiler Switches, -x . . . . . . . . . . . . . . . . . . . . 513, 519
Compiler Switches, -x . . . . . . . . . . . . . . . . . . . . 560, 592
Compiling Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 509
COMPUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
COMPUTE Versus

ADD-SUBTRACT-MULTIPLY-DIVIDE
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

CONCATENATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Concurrent Access to Files . . . . . . . . . . . . . . . . . . . . 231
Condition Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Condition Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Conditional Expressions . . . . . . . . . . . . . . . . . . . . . . 218
CONFIGURATION SECTION . . . . . . . . . . . . . . . . 56
CONSOLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
CONSOLE IS CRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
CONSTANT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45, 49
CONSTANT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
CONSTANT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Contained Subprograms . . . . . . . . . . . . . . . . . . . . . . 557
CONTENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Continuation (- in Column 7) . . . . . . . . . . . . . . . . . . 34
CONTINUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Control Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Control Break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
Control Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
Control Footing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
Control Heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

Control Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Control Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
Control Hierarchy (Revisited) . . . . . . . . . . . . . . . . . 503
CONVERSION . . . . . . . . . . . . . . . . . . . . . . . . . . 342, 374
CONVERTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Copybook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 590
Copybook Naming Conventions and Usage . . . . 584
Copybooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
CORRESPONDING . . . . . . . . . . . . . . . . . . . . . . . . . . 236
COS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
COUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
CRT STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
CRT STATUS Codes . . . . . . . . . . . . . . . . . . . . . . . . . 345
CURRENCY SIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
CURRENCY-SYMBOL . . . . . . . . . . . . . . . . . . . . . . 256
current character pointer . . . . . . . . . . . . . . . . . . . . . 463
CURRENT-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
CURSOR IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

D
D In Column 7 (Debugging Line) . . . . . . . . . . . . . . 32
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
Data Definition Principles . . . . . . . . . . . . . . . . . . . . . 90
Data Description Clauses . . . . . . . . . . . . . . . . . . . . . 125
DATA DIVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Data Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Data Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 591
Data Item Coding and Naming Conventions . . 579
DATA RECORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
DATE-COMPILED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
DATE-OF-INTEGER . . . . . . . . . . . . . . . . . . . . . . . . 258
DATE-TO-YYYYMMDD . . . . . . . . . . . . . . . . . . . . 259
DATE-WRITTEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
DAY-OF-INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . 260
DAY-TO-YYYYDDD . . . . . . . . . . . . . . . . . . . . . . . . 261
DB HOME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
DB HOME Environment Variable . . . . . . . . . . . . 233
DEBUG-ITEM Special Register . . . . . . . . . . . . . . 209
DEBUGGING MODE . . . . . . . . . . . . . . . . . . . . . . . . . 57
DECIMAL POINT IS COMMA . . . . . . . . . . . . . . . 63
DECLARATIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
DEFAULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
DEFINED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
DELIMITED BY . . . . . . . . . . . . . . . . . . . . . . . . 464, 476
DELIMITER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
DEPENDING ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
DESCENDING KEY . . . . . . . . . . . . . . . . . . . . . . . . . 442
Detail Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
detail report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391, 392
Detail Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
Direct Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
DISPLAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
DISPLAY screen-data-item . . . . . . . . . . . . . . . . . . . 374
DISPLAY UPON COMMAND-LINE . . . . . . . . . 372

Index 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 619

DISPLAY UPON device . . . . . . . . . . . . . . . . . . . . . . 370
DISPLAY UPON ENVIRONMENT-NAME . . 373
DIVIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
DIVIDE BY GIVING . . . . . . . . . . . . . . . . . . . . . . . . 380
DIVIDE INTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
DIVIDE INTO GIVING . . . . . . . . . . . . . . . . . . . . . . 378
Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
Divisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Divisions Organize Programs . . . . . . . . . . . . . . . . . . 10
DUPLICATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
DUPLICATES . . . . . . . . . . . . . . . . . . . . . . . . . . 453, 457
Dynamic Subprogram . . . . . . . . . . . . . . . . . . . . 560, 591
Dynamic vs Static Subprograms . . . . . . . . . . . . . . 559
Dynamically Loaded Subprograms . . . . . . . . . . . . 521

E
E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Elementary Item . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 591
ELSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
EMPTY-CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
END-OF-PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
ENTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Entry-point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
Entry-point Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
ENVIRONMENT DIVISION . . . . . . . . . . . . . . . . . . 55
Environment Variables, COB CONFIG DIR . . 516
Environment Variables, COB LIBRARY PATH

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Environment Variables, COB LIBRARY PATH

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
Environment Variables, COB LOAD CASE . . . 561
Environment Variables,

COB PHYSICAL CANCEL . . . . . . . . . . . . . 363
Environment Variables,

COB PHYSICAL CANCEL . . . . . . . . . . . . . 561
Environment Variables, COB PRE LOAD . . . . 361
Environment Variables, COB PRE LOAD . . . . 561
Environment Variables, COB SCREEN ESC

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Environment Variables,

COB SCREEN EXCEPTIONS . . . . . . . . . . 344
Environment Variables, COB SET DEBUG . . 209
Environment Variables, COB SET TRACE . . 433,

435
Environment Variables, COB SORT MEMORY

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Environment Variables, COB SWITCH n . . . . . . 70
Environment Variables, COBCPY . . . . . . . . . . . . 515
Environment Variables, DB HOME . . . . . . . . . . . 233
Environment Variables, LANG . . . . . 256, 300, 301,

302, 303
Environment Variables, LD LIBRARY PATH

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
Environment Variables, PATH . . . . . . . . . . . . . . . . 521
Environment Variables, PATH . . . . . . . . . . . . . . . . 561

