0.00.5em

0.0.00.5em

0.0.0.00.5em

Oem

OpenCOBOL FAQ

Release 1.1

Brian Tiffin

October 19, 2013

10

11

12

13

14

15

16

1.1

1.2

1.3

14

1.5
5.1
52

1.6

1.7

1.8

1.9

1.10

1.11
11.1

1.12
12.1

1.13

1.14
14.1
14.2
14.3

1.15

1.16
16.1
16.2
16.3

What is OpenCOBOL?

What is COBOL?

How is OpenCOBOL licensed?

What platforms are supported by OpenCOBOL?

Are there pre-built OpenCOBOL packages

1.5.1 kiska.netrepository,
1.5.2 sourceforge

What is the most recent version of OpenCOBOL?
How complete is OpenCOBOL?
Will I be amazed by OpenCOBOL?
Who do I thank for OpenCOBOL?
Does OpenCOBOL include a Test Suite?

Does OpenCOBOL pass the NIST Test Suite?

1.11.1 What’smissing?

What about OpenCOBOL and benchmarks?

1.12.1 telcobilling

Can OpenCOBOL be used for CGI?

Does OpenCOBOL support a GUI?

L141 GTK o o
1142 Tcl/Tk oo oo oo oo e
1.143 Vala,WebKit.

Does OpenCOBOL have an IDE?

Can OpenCOBOL be used for production applications?

1.16.1 Nagasaki Prefecture
1.16.2 Stories from Currey Adkins
1.16.3 Public Accounting,

CONTENTS

9
11

13

................... 13
................... 13

15

17

19

21

23

25

................... 26

27

................... 27

29

31

................... 31
................... 31
................... 31

33

35

................... 35

17

18

19

20

21

22

23

24

25

26

1.17

1.18
18.1

1.19
19.1

1.20

1.21

1.22
22.1
222
223
22.4

1.23

1.24

1.25
25.1
25.2
253
254

1.26
26.1
26.2

Where can I get more information about COBOL?

Where can I get more information about OpenCOBOL?
1.18.1 The OpenCOBOL Programmer’s Guide,

Can I help out with the OpenCOBOL project?
1.19.1 Translation Efforts e

Is there an OpenCOBOL mailing list?
Where can I find more information about COBOL standards?

Can I see the OpenCOBOL source codes?
1.22.1 A ROBODOC eXperimento v vttt iiii ettt e e e
1.22.2 A Doxygen pass across the compiler sourcecode

What happened to opencobol.org?
What is COBOL in Latin?

Where can I find open COBOL source code?

1.25.1 on SourceForge L e e e e
1.25.2 addItocobol e
1.25.3 Stickleback e e
1.25.4 otherplaces o i i e e e e e e e e e e e e

Do you know any good jokes?
1.26.1 Really? e e e e e e e e e e

27 2 History

27.1
27.2
27.3
27.4

2.1 Whatis the history of COBOL? e e e e e
2.2 What are the Official COBOL Standards?
2.3 What is the development history of OpenCOBOL?
2.4 What is the current version of OpenCOBOL?

28 3 Using OpenCOBOL

28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9

3.1 Howdolinstall OpenCOBOL? e
3.2 What are the configure options available for building OpenCOBOL?
3.3 Does OpenCOBOL have any other dependencies?
3.4 How does the OpenCOBOL compiler work?
3.5 Whatiscobc? o o
3.6 Whatiscobcrun? L e e
3.7 Whatiscob-config? L e
3.8 What compiler options are supported? L.
3.9 What dialects are supported by OpenCOBOL?

28.10 3.10 What extensions are used if cobc is called with/without “-ext” for COPY
28.11 3.11 What are the OpenCOBOL compile time configuration files?
28.12 3.12 Does OpenCOBOL work withmake?,
28.13 3.13 Do you have a reasonable source code skeleton for OpenCOBOL?
28.14 3.14 Can OpenCOBOL be used to write command line stdin, stdout filters?
28.15 3.15 How do you print to printers with OpenCOBOL?
28.16 3.16 Can I run background processes using OpenCOBOL?
28.17 3.17 Is there OpenCOBOL API documentation?

