
240 CHAPTER 5. FEATURES AND EXTENSIONS

TEST-ASCII SECTION.

*Function: Discover if running Ascii or Ebcdic

*00.

evaluate space

when x’20’

set is-ascii to true

when x’40’

set is-ebdic to true

when other

set is-unknown to true

end-evaluate

*
exit section.

*---

TEST-64BIT SECTION.

*Function: Discover if running 32/64 bit

*00.

* Longer pointers in 64-bit architecture

if function length (addr) <= 4

set is-32-bit to true

else

set is-64-bit to true

end-if

*
exit section.

*---

TEST-ENDIAN SECTION.

*00.

* Number-bytes are shuffled in Big-Little endian

move 128 to byline

set address of byte to address of byline

if function ord(byte) > 0

set is-big-endian-yes to true

else

set is-big-endian-no to true

end-if

*
exit section.

*---

end program CBL_OC_DUMP.

5.4 Does OpenCOBOL support any SQL databases?

Yes. There is no embedded SQL in OpenCOBOL in terms of EXEC but there are at

least two usable CALL extensions, the EXEC potential of the Firebird gpre and the

tried and successful use of Oracle’s procob. There are as of March 12, 2011 quite a

few active developments for easing SQL engine access.

5.4. DOES OPENCOBOL SUPPORT ANY SQL DATABASES? 241

• as reported on http://opencobol.org the procob 10.2 Oracle pre-

processor produces code that compiles and executes just fine with OpenCOBOL

1.1 See note about data sizes and the binary-size: configuration below.

• A libdbi generic database access extension is also available. See cobdbi for

full details.

• Efforts toward providing a preprocessor for EXEC are underway.

• Jim Currey’s team [1] has kindly posted an ease-of-use MySQL preprocessing

layer. http://svn.wp0.org/add1/libraries/mysql4Windows4OpenCobol/

• Rumours of a potential Postgres layer have also been heard.

– Not a rumour anymore. Work on a nicely complete PostgreSQL binding

was posted by gchudyk to opencobol.org

• AND as a thing to watch for, one of the good people of the OpenCOBOL com-

muninity is writing a layer that converts READ and WRITE verbage to SQL

calls at run time. More on this as it progresses.

5.4.1 SQLite

There are workable prototypes for access to the SQLite3 shell at

• ocshell.c

• with a sample usage program at sqlscreen.cob

• and supporting documentation at sqlscreen.html

The SQLite extension comes in two flavours; a shell mode discussed above and a

direct API interface housed at ocsqlite.c

5.4.2 Oracle procob and binary data sizes

Details of the configuration setting for proper Oracle procob processing.

From Angus on opencobol.org

Hi

I had some trouble with Oracle procob 10.2 and OpenCobol 1.1 with std=mf.

For PIC S9(2) COMP, procob seems to use 2 bytes, and OpenCobol only one.

It doesn’t work well. It comes from the parameter binary-size in the

mf.conf, which seems to tell to opencobol the larger of comp type

I modify to binary-size: 2-4-8 and it works (same as the mvs.conf)

Our application works with Microfocus / Oracle, and microfocus use 2 bytes,

like Oracle. Perhaps because we have the mvs toggle

Except for this thing, opencobol and oracle work like a charm,

on a debian 32bit.

Regards,

Angus

242 CHAPTER 5. FEATURES AND EXTENSIONS

5.4.3 Sybase ASE

Another post from http://opencobol.org

Preliminary work with Sybase ASE 15 indicates that the output of the Sybase

precompiler cobpre64 and cobpre_r64) is compatible with OpenCOBOL.

Some fiddling with COB_LIBRARY_PATH and COB_LIBS was necessary to get ld (on

AIX 6.1) to see and resolve the externals in the generated code. It’s also

important to get the "bitness" of the various pieces in agreement, in the UNIX

case, 64-bit.

Works with UNIX (AIX), also Windows XP and 7 in 32-bit mode.

I’ll put together a writeup on the process when time permits.