Environment Variables, TEMP . . . . . . . . . . . . . . . . 96
Environment Variables, TEMP . . . . . . . . . . . . . . . 456
Environment Variables, TMP . . . . . . . . . . . . . 96, 456
Environment Variables, TMPDIR . . . . . . . . . . . . . . 96
Environment Variables, TMPDIR . . . . . . . . . . . . . 456
Environment Variables: Compilation-Time . . . . 514
Environment Variables: Run-Time . . . . . . . . . . . . 522
ENVIRONMENT-NAME . . . . . . . . . . . . . . . . . . . . . 341
ENVIRONMENT-VALUE . . . . . . . . . . . . . . . . . . . . 341
EOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
EOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
ERASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
ERROR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Error Exception Codes . . . . . . . . . . . . . . . . . . . . . . . 266
Error Type Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
ESCAPE KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
EVALUATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
EVENT STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
EXCEPTION STATUS . . . . . . . . . . . . . . . . . . . . . . . 349
EXCEPTION-FILE . . . . . . . . . . . . . . . . . . . . . . . . . . 263
EXCEPTION-LOCATION . . . . . . . . . . . . . . . . . . . 264
EXCEPTION-STATEMENT . . . . . . . . . . . . . . . . . 265
EXCEPTION-STATUS . . . . . . . . . . . . . . . . . . . . . . . 266
Executable File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
Executing Dynamically-Loadable Libraries . . . . 520
Execution Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
EXIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
EXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
EXP10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
EXTEND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
EXTERNAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
EXTERNAL Data Items . . . . . . . . . . . . . . . . . . . . . 567

F
FACTORIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
FALSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figurative Constants . . . . . . . . . . . . . . . . . . . . . . 35, 592
File OPEN Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
FILE SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
File Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
FILE STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
File Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
File-Based SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
FILE-SECTION-Data-Item . . . . . . . . . . . . . . . . . . . . 98
File/Sort-Description . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
FILLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
FINAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
FIRST DETAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Fixed Format Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Fixed Format Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Fixed Format Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 592
FOLDCOPYNAME . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
FOOTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
FOOTING AT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
FOREGROUND-COLOR . . . . . . . . . . . . . . . . . . . . 143

3 June 2014 Index



620 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

FOREVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
Format of Program Source Lines . . . . . . . . . . . . . . . 26
FRACTION-PART . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
FREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Free Format Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Free Format Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Free Format Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
FROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144, 434, 437
FROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
FROM CRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
FULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
FUNCTION-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

G
GENERATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Generated Report Pages . . . . . . . . . . . . . . . . . . . . . . 497
GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413, 456, 461
GIVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
GLOBAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
GLOBAL Data Items . . . . . . . . . . . . . . . . . . . . . . . . . 567
Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
GNU COBOL Main Programs CALLing C

Subprograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
GNU COBOL Run-Time Library Requirements

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
GNU COBOL Statements . . . . . . . . . . . . . . . . . . . . 338
GNU Free Documentation License . . . . . . . . . . . . 603
GO TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
GO TO DEPENDING ON . . . . . . . . . . . . . . . . . . . 395
GOBACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
GROUP INDICATE . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Group Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 592

H
HEADING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Hexadecimal Alphanumeric Literal . . . . . . . . . . . . . 34
Hexadecimal Alphanumeric Literal . . . . . . . . . . . . 592
Hexadecimal Numeric Literal . . . . . . . . . . . . . . . . . . 33
Hexadecimal Numeric Literal . . . . . . . . . . . . . . . . . 593
HIGH-VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
HIGHEST-ALGEBRAIC . . . . . . . . . . . . . . . . . . . . . 272
HIGHLIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
How RWCS Builds Report Pages . . . . . . . . . . . . . 486

I
I-O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
IDENTIFICATION DIVISION . . . . . . . . . . . . . . . . 53
Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
IGNORING LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Imperative Statement . . . . . . . . . . . . . . . . . . . . . . . . 593
Independent Subprograms . . . . . . . . . . . . . . . . . . . . 557

Independent vs Contained vs Nested Subprograms
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

INDEXED BY . . . . . . . . . . . . . . . . . . . . . . . . . . 159, 442
Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
Indicator Area (Column 7) . . . . . . . . . . . . . . . . . . . . . 27
INITIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54, 562
INITIALIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
INITIALIZED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
INITIATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Inline PERFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
INPUT PROCEDURE . . . . . . . . . . . . . . . . . . . . . . . 454
INPUT-OUTPUT SECTION . . . . . . . . . . . . . . . . . . 72
INSPECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
INSTALLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
INTEGER-OF-DATE . . . . . . . . . . . . . . . . . . . . . . . . 274
INTEGER-OF-DAY . . . . . . . . . . . . . . . . . . . . . . . . . . 275
INTEGER-PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Interfacing to Other Environments . . . . . . . . . . . . . 37
Interfacing With The OS . . . . . . . . . . . . . . . . . . . . . 509
INTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429, 431, 436
INTRINSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Intrinsic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Intrinsic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Introducing COBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
INVALID KEY + NOT INVALID KEY . . . . . . . 238

J
JUSTIFIED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

K
KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159, 412, 431

L
LABEL RECORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
LANG Environment Variable . . 256, 300, 301, 302,

303
Language Reserved Words . . . . . . . . . . . . . . . . . . . . . . 6
LAST CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
LAST DETAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
LD LIBRARY PATH . . . . . . . . . . . . . . . . . . . . . . . . 514
LD LIBRARY PATH Environment Variable . . 512
LEADING . . . . . . . . . . . . . . . . . . . . . . . 41, 43, 177, 333
LEFTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
LENGTH OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
LENGTH-AN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
LENGTH-CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Level Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
LINAGE IS n LINES . . . . . . . . . . . . . . . . . . . . . . . . . . 95
LINAGE-COUNTER Special Register . . . . . . . . . 96

Index 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 621

LINAGE-COUNTER Special Register . . . . . . . . 481
LINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
LINE ADVANCING . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
LINE-COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
LINE-COUNTER Special Register . . 110, 404, 471
LINE-COUNTER Special Register . . . . . . . . . . . . 487
LINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
LINES AT BOTTOM . . . . . . . . . . . . . . . . . . . . . . . . . 95
LINES AT TOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
LINKAGE SECTION . . . . . . . . . . . . . . . . . . . . . . . . 104
Literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Literal Concatenation (&) . . . . . . . . . . . . . . . . . . . . . 34
Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Literals (Alphaumeric) . . . . . . . . . . . . . . . . . . . . . . . . . 33
Literals (Numeric) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
LOCAL-STORAGE SECTION . . . . . . . . . . . . . . . 102
LOCALE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
LOCALE Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
LOCALE-COMPARE . . . . . . . . . . . . . . . . . . . . . . . . 279
LOCALE-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
LOCALE-TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
LOCALE-TIME-FROM-SECONDS . . . . . . . . . . . 282
Locating Copybooks . . . . . . . . . . . . . . . . . . . . . . . . . . 515
LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77, 364
LOCK MODE IS AUTOMATIC . . . . . . . . . . . . . . 233
LOCK MODE IS MANUAL . . . . . . . . . . . . . . . . . . 233
LOCK ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
LOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
LOG10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
LOW-VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
LOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
LOWER-CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
LOWEST-ALGEBRAIC . . . . . . . . . . . . . . . . . . . . . . 286
LOWLIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