39

41
41

43
43

45

47

49
49
49
49
49

51

53

55
55
55
56
56

57
58
58

61
61
62
62
63

65
65
68

29 4 Reserved Words

29.1 4.1
29.2 42
293 43
294 44
29.5 45
29.6 4.6
29.7 4.7
29.8 4.8
29.9 49

What are the OpenCOBOL RESERVED WORDS?

What is the difference between the LENGTH verb and FUNCTION LENGTH?
What STOCK CALL LIBRARY does OpenCOBOL offer?
What are the XF4, XF5, and X91 routines?
What is CBL_OC_NANOSLEEP OpenCOBOL library routine?
How do youuse CSJUSTIFY? it
What preprocessor directives are supported by OpenCOBOL?

30 5 Features and extensions

30.1 5.1

302 5.2

303 5.3

304 54

305 55

30.6 5.6

30.7 5.7

30.8 5.8

309 59

30.10 5.10
30.11 5.11
30.12 5.12
30.13 5.13
30.14 5.14
30.15 5.15
30.16 5.16
30.17 5.17
30.18 5.18
30.19 5.19
30.20 5.20
30.21 5.21
30.22 5.22
30.23 5.23
30.24 5.24
30.25 5.25
30.26 5.26
30.27 5.27
30.28 5.28
30.29 5.29
30.30 5.30
30.31 5.31
30.32 5.32
30.33 5.33
30.34 5.34
30.35 5.35
30.36 5.36
30.37 5.37
30.38 5.38

How do I'use OpenCOBOL for CGI?
Whatisocdoc?

Does OpenCOBOL support any SQL databases?
Does OpenCOBOL support ISAM?
Does OpenCOBOL support modules?
Whatis COB_PRE_LOAD?
What is the OpenCOBOL LINKAGE SECTION for?

Does OpenCOBOL support Message Queues?
Can OpenCOBOL interface with Lua?

Can OpenCOBOL use JavaScript?
Can OpenCOBOL interface with Scheme?

Can OpenCOBOL interface with S-Lang?
Can the GNAT Programming Studio be used with OpenCOBOL?
Does OpenCOBOL support SCREEN SECTION?

What about debugging OpenCOBOL programs?
Is there a C interface to OpenCOBOL?
What are some idioms for dealing with C char * data from OpenCOBOL? . .

Does OpenCOBOL implement PICTURE78?
Does OpenCOBOL implement CONSTANT?

30.39 5.39
30.40 5.40
30.41 5.41
3042 5.42
30.43 5.43
30.44 5.44
30.45 5.45
30.46 5.46
30.47 5.47
30.48 5.48
30.49 5.49
30.50 5.50
30.51 5.51
30.52 5.52
30.53 5.53
30.54 5.54
30.55 5.55
30.56 5.56
30.57 5.57
30.58 5.58
30.59 5.59
30.60 5.60
30.61 5.61
30.62 5.62
30.63 5.63
30.64 5.64
30.65 5.65
30.66 5.66
30.67 5.67
30.68 5.68
30.69 5.69
30.70 5.70
30.71 5.71
30.72 5.72
30.73 5.73
30.74 5.74
30.75 5.75

31 6 Notes

31.1 6.1
312 6.2
313 63
314 64
31,5 65
31.6 6.6
31.7 6.7
31.8 6.8
319 69
31.10 6.10
31.11 6.11
31.12 6.12
31.13 6.13
31.14 6.14
31.15 6.15