Jim

5.4.4 DB2

Another post from http://opencobol.org

Re: AN IDEA FOR SQL SUPPORT IN OPENCOBOL

Embedded SQL with DB2 and the DB2 preprocessor (db2 prep)works fine with OpenCobol, too.

Cheers,

Juergen

5.4.5 PostgreSQL Sample

Nowhere near as complete as the binding that Gerald posted to opencobol.org the ex-

ample below was a starting point.

Note that the PostgreSQL runtime library is libpq, ending in q not g.

Listing 5.7: OpenCOBOL PostgreSQL connection test

OCOBOL*> ***

*> Author: Brian Tiffin

*> Date: 20091129

*> Purpose: PostgreSQL connection test

*> Tectonics: cobc -x -lpq pgcob.cob

*> ***
identification division.

program-id. pgcob.

data division.

working-storage section.

01 pgconn usage pointer.

01 pgres usage pointer.

01 resptr usage pointer.

01 resstr pic x(80) based.

01 result usage binary-long.

01 answer pic x(80).

*> ***

5.4. DOES OPENCOBOL SUPPORT ANY SQL DATABASES? 243

procedure division.

display "Before connect:" pgconn end-display

call "PQconnectdb" using

by reference "dbname = postgres" & x"00"

returning pgconn

end-call

display "After connect: " pgconn end-display

call "PQstatus" using by value pgconn returning result end-call

display "Status: " result end-display

call "PQuser" using by value pgconn returning resptr end-call

set address of resstr to resptr

string resstr delimited by x"00" into answer end-string

display "User: " function trim(answer) end-display

display "call PQexec" end-display

call "PQexec" using

by value pgconn

by reference "select version();" & x"00"

returning pgres

end-call

display pgres end-display

> Pull out a result. row 0, field 0 <
call "PQgetvalue" using

by value pgres

by value 0

by value 0

returning resptr

end-call

set address of resstr to resptr

string resstr delimited by x"00" into answer end-string

display "Version: " answer end-display

call "PQfinish" using by value pgconn returning null end-call

display "After finish: " pgconn end-display

call "PQstatus" using by value pgconn returning result end-call

display "Status: " result end-display

> this will now return garbage <
call "PQuser" using by value pgconn returning resptr end-call

set address of resstr to resptr

string resstr delimited by x"00" into answer end-string

display "User after: " function trim(answer) end-display

goback.

244 CHAPTER 5. FEATURES AND EXTENSIONS

end program pgcob.

Run from a user account that has default PostgreSQL credentials:

$ cobc -x -lpq pgcob.cob

$./pgcob

Before connect:0x00000000

After connect: 0x086713e8

Status: +0000000000

User: brian

call PQexec

0x08671a28

Version: PostgreSQL 8.3.7 on i486-pc-linux-gnu, compiled by GCC gcc-4.3.real (Debian 4.3.

After finish: 0x086713e8

Status: +0000000001

User after: PostgreSQL 8.3.7 on i486-pc-linux-gnu, compiled by GCC gcc-4.3.real (Debian 4.3.

Note that User after is not the valid answer, shown on purpose. The connection

had been closed and the status was correctly reported as non-zero, being an error, but

this example continued through as a demonstration.

5.5 Does OpenCOBOL support ISAM?

Yes. The official release used Berkeley DB, but there are also experimental config-

urations of the compiler that use VBISAM, CISAM, DISAM or other external han-

dlers. See What are the configure options available for building OpenCOBOL?3.2 for

more details about these options. The rest of this entry assumes the default Berkeley

database.

ISAM is an acronymn for Indexed Sequential Access Method.

OpenCOBOL has fairly full support of all standard specified ISAM compile and

runtime semantics.

For example:

Listing 5.8: OpenCOBOL ISAM sample

OCOBOL >>SOURCE FORMAT IS FIXED

*> ***

>< ================

>< indexing example

>< ================

>< :Author: Brian Tiffin

>< :Date: 17-Feb-2009

>< :Purpose: Fun with Indexed IO routines

>< :Tectonics: cobc -x indexing.cob

*> ***
identification division.

program-id. indexing.

environment division.

configuration section.

input-output section.