M
Main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
Main Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Marking Changes in Programs . . . . . . . . . . . . . . . . 579
Matching C Data Types with GNU COBOL

USAGEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
MEAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
MEDIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
MEMORY SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
MERGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
MIDRANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
MOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
MODE IS BLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
MODULE-CALLER-ID . . . . . . . . . . . . . . . . . . . . . . 293
MODULE-DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
MODULE-FORMATTED-DATE . . . . . . . . . . . . . 295
MODULE-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
MODULE-PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
MODULE-SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . 298

MODULE-TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
MONETARY-DECIMAL-POINT . . . . . . . . . . . . . 300
MONETARY-THOUSANDS-SEPARATOR . . . 301
MOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
MOVE CORRESPONDING . . . . . . . . . . . . . . . . . . 415
MULTIPLE FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
multiple record locking . . . . . . . . . . . . . . . . . . . . . . . 233
MULTIPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
MULTIPLY BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
MULTIPLY GIVING . . . . . . . . . . . . . . . . . . . . . . . . . 418

N
NATIONAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
National Characterset . . . . . . . . . . . . . . . . . . . 162, 594
NATIONAL-EDITED . . . . . . . . . . . . . . . . . . . . . . . . 400
NATIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Negated Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 226
NEGATIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Nested Subprograms . . . . . . . . . . . . . . . . . . . . . . . . . . 558
NEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156, 429
NEXT GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
NEXT PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153, 156
NEXT SENTENCE . . . . . . . . . . . . . . . . . . . . . 229, 397
NO ADVANCING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
NO OTHER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
NO REWIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
NO REWIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
NO-ECHO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
NOFOLDCOPYNAME . . . . . . . . . . . . . . . . . . . . . . . . 49
NORMAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
NOT INVALID KEY . . . . . . . . . . . . . . . . . . . . . . . . . 238
NOT ON EXCEPTION . . . . . . . . . . . . . . . . . . . . . . 239
NOT ON OVERFLOW . . . . . . . . . . . . . . . . . . . . . . 239
NOT ON SIZE ERROR . . . . . . . . . . . . . . . . . . . . . . 240
NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
NUMERIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
NUMERIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Numeric Data Item . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
Numeric Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Numeric Edited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Numeric Edited Data Item . . . . . . . . . . . . . . . . . . . 594
Numeric Literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
Numeric Literal (Hexadecimal) . . . . . . . . . . . . . . . . 33
Numeric Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
NUMERIC SIGN TRAILING SEPARATE . . . . . 65
NUMERIC-DECIMAL-POINT . . . . . . . . . . . . . . . 302
NUMERIC-EDITED . . . . . . . . . . . . . . . . . . . . . . . . . 400
NUMERIC-THOUSANDS-SEPARATOR . . . . . 303
NUMVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
NUMVAL-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
NUMVAL-F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

O
OBJECT-COMPUTER . . . . . . . . . . . . . . . . . . . . . . . . 58

3 June 2014 Index



622 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

OCCURS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
OFF STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
OMITTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203, 219
ON EXCEPTION + NOT ON EXCEPTION . . 238
ON OVERFLOW + NOT ON OVERFLOW . . 239
ON SIZE ERROR + NOT ON SIZE ERROR . . 239
ON STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
OPEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
OPTIONAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
OPTIONAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
ORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
ORD-MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
ORD-MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
ORGANISATION INDEXED . . . . . . . . . . . . . . . . . . 14
ORGANISATION LINE SEQUENTIAL . . . . . . . 11
ORGANISATION RELATIVE . . . . . . . . . . . . . . . . . 13
ORGANISATION SEQUENTIAL . . . . . . . . . . . . . 12
ORGANIZATION INDEXED . . . . . . . . . . . . . . 14, 84
ORGANIZATION LINE SEQUENTIAL . . . 11, 80
ORGANIZATION RELATIVE . . . . . . . . . . . . . . . . . 13
ORGANIZATION RELATIVE . . . . . . . . . . . . . . . . . 82
ORGANIZATION SEQUENTIAL . . . . . . . . . . . . . 12
ORGANIZATION SEQUENTIAL . . . . . . . . . . . . . 78
OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
OUTPUT PROCEDURE . . . . . . . . . . . . . . . . 413, 456
overflow condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
OVERLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
OVERRIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

P
PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Page Footing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
Page Heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
PAGE LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
PAGE-COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
PAGE-COUNTER Special Register . . 110, 404, 471
PARAMETER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
PATH Environment Variable . . . . . . . . . . . . . . . . . 521
PATH Environment Variable . . . . . . . . . . . . . . . . . 561
PERFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
perform scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
PICTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114, 162
POINTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
POSITIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
PRESENT WHEN . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
PRESENT-VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
PREVIOUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Primary Entry-Point . . . . . . . . . . . . . . . . . . . . . . . . . 595
PRIMARY KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
PRINTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
PRINTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Procedural PERFORM . . . . . . . . . . . . . . . . . . . . . . . 422

Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
PROCEDURE DIVISION . . . . . . . . . . . . . . . . . . . . 201
PROCEDURE DIVISION CHAINING . . . . . . . . 204
PROCEDURE DIVISION RETURNING . . . . . 206
PROCEDURE DIVISION Sections and

Paragraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
PROCEDURE DIVISION Sections Versus

Paragraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
PROCEDURE DIVISION USING . . . . . . . . . . . . 202
Procedure name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
Procedure Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492, 595
Program Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Program Name Area (Columns 73-80) . . . . . . . . . 28
Program Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
PROGRAM-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Programmer Productivity . . . . . . . . . . . . . . . . . . . . . . . 4
Programming Style Suggestions . . . . . . . . . . . . . . . 579
PROMPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Punctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Q
Qualification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
Qualification of Data Names . . . . . . . . . . . . . . . . . . 212
QUOTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