Does OpenCOBOL support continuation lines? 377
Does OpenCOBOL support string concatenation? v v v v v v v v e v v v 378
Does OpenCOBOL support D indicator debug lines? 379
Does OpenCOBOL support mixed case source code? 379
What is the shortest OpenCOBOL program? 380
What is the shortest Hello World program in OpenCOBOL? 380
How do I get those nifty sequential sequence numbers in a source file? 381
Is there a way to count trailing spaces in data fields using OpenCOBOL? 381
Is there a way to left justify an edited numeric field? 382
Is there a way to detemermine when OpenCOBOL is running ASCII or EBCDIC? 383
Is there a way to determine when OpenCOBOL is running on 32 or 64 bits? 383
Does OpenCOBOL support recursion? v v v v v v v v ettt e e e e 384
Does OpenCOBOL capture arithmetic overflow? 385
Can OpenCOBOL be used for plotting? i 386
Does OpenCOBOL support the GIMP ToolKit, GTK+? 390
What is 0CSOrt? L L e e e 403
Whenis Easter? 404
Does Vim support OpenCOBOL? e e e e e 413
Whatis W3m?o e e e 414
Whatis COB_LIBRARY_PATH? o . 416
Can OpenCOBOL interface with Rexx? 416
Does OpenCOBOL support table SEARCH and SORT? 422
Can OpenCOBOL handle named pipes? i v v ittt e e e e 426
Can OpenCOBOL interface with ROOT/CINT? 427
Can OpenCOBOL be used to serve HTTP? 430
Is there a good SCM tool for OpenCOBOL? 433
Does OpenCOBOL interface with FORTRAN? 435
Does OpenCOBOL interface with APL? 436
Does OpenCOBOL interface withJ? e 436
What is COBOLUnIt? o e e e e e 438
Can OpenCOBOL interface with Gambas? 439
Does OpenCOBOL work with LLVM? o o ... 439
Does OpenCOBOL interface with Python? 441
Can OpenCOBOL interface with Forth? 444
Can OpenCOBOL interface with Shakespeare? 450
Can OpenCOBOL interface with Ruby? 452
Can OpenCOBOL interface with Pure? 453
457

big-endian L. 457
little-endian L L e e 458
ASCIL . . . 458
currency symbol L L e e e e e e e e e e e 458
DSO . . 458
BITNO . & v v v v o et e e e e e e e e e e e 458
gdb L 459
GMP . 459
ISAM . . 459
line sequential L. e e e e e e e e e 460
APT . 460
ROBODocC Support e 460
CObOLVIM L e e 471
make check listing 476
ABL . 485

31.16 6.16 TECIONMICS . . v v v v v o e e e e e e e e e e e e e e e e e 486

31.17 6.17 Setting Locale e e e e e e e 486
3118 6.18 GNU e e 486
31.19 6.19 Performing FOREVER? 486
31.20 6.20 POSIX o e e 495
31.21 6.21 BITWISE e e e e 495
32 7 Authors 509
33 8 Maintainers and Contributors 511
34 9 GNU Free Documentation License 513
35 10 ChangeLog 521
Bibliography 525

vi

OpenCOBOL FAQ, Release 1.1

penCOBOL

This is a 1.1 final of the OpenCOBOL FAQ. Sourced at ocfaq.rst. Courtesty of ReStructuredText, Sphinx and
Pygments.

ocfaq.pdf is also available, using rst 21latex and then pdflatex.

A Sphinx generated Portable Document Format version is stored http://opencobol.add1tocobol.com/OpenCOBOLFAQ.
This FAQ is more than a FAQ and less than a FAQ.

Website favicon by Mark James, help.png from the FAMFAMFAM Silk icon set.
http://creativecommons.org/licenses/by/2.5/

“COBOL Warriors” image Copyright © 2008 Robert Saczkowski. Banner courtesy of the GIMP, Copyright
© 2008-2013 Brian Tiffin and both are licensed under Creative Commons Attribution-Share Alike 2.0 Generic
License http://creativecommons.org/licenses/by-sa/2.0/

OpenCOBOL has been renamed to GNU Cobol and is now proudly a GNU free software project.
http://savannah.gnu.org/projects/gnucobol

Status

Authors
Brian Tiffin [btiffin]

Answers, quotes and contributions:
John Ellis [jrls_swla], Vincent Coen, Jim Currey, Bill Klein [wmklein],
Ganymede, Simon Sobisch [human], Rildo Pragana, Sergey Kashyrin,
Federico Priolo, Frank Swarbrick, Angus, DamonH, Parhs, Gerald Chudyk

Compiler by:
Roger While [Roger],
Keisuke Nishida [Keisuke],
(with the invaluable assistance of many others)

Special credits to
Gary Cutler author of the OpenCOBOL Programmers Guide
Joseph James Frantz for hosting and advocacy [aoirthoir]

Version 1.1, October 19th, 2013
Status Final. Superceded by GNU Cobol
Copyright Copyright © 2008-2013 Brian Tiffin

License Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of
the license is included in the section entitled GNU Free Documentation License.

ChangeLog Changelog

CONTENTS 1

http://opencobol.org/
http://opencobol.add1tocobol.com/ocfaq.rst
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://pygments.org/
http://opencobol.add1tocobol.com/ocfaq.pdf
http://opencobol.add1tocobol.com/OpenCOBOLFAQ.pdf
http://creativecommons.org/licenses/by/2.5/
http://www.gimp.org
http://creativecommons.org/licenses/by-sa/2.0/
http://savannah.gnu.org/projects/gnucobol
http://opencobol.add1tocobol.com/OpenCOBOL%20Programmers%20Guide.pdf

OpenCOBOL FAQ, Release 1.1

Note: Regarding COBOL Standards, Official COBOL Standards: There are many references to standards in this
document. Very few of them are technically correct references. Apologies to all the hard working men and women of
the technical committees for this unintentional slight. For specific details on what wordings should be used please see
What are the Official COBOL Standards?

2 CONTENTS

OpenCOBOL FAQ, Release 1.1

OpenCOBOL

Contents

* 1 OpenCOBOL FAQ
— 1.1 What is OpenCOBOL?
- 1.2 What is COBOL?
— 1.3 How is OpenCOBOL licensed?
— 1.4 What platforms are supported by OpenCOBOL?
1.5 Are there pre-built OpenCOBOL packages
1.6 What is the most recent version of OpenCOBOL?
— 1.7 How complete is OpenCOBOL?
1.8 Will I be amazed by OpenCOBOL?
1.9 Who do I thank for OpenCOBOL?
— 1.10 Does OpenCOBOL include a Test Suite?
— 1.11 Does OpenCOBOL pass the NIST Test Suite?
— 1.12 What about OpenCOBOL and benchmarks?
— 1.13 Can OpenCOBOL be used for CGI?
- 1.14 Does OpenCOBOL support a GUI?
— 1.15 Does OpenCOBOL have an IDE?
— 1.16 Can OpenCOBOL be used for production applications?
— 1.17 Where can I get more information about COBOL?
— 1.18 Where can I get more information about OpenCOBOL?
— 1.19 Can I help out with the OpenCOBOL project?
— 1.20 Is there an OpenCOBOL mailing list?
— 1.21 Where can I find more information about COBOL standards?
— 1.22 Can I see the OpenCOBOL source codes?
— 1.23 What happened to opencobol.org?
- 1.24 What is COBOL in Latin?
1.25 Where can I find open COBOL source code?
— 1.26 Do you know any good jokes?
e 2 History
— 2.1 What is the history of COBOL?
— 2.2 What are the Official COBOL Standards?
— 2.3 What is the development history of OpenCOBOL?
— 2.4 What is the current version of OpenCOBOL?
* 3 Using OpenCOBOL
— 3.1 How do I install OpenCOBOL?
— 3.2 What are the configure options available for building OpenCOBOL?
— 3.3 Does OpenCOBOL have any other dependencies?
— 3.4 How does the OpenCOBOL compiler work?
— 3.5 What is cobc?
3.6 What is cobcrun?
3.7 What is cob-config?
— 3.8 What compiler options are supported?
3.9 What dialects are supported by OpenCOBOL?
3.10 What extensions are used if cobc is called with/without “-ext” for COPY
— 3.11 What are the OpenCOBOL compile time configuration files?
— 3.12 Does OpenCOBOL work with make?
3.13 Do you have a reasonable source code skeleton for OpenCOBOL?
— 3.14 Can OpenCOBOL be used to write command line stdin, stdout filters?
3.15 How do you print to printers with OpenCOBOL?
— 3.16 Can I run background processes using OpenCOBOL?
— 3.17 Is there OpenCOBOL API documentation?
- 3.18 How do I use LD_RUN_PATH with OpenCOBOL?