R
RANDOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Random READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
RANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
READ ONLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Readability of Programs . . . . . . . . . . . . . . . . . . . . . . . . 7
READY TRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
RECORD CONTAINS . . . . . . . . . . . . . . . . . . . . . . . . 96
RECORD DELIMITER . . . . . . . . . . . . . . . . . . . . . . . 73
RECORD IS VARYING . . . . . . . . . . . . . . . . . . . . . . . 96
RECORD KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Record Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
RECORDING MODE . . . . . . . . . . . . . . . . . . . . . . . . . 95
RECURSIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Recursive Subprogram . . . . . . . . . . . . . . . . . . . . . . . . 568
Recursive Subprograms . . . . . . . . . . . . . . . . . . . . . . . 568
REDEFINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
REEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Reference Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Relation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 223
RELATIVE KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
RELATIVE KEY . . . . . . . . . . . . . . . . . . . . . . . . . 83, 369
RELEASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Index 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 623

REMAINDER . . . . . . . . . . . . . . . . . . . . . . . . . . . 379, 381
REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
RENAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
REPLACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
REPLACING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 42
REPLACING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400, 405
Report Footing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
Report Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Report Group Definitions . . . . . . . . . . . . . . . . . . . . . 111
Report Heading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
REPORT IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
REPORT SECTION . . . . . . . . . . . . . . . . . . . . . . . . . 107
REPORT SECTION Data Items . . . . . . . . . . . . . . 113
Report Writer Features . . . . . . . . . . . . . . . . . . . . . . . . 22
Report Writer Usage Notes . . . . . . . . . . . . . . . . . . . 483
REPOSITORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
REQUIRED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
RESERVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Reserved Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Reserved Word List . . . . . . . . . . . . . . . . . . . . . . . . . . 599
Reserved Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 599
RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
RESET TRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
RETURN-CODE Special Register . . . . . . . . . . . . 361
RETURN-CODE Special Register . . . . . . . . . . . . 461
RETURN-CODE Special Register . . . . . . . 526, 527
RETURN-CODE Special Register . . . . . . . . . . . . 528
RETURN-CODE Special Register . . 529, 530, 532,

533, 534, 535, 536
RETURN-CODE Special Register . . . . . . . . . . . . 537
RETURN-CODE Special Register . . . 538, 541, 542
RETURN-CODE Special Register . . . . . . . . . . . . 543
RETURN-CODE Special Register . . . . . . . . . . . . 544
RETURN-CODE Special Register . . . . . . . . . . . . 545
RETURN-CODE Special Register . . . . . . . . . . . . 546
RETURN-CODE Special Register . . . . . . . 547, 548
RETURN-CODE Special Register . . . . . . . . . . . . 549
RETURN-CODE Special Register . . . . . . . . . . . . 557
RETURN-CODE Special Register . . . . . . . 562, 563
RETURN-CODE Special Register . . . . . . . . . . . . 564
RETURNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
RETURNING . . . . . . . . . . . . . . . . . . . . . . . . . . . 362, 461
RETURNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
REVERSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
REVERSE-VIDEO . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
REVERSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
REWRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
ROLLBACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
ROUNDED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
RUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Run Time Environment Variables . . . . . . . . . . . . . 522
Running Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
RWCS Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

S
SAME RECORD AREA . . . . . . . . . . . . . . . . . . . . . . . 87
SAME SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
SAME SORT-MERGE . . . . . . . . . . . . . . . . . . . . . . . . 87
SCREEN CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Screen Formatting Features . . . . . . . . . . . . . . . . . . . . 18
SCREEN SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . 115
SCROLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
SEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
SEARCH ALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
Search Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
SECONDS-FROM-FORMATTED-TIME . . . . . 317
SECONDS-PAST-MIDNIGHT . . . . . . . . . . . . . . . . 318
SECURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
SECURITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
SEGMENT-LIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Sentence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227, 596
SEPARATE CHARACTER . . . . . . . . . . . . . . . . . . 177
Sequence Number Area (Columns 1-6) . . . . . . . . . 27
Sequential READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
SET ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
SET ATTRIBUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
SET Condition Name . . . . . . . . . . . . . . . . . . . . . . . . . 450
SET ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . 445
SET Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
SET Program-Pointer . . . . . . . . . . . . . . . . . . . . . . . . 446
SET Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
SET UP/DOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
SHARING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
SHARING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
SHARING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Sharing Data Between Calling and Called

Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
SIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Sign Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
SIGN IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Simple GO TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Simple MOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
SIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
single record locking . . . . . . . . . . . . . . . . . . . . . . . . . . 233
So What is GNU COBOL? . . . . . . . . . . . . . . . . . . . . . 5
SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
SORT STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Sorting and Merging Data . . . . . . . . . . . . . . . . . . . . . 15
SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Source Line Format, Fixed . . . . . . . . . . . . . . . . . 26, 50
Source Line Format, Free . . . . . . . . . . . . . . . . . . 26, 50
SOURCE-COMPUTER . . . . . . . . . . . . . . . . . . . . . . . 57
SPACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Special Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Special Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Special Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Special Registers, DEBUG-ITEM . . . . . . . . . . . . . 209
Special Registers, LINAGE-COUNTER . . . . . . . . 96

3 June 2014 Index



624 GNU COBOL 2.1 [23NOV2013] Programmer’s Guide

Special Registers, LINAGE-COUNTER . . . . . . . 481
Special Registers, LINE-COUNTER . . . . . 110, 404,

471
Special Registers, LINE-COUNTER . . . . . . . . . . 487
Special Registers, PAGE-COUNTER . . . . 110, 404,

471
Special Registers, RETURN-CODE . . . . . . . . . . . 361
Special Registers, RETURN-CODE . . . . . . . . . . . 461
Special Registers, RETURN-CODE . . . . . . 526, 527
Special Registers, RETURN-CODE . . . . . . . . . . . 528
Special Registers, RETURN-CODE . . . . . 529, 530,

532, 533, 534, 535, 536
Special Registers, RETURN-CODE . . . . . . . . . . . 537
Special Registers, RETURN-CODE . . . . . 538, 541,