= 3.19 What GNU build tool options are available when building OpenCOBOL?
ONTENTS 3.20 Why don’t I see any output from my OpenCOBOL program?
* 4 Reserved Words
— 4.1 What are the OpenCOBOL RESERVED WORDS?
— 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs?

OpenCOBOL FAQ, Release 1.1

OpenCOBOL FAQ

4 CONTENTS

CHAPTER
ONE

1.1 WHAT IS OPENCOBOL?

OpenCOBOL is an open-source COBOL compiler. OpenCOBOL implements a substantial part of the COBOL 85 and
COBOL 2002 standards, as well as many extensions of the existent COBOL compilers.

OpenCOBOL translates COBOL into C and compiles the translated code using the native C compiler. You can build
your COBOL programs on various platforms, including Unix/Linux, Mac OS X, and Microsoft Windows.

The most excellent OpenCOBOL Programmer’s Guide can be found at OpenCOBOL Programmers Guide.

http://opencobol.org/
http://en.wikipedia.org/wiki/COBOL
http://www.cobolstandards.com/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28805
http://opencobol.add1tocobol.com/OpenCOBOL%20Programmers%20Guide.pdf

OpenCOBOL FAQ, Release 1.1

6 Chapter 1. 1.1 What is OpenCOBOL?

CHAPTER
TWO

1.2 WHAT IS COBOL?

COBOL is an acronym for COmmon Business Oriented Language. This author has always thought of it as “Common

Business” Oriented more than Common “Business Oriented”, but that emphasis is perhaps up to the reader’s point of
view.

http://en.wikipedia.org/wiki/COBOL

OpenCOBOL FAQ, Release 1.1

8 Chapter 2. 1.2 What is COBOL?

CHAPTER
THREE

1.3 HOW IS OPENCOBOL LICENSED?

The compiler is licensed under GNU General Public License.
The run-time library is licensed under GNU Lesser General Public License.
All source codes are copyright by the respective authors.

What that means, roughly, is:

You are allowed to write OpenCOBOL programs that use the libcob run time
library however you like. Closed, proprietary, commercial use is allowed
and encouraged. You can ship programs in binary form as you wish.

Modifications to the compiler itself, MUST provide access to source code and
be licensed under the GNU GPL. This ensures that no one is allowed to call
modified sources their own, nor deny anyone else the chance to copy and
re-distribute the compiler source code, including your local changes.

Please note: any verion of the compiler that is configured to use Berkeley DB
beyond version 1.85 must abide by the Oracle license and sources of the
COBOL programs that use libdb must be shipped with any binaries.