542
Special Registers, RETURN-CODE . . . . . . . . . . . 543
Special Registers, RETURN-CODE . . . . . . . . . . . 544
Special Registers, RETURN-CODE . . . . . . . . . . . 545
Special Registers, RETURN-CODE . . . . . . . . . . . 546
Special Registers, RETURN-CODE . . . . . . 547, 548
Special Registers, RETURN-CODE . . . . . . . . . . . 549
Special Registers, RETURN-CODE . . . . . . . . . . . 557
Special Registers, RETURN-CODE . . . . . . 562, 563
Special Registers, RETURN-CODE . . . . . . . . . . . 564
SPECIAL-NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
SQRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
STANDARD-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
STANDARD-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
STANDARD-DEVIATION . . . . . . . . . . . . . . . . . . . 322
START . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227, 596
STATIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Static Subprogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
Static Subprogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
STDCALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
STDERR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
STDIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
STDOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
STEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
STORED-CHAR-LENGTH . . . . . . . . . . . . . . . . . . . 323
STRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
String Allocation Differences Between GNU

COBOL and C . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
String Manipulation Features . . . . . . . . . . . . . . . . . . 16
Structured Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Sub-Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Subprogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557, 596
Subprogram Arguments . . . . . . . . . . . . . . . . . . . . . . 565
Subprogram Execution Flow . . . . . . . . . . . . . . . . . . 561
Subprogram Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557, 596
Subroutine Execution Flow . . . . . . . . . . . . . . . . . . . 561
Subscripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
SUBSTITUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
SUBSTITUTE-CASE . . . . . . . . . . . . . . . . . . . . . . . . 325

SUBTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
SUBTRACT CORRESPONDING . . . . . . . . . . . . 469
SUBTRACT FROM . . . . . . . . . . . . . . . . . . . . . . . . . . 465
SUBTRACT GIVING . . . . . . . . . . . . . . . . . . . . . . . . 467
SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
SUM OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Summary of Document Changes . . . . . . . . . . . . . . 611
summary report . . . . . . . . . . . . . . . . . . . . . . . . . 391, 392
Summary Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
SUPPRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 471
Switch-Definition-Clause . . . . . . . . . . . . . . . . . . . . . . . 70
SWITCH-n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Switch-Status Conditions . . . . . . . . . . . . . . . . . . . . . 222
SWn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Symbolic-Characters-Clause . . . . . . . . . . . . . . . . . . . 71
SYNCRONIZED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Syntax Diagram Conventions . . . . . . . . . . . . . . . . . . 24
SYSERR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
SYSIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
SYSIPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
SYSLIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
SYSLST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
SYSOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

T
Table Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Table SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Table Subscripting versus Table Indexing . . . . . 582
TALLYING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
TAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
TEMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
TEMP Environment Variable . . . . . . . . . . . . . . . . . . 96
TEMP Environment Variable . . . . . . . . . . . . . . . . . 456
TERMINATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
TEST-DATE-YYYYMMDD . . . . . . . . . . . . . . . . . . 328
TEST-DAY-YYYYDDD . . . . . . . . . . . . . . . . . . . . . . 329
TEST-NUMVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
TEST-NUMVAL-C . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
TEST-NUMVAL-F . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
The Anatomy of a Report . . . . . . . . . . . . . . . . . . . . 484
The Anatomy of a Report Page . . . . . . . . . . . . . . . 485
THRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
TIMEOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
TIMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
TMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515, 524
TMP Environment Variable . . . . . . . . . . . . . . . 96, 456
TMPDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515, 524
TMPDIR Environment Variable . . . . . . . . . . . . . . . 96
TMPDIR Environment Variable . . . . . . . . . . . . . . 456
TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
TRAILING . . . . . . . . . . . . . . . . . . . . . . 41, 43, 177, 333
TRANSFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
TRIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Index 3 June 2014



GNU COBOL 2.1 [23NOV2013] Programmer’s Guide 625

Turning PHYSICAL Page Formatting Into
LOGICAL Formatting . . . . . . . . . . . . . . . . . . . 506

TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

U
UNDERLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
UNLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
UNSIGNED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
UNSTRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
UNTIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
UNTIL EXIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
UPDATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
UPON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179, 370
UPON CRT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
UPON CRT-UNDER . . . . . . . . . . . . . . . . . . . . . . . . . 374
UPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
UPPER-CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
USAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
USE AFTER STANDARD ERROR

PROCEDURE . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
USE BEFORE REPORTING . . . . . . . . . . . . . . . . . 208
USE FOR DEBUGGING . . . . . . . . . . . . . . . . . . . . . 209
Use of Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Use of VERB/END-VERB Constructs . . . . . . . . 229
USER NAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
User-Defined Function . . . . . . . . . . . . . . . . . . . . . . . . 557
User-Defined Function . . . . . . . . . . . . . . . . . . . . . . . . 597
User-Defined Function Execution Flow . . . . . . . . 563
User-Defined Names . . . . . . . . . . . . . . . . . . . . . . . . . . 597
User-Defined Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
USING . . . . . . . . . . . . . . . 196, 202, 362, 382, 412, 454

V
VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197, 382
VALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
VALUE OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
VARIANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

VARYING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
VARYING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425, 440
Verb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Verb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

W
WHEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384, 442
WHEN OTHER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
WHEN-COMPILED . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Why YOU Should Learn COBOL . . . . . . . . . . . . . . . 2
WITH DEBUGGING MODE . . . . . . . . . . . . . . . . . . 32
WITH FILLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
WITH IGNORE LOCK . . . . . . . . . . . . . . . . . . . . . . 234
WITH KEPT LOCK . . . . . . . . . . . . . . . . . . . . . . . . . 234
WITH LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . 234, 421
WITH NO LOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
WITH TEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
WITH WAIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
WORKING-STORAGE SECTION . . . . . . . . . . . 100
WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

X
X"91" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
X"E4" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
X"E5" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
X"F4" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
X"F5" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

Y
YEAR-TO-YYYY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Z
ZERO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
ZERO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Zero-Delimited Alphanumeric Literals . . . . . . . . . . 34
Zero-Delimited Alphanumeric Literals . . . . . . . . . 597

3 June 2014 Index




	1. Introduction
	1.1. Additional Reference Sources
	1.2. Introducing COBOL
	1.2.1. Why YOU Should Learn COBOL
	1.2.2. Programmer Productivity

	1.3. So What is GNU COBOL?
	1.3.1. Language Reserved Words
	1.3.2. User-Defined Words
	1.3.3. Case Insensitivity
	1.3.4. Readability of Programs
	1.3.5. Divisions Organize Programs
	1.3.6. Copybooks
	1.3.7. Structured Data
	1.3.8. Files
	1.3.9. Table Handling
	1.3.10. Sorting and Merging Data
	1.3.11. String Manipulation Features
	1.3.12. Screen Formatting Features
	1.3.12.1. A Sample Screen
	1.3.12.2. Color Palette and Video Attributes

	1.3.13. Report Writer Features
	1.3.14. Data Initialization
	1.3.15. Syntax Diagram Conventions
	1.3.16. Format of Program Source Lines
	1.3.17. Program Structure
	1.3.18. Comments
	1.3.19. Literals
	1.3.19.1. Numeric Literals
	1.3.19.2. Alphanumeric Literals
	1.3.19.3. Figurative Constants

	1.3.20. Punctuation
	1.3.21. LENGTH OF
	1.3.22. Interfacing to Other Environments


	2. CDF - Compiler Directing Facility
	2.1. COPY
	2.2. REPLACE
	2.3. >>DEFINE
	2.4. >>IF
	2.5. >>SET
	2.6. >>SOURCE
	2.7. >>TURN

	3. IDENTIFICATION DIVISION
	4. ENVIRONMENT DIVISION
	4.1. CONFIGURATION SECTION
	4.1.1. SOURCE-COMPUTER
	4.1.2. OBJECT-COMPUTER
	4.1.3. REPOSITORY
	4.1.4. SPECIAL-NAMES
	4.1.4.1. Alphabet-Name-Clause
	4.1.4.2. Class-Definition-Clause
	4.1.4.3. Switch-Definition-Clause
	4.1.4.4. Symbolic-Characters-Clause


	4.2. INPUT-OUTPUT SECTION
	4.2.1. SELECT
	4.2.1.1. ORGANIZATION SEQUENTIAL
	4.2.1.2. ORGANIZATION LINE SEQUENTIAL
	4.2.1.3. ORGANIZATION RELATIVE
	4.2.1.4. ORGANIZATION INDEXED

	4.2.2. MULTIPLE FILE
	4.2.3. SAME RECORD AREA


	5. DATA DIVISION
	5.1. Data Definition Principles
	5.2. FILE SECTION
	5.2.1. File/Sort-Description
	5.2.2. FILE-SECTION-Data-Item

	5.3. WORKING-STORAGE SECTION
	5.4. LOCAL-STORAGE SECTION
	5.5. LINKAGE SECTION
	5.6. REPORT SECTION
	5.6.1. Report Group Definitions
	5.6.2. REPORT SECTION Data Items

	5.7. SCREEN SECTION
	5.8. Special Data Items
	5.8.1. 01-Level Constants
	5.8.2. 66-Level Data Items
	5.8.3. 77-Level Data Items
	5.8.4. 78-Level Data Items
	5.8.5. 88-Level Data Items

	5.9. Data Description Clauses
	5.9.1. ANY LENGTH
	5.9.2. AUTO
	5.9.3. AUTO-SKIP
	5.9.4. AUTOTERMINATE
	5.9.5. BACKGROUND-COLOR
	5.9.6. BASED
	5.9.7. BEEP
	5.9.8. BELL
	5.9.9. BLANK
	5.9.10. BLANK WHEN ZERO
	5.9.11. BLINK
	5.9.12. COLUMN
	5.9.13. CONSTANT
	5.9.14. EMPTY-CHECK
	5.9.15. ERASE
	5.9.16. EXTERNAL
	5.9.17. FALSE
	5.9.18. FOREGROUND-COLOR
	5.9.19. FROM
	5.9.20. FULL
	5.9.21. GLOBAL
	5.9.22. GROUP INDICATE
	5.9.23. HIGHLIGHT
	5.9.24. JUSTIFIED
	5.9.25. LEFTLINE
	5.9.26. LENGTH-CHECK
	5.9.27. LINE
	5.9.28. LOWLIGHT
	5.9.29. NEXT GROUP
	5.9.30. NO-ECHO
	5.9.31. OCCURS
	5.9.32. OVERLINE
	5.9.33. PICTURE
	5.9.34. PRESENT WHEN
	5.9.35. PROMPT
	5.9.36. REDEFINES
	5.9.37. RENAMES
	5.9.38. REQUIRED
	5.9.39. REVERSE-VIDEO
	5.9.40. SECURE
	5.9.41. SIGN IS
	5.9.42. SOURCE
	5.9.43. SUM OF
	5.9.44. SYNCRONIZED
	5.9.45. TO
	5.9.46. TYPE
	5.9.47. UNDERLINE
	5.9.48. USAGE
	5.9.49. USING
	5.9.50. VALUE


	6. PROCEDURE DIVISION
	6.1. PROCEDURE DIVISION USING
	6.2. PROCEDURE DIVISION CHAINING
	6.3. PROCEDURE DIVISION RETURNING
	6.4. PROCEDURE DIVISION Sections and Paragraphs
	6.5. DECLARATIVES
	6.6. Table References
	6.7. Qualification of Data Names
	6.8. Reference Modifiers
	6.9. Arithmetic Expressions
	6.10. Conditional Expressions
	6.10.1. Condition Names
	6.10.2. Class Conditions
	6.10.3. Sign Conditions
	6.10.4. Switch-Status Conditions
	6.10.5. Relation Conditions
	6.10.6. Combined Conditions
	6.10.7. Negated Conditions

	6.11. Use of Periods
	6.12. Use of VERB/END-VERB Constructs
	6.13. Concurrent Access to Files
	6.13.1. File Sharing
	6.13.2. Record Locking

	6.14. Common Clauses on Executable Statements
	6.14.1. AT END + NOT AT END
	6.14.2. CORRESPONDING
	6.14.3. INVALID KEY + NOT INVALID KEY
	6.14.4. ON EXCEPTION + NOT ON EXCEPTION
	6.14.5. ON OVERFLOW + NOT ON OVERFLOW
	6.14.6. ON SIZE ERROR + NOT ON SIZE ERROR
	6.14.7. ROUNDED