OpenCOBOL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html

OpenCOBOL FAQ, Release 1.1

10 Chapter 3. 1.3 How is OpenCOBOL licensed?

CHAPTER
FOUR

OpenCOBOL 1.0 the current official release version, hosted on SourceForge.net, compiles on:
e All 32-bit MS Windows (95/98/NT/2000/XP)
» All POSIX (Linux/BSD/UNIX-like OSes)

1.4 WHAT PLATFORMS ARE
SUPPORTED BY OPENCOBOL?

0S/X

OpenCOBOL 1.1, has been built on

MS Windows native

MS Windows with Cygwin
GNU/Linux

POSIX Systems including OpenSolaris
0OS/X

AS/400

HP Integrity HPUX 11.23

RS600 AIX 5

390 Mainframe z/OS OMVS/USS

others

11

http://opencobol.org/modules/mydownloads/singlefile.php?cid=1&lid=3
http://www.opencobol.org/modules/mydownloads/singlefile.php?cid=1&lid=2

OpenCOBOL FAQ, Release 1.1

12 Chapter 4. 1.4 What platforms are supported by OpenCOBOL?

CHAPTER
FIVE

1.5 ARE THERE PRE-BUILT
OPENCOBOL PACKAGES

Yes. Debian APT, and RPM packages exist. Packages for NetBSD. Many. Google opencobol packages for any late
breaking news.

A Debian Advanced Package Tool binary package exists for OpenCOBOL 1.0 as open—cobol and lists dependencies
of

* libc6 (>=2.7-1),

* libcobl,

e libcobl-dev (= 1.0-1),

* libdb4.5 (>=4.5.20-3),

¢ libdb4.5-dev,

¢ libgmp3-dey,

¢ libgmp3c2,

* libltd13-dev,

e libncurses5 (>= 5.6+20071006-3)

Thanks to the gracious efforts of Bart Martens, bartm on Debian’s .org domain.

5.1 1.5.1 Kkiska.net repository

Also check out kiska.net for binary builds on various platforms. Thanks to Sergey Kashyrin.

5.2 1.5.2 sourceforge

There are OpenCOBOL links at http://cobol.sourceforge.net

In particular, http://sourceforge.net/projects/cobol/files/open-cobol/ can come in handy, with sources and MinGW
binaries at a mininum. Maybe more as time goes on.

13

http://www.kiska.net/opencobol/1.1/
http://cobol.sourceforge.net
http://sourceforge.net/projects/cobol/files/open-cobol/

OpenCOBOL FAQ, Release 1.1

14 Chapter 5. 1.5 Are there pre-built OpenCOBOL packages

CHAPTER
SIX

1.6 WHAT IS THE MOST RECENT
VERSION OF OPENCOBOL?

See What is the current version of OpenCOBOL?

15

OpenCOBOL FAQ, Release 1.1

16 Chapter 6. 1.6 What is the most recent version of OpenCOBOL?

CHAPTER
SEVEN

1.7 HOW COMPLETE IS OPENCOBOL?

OpenCOBOL 1.0 implements a substantial portion of COBOL 85, supports many of the advances and clarifications
of COBOL 2002, and includes many extensions in common use from Micro Focus COBOL, ACUCOBOL and other
existent compilers.

OpenCOBOL 1.1 implements a more substantial portion of the COBOL 85 Dialect, COBOL 2002 and a growing
number of vendor extensions. Some proposed COBOL 20xx features have also been implemented. Compatibility
support includes:

* MF for Micro Focus

* IBM for IBM compatibility
* MVS

* BS2000

OpenCOBOL also includes some advanced features allowing source code such as
CALL "cfunction" USING BY REFERENCE ADDRESS OF VAR-IN-LINKAGE-SECTION.

Passing the equivalent of char**, pointer to pointer to char. Just as a small example of the level of coverage and
flexibility provided by OpenCOBOL.

DISPLAY
FUNCTION UPPER-CASE (
FUNCTION SUBSTITUTE (
"This is the orginal string.";
"original"; "new"; "string"; "text"
)
)
END-DISPLAY

To allow for substitution of mixed length strings, something not normally so easy in COBOL. The above will output:
THIS IS THE NEW TEXT.