	6.15. Special Registers
	6.16. Intrinsic Functions
	6.16.1. ABS
	6.16.2. ACOS
	6.16.3. ANNUITY
	6.16.4. ASIN
	6.16.5. ATAN
	6.16.6. BYTE-LENGTH
	6.16.7. CHAR
	6.16.8. COMBINED-DATETIME
	6.16.9. CONCATENATE
	6.16.10. COS
	6.16.11. CURRENCY-SYMBOL
	6.16.12. CURRENT-DATE
	6.16.13. DATE-OF-INTEGER
	6.16.14. DATE-TO-YYYYMMDD
	6.16.15. DAY-OF-INTEGER
	6.16.16. DAY-TO-YYYYDDD
	6.16.17. E
	6.16.18. EXCEPTION-FILE
	6.16.19. EXCEPTION-LOCATION
	6.16.20. EXCEPTION-STATEMENT
	6.16.21. EXCEPTION-STATUS
	6.16.22. EXP
	6.16.23. EXP10
	6.16.24. FACTORIAL
	6.16.25. FRACTION-PART
	6.16.26. HIGHEST-ALGEBRAIC
	6.16.27. INTEGER
	6.16.28. INTEGER-OF-DATE
	6.16.29. INTEGER-OF-DAY
	6.16.30. INTEGER-PART
	6.16.31. LENGTH
	6.16.32. LENGTH-AN
	6.16.33. LOCALE-COMPARE
	6.16.34. LOCALE-DATE
	6.16.35. LOCALE-TIME
	6.16.36. LOCALE-TIME-FROM-SECONDS
	6.16.37. LOG
	6.16.38. LOG10
	6.16.39. LOWER-CASE
	6.16.40. LOWEST-ALGEBRAIC
	6.16.41. MAX
	6.16.42. MEAN
	6.16.43. MEDIAN
	6.16.44. MIDRANGE
	6.16.45. MIN
	6.16.46. MOD
	6.16.47. MODULE-CALLER-ID
	6.16.48. MODULE-DATE
	6.16.49. MODULE-FORMATTED-DATE
	6.16.50. MODULE-ID
	6.16.55. MODULE-PATH
	6.16.52. MODULE-SOURCE
	6.16.53. MODULE-TIME
	6.16.54. MONETARY-DECIMAL-POINT
	6.16.55. MONETARY-THOUSANDS-SEPARATOR
	6.16.56. NUMERIC-DECIMAL-POINT
	6.16.57. NUMERIC-THOUSANDS-SEPARATOR
	6.16.58. NUMVAL
	6.16.59. NUMVAL-C
	6.16.60. NUMVAL-F
	6.16.61. ORD
	6.16.62. ORD-MAX
	6.16.63. ORD-MIN
	6.16.64. PI
	6.16.65. PRESENT-VALUE
	6.16.66. RANDOM
	6.16.67. RANGE
	6.16.68. REM
	6.16.69. REVERSE
	6.16.70. SECONDS-FROM-FORMATTED-TIME
	6.16.71. SECONDS-PAST-MIDNIGHT
	6.16.72. SIGN
	6.16.73. SIN
	6.16.74. SQRT
	6.16.75. STANDARD-DEVIATION
	6.16.76. STORED-CHAR-LENGTH
	6.16.77. SUBSTITUTE
	6.16.78. SUBSTITUTE-CASE
	6.16.79. SUM
	6.16.80. TAN
	6.16.81. TEST-DATE-YYYYMMDD
	6.16.82. TEST-DAY-YYYYDDD
	6.16.83. TEST-NUMVAL
	6.16.84. TEST-NUMVAL-C
	6.16.85. TEST-NUMVAL-F
	6.16.86. TRIM
	6.16.87. UPPER-CASE
	6.16.88. VARIANCE
	6.16.89. WHEN-COMPILED
	6.16.90. YEAR-TO-YYYY

	6.17. GNU COBOL Statements
	6.17.1. ACCEPT
	6.17.1.1. ACCEPT FROM CONSOLE
	6.17.1.2. ACCEPT FROM COMMAND-LINE
	6.17.1.3. ACCEPT FROM ENVIRONMENT
	6.17.1.4. ACCEPT screen-data-item
	6.17.1.5. ACCEPT FROM DATE/TIME
	6.17.1.6. ACCEPT FROM Screen-Info
	6.17.1.7. ACCEPT FROM Runtime-Info

	6.17.2. ADD
	6.17.2.1. ADD TO
	6.17.2.2. ADD GIVING
	6.17.2.3. ADD CORRESPONDING

	6.17.3. ALLOCATE
	6.17.4. ALTER
	6.17.5. CALL
	6.17.6. CANCEL
	6.17.7. CLOSE
	6.17.8. COMMIT
	6.17.9. COMPUTE
	6.17.10. CONTINUE
	6.17.11. DELETE
	6.17.12. DISPLAY
	6.17.12.1. DISPLAY UPON device
	6.17.12.2. DISPLAY UPON COMMAND-LINE
	6.17.12.3. DISPLAY UPON ENVIRONMENT-NAME
	6.17.12.4. DISPLAY screen-data-item

	6.17.13. DIVIDE
	6.17.13.1. DIVIDE INTO
	6.17.13.2. DIVIDE INTO GIVING
	6.17.13.3. DIVIDE BY GIVING

	6.17.14. ENTRY
	6.17.15. EVALUATE
	6.17.16. EXIT
	6.17.17. FREE
	6.17.18. GENERATE
	6.17.19. GOBACK
	6.17.20. GO TO
	6.17.20.1. Simple GO TO
	6.17.20.2. GO TO DEPENDING ON

	6.17.21. IF
	6.17.22. INITIALIZE
	6.17.23. INITIATE
	6.17.24. INSPECT
	6.17.25. MERGE
	6.17.26. MOVE
	6.17.26.1. Simple MOVE
	6.17.26.2. MOVE CORRESPONDING