Note: While OpenCOBOL can be held to a high standard of quality and robustness, the authors DO NOT claim it to
be a “Standard Conforming” implementation of COBOL.

17

http://opencobol.org/modules/mydownloads/singlefile.php?cid=1&lid=3
http://www.cobolstandards.com/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28805
http://www.opencobol.org/modules/mydownloads/singlefile.php?cid=1&lid=2
http://www.cobolstandards.com/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28805

OpenCOBOL FAQ, Release 1.1

18 Chapter 7. 1.7 How complete is OpenCOBOL?

CHAPTER
EIGHT

1.8 WILL I BE AMAZED BY
OPENCOBOL?

This author believes so. For an open source implementation of COBOL, OpenCOBOL may surprise you in the depth
and breadth of its COBOL feature support, usability and robustness.

COBOL has historically been very secretive and low key. Its domain of use being very secretive and low key. COBOL
programmers rarely work on systems that would allow for open internet chat regarding details, let alone existence.
It is a tribute to the professionalism of these programmers that most people rarely, if ever, hear the name COBOL, a
programming language with billions of lines of source code compiled and in production around the world over half a
century.

OpenCOBOL is poised to change that historic trend, and allow for the long overdue sharing of wisdom that legions
of COBOL developers have accumulated over 50 years of success and failure. The OpenCOBOL conversation may
be more POSIX than mainframe, but there is now room to share, critique and pass on the hard lessons learned from
critical systems computing. Given that millions of COBOL programmers kept billions of lines of COBOL source
out of the press, surely some of the wisdom can be passed on in a way that keeps all the secrets secret while curious
developers are exposed to COBOL outside the vaults.

19

OpenCOBOL FAQ, Release 1.1

20 Chapter 8. 1.8 Will | be amazed by OpenCOBOL?

CHAPTER
NINE

1.9 WHO DO I THANK FOR
OPENCOBOL?

Many people. In particular Keisuke Nishida and Roger While.

See the THANKS file in the source code archive for more names of people that have worked on the OpenCOBOL
project. Roger points out that the list is woefully incomplete. To quote:
The OC project would not have been where it is today without the

significant/enormous help from many-many persons. The THANKS
file does not even do justice to this.

21

OpenCOBOL FAQ, Release 1.1

22 Chapter 9. 1.9 Who do | thank for OpenCOBOL?

CHAPTER
TEN

1.10 DOES OPENCOBOL INCLUDE A
TEST SUITE?

Why yes it does. 74 syntax tests, 170 coverage tests, and 16 data representation tests in the February 2009 pre-release.
88 syntax, 253 coverage, and 22 data tests in a 2010 cut.

From the development tarball:

$ make check

will evaluate and report on the test suite. See make check listing for a current output listing of a test run.

23

OpenCOBOL FAQ, Release 1.1

24 Chapter 10. 1.10 Does OpenCOBOL include a Test Suite?

CHAPTER
ELEVEN

1.11 DOES OPENCOBOL PASS THE
NIST TEST SUITE?

The National Institute of Standards and Technology, NIST, maintains a COBOL 85 implementation verification suite
of tests. An archive of the tests can be found at

http://www.itl.nist.gov/div897/ctg/cobol_form.htm

OpenCOBOL passes many of the tests included in the NIST sponsored COBOL 85 test suite. While it passes over
9000 of the tests, OpenCOBOL does not claim conformance to any level of COBOL Standard.

Instructions for use of the NIST suite is included in the build archive under:
tests/cobol85/README
Basically, it is a simple uncompress and make then sit back and relax. The scripts run OpenCOBOL over some

374 programs/modules and includes thousands of test passes.
Test Modules

Core tests:

NC - COBOL nucleus tests
SM — COPY sentence tests
IC - CALL sentence tests

File I-O tests:

SQ - Sequential file I-O tests
RL - Relative file I-O tests
IX - Indexed file I-O tests

ST — SORT sentence tests

Advanced facilities:

IF - Intrinsic Function tests
With the addition of GLOBAL support, the OpenCOBOL 1.1 pre-release fails none of the attempted tests.