	6.17.27. MULTIPLY
	6.17.27.1. MULTIPLY BY
	6.17.27.2. MULTIPLY GIVING

	6.17.28. OPEN
	6.17.29. PERFORM
	6.17.29.1. Procedural PERFORM
	6.17.29.2. Inline PERFORM
	6.17.29.3. VARYING

	6.17.30. READ
	6.17.30.1. Sequential READ
	6.17.30.2. Random READ

	6.17.31. READY TRACE
	6.17.32. RELEASE
	6.17.33. RESET TRACE
	6.17.34. RETURN
	6.17.35. REWRITE
	6.17.36. ROLLBACK
	6.17.37. SEARCH
	6.17.38. SEARCH ALL
	6.17.39. SET
	6.17.39.1. SET ENVIRONMENT
	6.17.39.2. SET Program-Pointer
	6.17.39.3. SET ADDRESS
	6.17.39.4. SET Index
	6.17.39.5. SET UP/DOWN
	6.17.39.6. SET Condition Name
	6.17.39.7. SET Switch
	6.17.39.8. SET ATTRIBUTE

	6.17.40. SORT
	6.17.40.1. File-Based SORT
	6.17.40.2. Table SORT

	6.17.41. START
	6.17.42. STOP
	6.17.43. STRING
	6.17.44. SUBTRACT
	6.17.44.1. SUBTRACT FROM
	6.17.44.2. SUBTRACT GIVING
	6.17.44.3. SUBTRACT CORRESPONDING

	6.17.45. SUPPRESS
	6.17.46. TERMINATE
	6.17.47. TRANSFORM
	6.17.48. UNLOCK
	6.17.49. UNSTRING
	6.17.50. WRITE


	7. Report Writer Usage Notes
	7.1. RWCS Lexicon
	7.2. The Anatomy of a Report
	7.3. The Anatomy of a Report Page
	7.4. How RWCS Builds Report Pages
	7.5. Control Hierarchy
	7.6. An Example
	7.6.1. Data
	7.6.2. Program
	7.6.3. Generated Report Pages

	7.7. Control Hierarchy (Revisited)
	7.8. Turning PHYSICAL Page Formatting Into LOGICAL Formatting

	8. Interfacing With The OS
	8.1. Compiling Programs
	8.1.1. cobc - The GNU COBOL Compiler
	8.1.2. Compilation Time Environment Variables
	8.1.3. Locating Copybooks
	8.1.4. Compiler Configuration Files

	8.2. Running Programs
	8.2.1. Direct Execution
	8.2.2. Executing Dynamically-Loadable Libraries
	8.2.2.1. cobcrun - Command-line Execution
	8.2.2.2. Dynamically Loaded Subprograms

	8.2.3. Run Time Environment Variables
	8.2.4. Program Arguments

	8.3. Built-In System Subroutines
	8.3.1. C$CALLEDBY
	8.3.2. C$CHDIR
	8.3.3. C$COPY
	8.3.4. C$DELETE
	8.3.5. C$FILEINFO
	8.3.6. C$GETPID
	8.3.7. C$JUSTIFY
	8.3.8. C$MAKEDIR
	8.3.9. C$NARG
	8.3.10. C$PARAMSIZE
	8.3.11. C$PRINTABLE
	8.3.12. C$SLEEP
	8.3.13. C$TOLOWER
	8.3.14. C$TOUPPER
	8.3.15. CBL_AND
	8.3.16. CBL_CHANGE_DIR
	8.3.17. CBL_CHECK_FILE_EXIST
	8.3.18. CBL_CLOSE_FILE
	8.3.19. CBL_COPY_FILE
	8.3.20. CBL_CREATE_DIR
	8.3.21. CBL_CREATE_FILE
	8.3.22. CBL_DELETE_DIR
	8.3.23. CBL_DELETE_FILE
	8.3.24. CBL_EQ
	8.3.25. CBL_ERROR_PROC
	8.3.26. CBL_EXIT_PROC
	8.3.27. CBL_FLUSH_FILE
	8.3.28. CBL_GET_CSR_POS
	8.3.29. CBL_GET_CURRENT_DIR
	8.3.30. CBL_GET_SCR_SIZE
	8.3.31. CBL_IMP
	8.3.32. CBL_NIMP
	8.3.33. CBL_NOR
	8.3.34. CBL_NOT
	8.3.35. CBL_OC_NANOSLEEP
	8.3.36. CBL_OPEN_FILE
	8.3.37. CBL_OR
	8.3.38. CBL_READ_FILE
	8.3.39. CBL_RENAME_FILE
	8.3.40. CBL_TOLOWER
	8.3.41. CBL_TOUPPER
	8.3.42. CBL_WRITE_FILE
	8.3.43. CBL_XOR
	8.3.44. SYSTEM
	8.3.45. X"91"
	8.3.46. X"E4"
	8.3.47. X"E5"
	8.3.48. X"F4"
	8.3.49. X"F5"

	8.4. Binary Truncation

	9. Sub-Programming
	9.1. Subprogram Types
	9.2. Independent vs Contained vs Nested Subprograms
	9.3. Alternate Entry Points
	9.4. Dynamic vs Static Subprograms
	9.5. Subprogram Execution Flow
	9.5.1. Subroutine Execution Flow
	9.5.2. User-Defined Function Execution Flow

	9.6. Sharing Data Between Calling and Called Programs
	9.5.1. Subprogram Arguments
	9.6.1.1. Calling Program Considerations
	9.6.1.2. Called Program Considerations

	9.6.2. GLOBAL Data Items
	9.6.3. EXTERNAL Data Items

	9.7. Recursive Subprograms
	9.8. Combining GNU COBOL and C Programs
	9.9.1. GNU COBOL Run-Time Library Requirements
	9.9.2. String Allocation Differences Between GNU COBOL and C
	9.9.3. Matching C Data Types with GNU COBOL USAGEs
	9.9.4. GNU COBOL Main Programs CALLing C Subprograms
	9.9.5. C Main Programs Calling GNU COBOL Subprograms


	10. Programming Style Suggestions
	10.1. Marking Changes in Programs
	10.2. Data Item Coding and Naming Conventions
	10.3. Table Subscripting versus Table Indexing
	10.4. Copybook Naming Conventions and Usage
	10.5. PROCEDURE DIVISION Sections Versus Paragraphs
	10.6. COMPUTE Versus ADD-SUBTRACT-MULTIPLY-DIVIDE

	Appendix A - Glossary of Terms
	Appendix B - Reserved Word List
	Appendix C - GNU Free Documentation License
	Appendix D - Summary of Document Changes
	Index