The summary.log from a run in February 2009:

—————— Directory Information —--—-——-—-—— —-—— Total Tests Information —--—-
Module Programs Executed Error Crash Pass Fail Deleted Inspect Total

NC 92 92 0 0 4363 0 6 11 4380
SM 15 15 0 0 290 0 3 1 294
IC 24 24 0 0 246 0 4 0 250

25

http://www.itl.nist.gov/div897/ctg/cobol_form.htm

OpenCOBOL FAQ, Release 1.1

SQ 81 81 0 0 512 0 6 81 599
RL 32 32 0 0 1827 0 5 0 1832
IX 39 39 0 0 507 0 1 0 508
ST 39 39 0 0 278 0 0 0 278
SG 5 5 0 0 193 0 0 0 193
OB 5 5 0 0 16 0 0 0 16
IF 42 42 0 0 732 0 0 0 732
Total 374 374 0 0 8964 0 25 93 9082

11.1 1.11.1 What’s missing?

OpenCOBOL 1.1 does not include support for, or limits tests within the:

Advanced facilities:

RW — REPORT SECTION tests

CM - COMMUNICATION SECTION tests
SG — Segment tests

DB - Debugging facilities tests
OB - Obsolete facilities tests

sections.

26 Chapter 11. 1.11 Does OpenCOBOL pass the NIST Test Suite?

CHAPTER
TWELVE

1.12 WHAT ABOUT OPENCOBOL AND
BENCHMARKS?

COBOL has a legacy dating back to 1959. Many features of the COBOL standard provide defaults more suitable to
mainframe architecture than the personal computer a 3rd millennium OpenCOBOL developer will likely be using.

OpenCOBOL, by default, generates code optimized for big-endian hardware. Fairly dramatic speed improvements on
Intel architecture can come from simple USAGE IS COMPUTATIONAL-S5 clauses in the DATA DIVISION.

12.1 1.12.1 telco billing

There is a benchmark posted at http://speleotrove.com/decimal/telco.html and thanks to Bill Klein [wmklein], there is
a COBOL entry. From the source code at http://home.comcast.net/~wmklein/DOX/TELCO.txt you should only have
to modify
Input-Output Section.
File—-Control.
Select InFile Assign to
"C:\exponl80.leb".

Select OutFile Assign to
"C:\TELCO.TXT"
Line
Sequential.

to point to the correct filename for your local copy of the benchmark million entry file and a suitable OutFile name for
a clean compile and run.

In summary, the benchmark reads a large input file containing a suitably distributed list of telephone call durations
(each in seconds). For each call, a charging rate is chosen and the price calculated and rounded to hundreths. One or
two taxes are applied (depending on the type of call) and the total cost is converted to a character string and written to
an output file. Running totals of the total cost and taxes are kept; these are displayed at the end of the benchmark for
verification.

A run on an older pentium 4 and the million number file gave:

$ echo N’ | time ./telco

Enter N’ to skip calculations:

0.46user 1.08system 0:01.6lelapsed 96%CPU (Oavgtext+0avgdata Omaxresident)k
Oinputs+134776outputs (Omajor+345minor)pagefaults Oswaps

S echo '’ | time ./telco

Enter 'N’ to skip calculations:

11.37user l.41lsystem 0:12.95elapsed 98%CPU (Oavgtext+0avgdata Omaxresident)k
24inputs+134776outputs (Omajor+360minor)pagefaults Oswaps

27

http://speleotrove.com/decimal/telco.html
http://home.comcast.net/~wmklein/DOX/TELCO.txt

OpenCOBOL FAQ, Release 1.1

$ tail TELCO.TXT

35 D | 0.31 0.02 0.01 | 0.34

193 D | 1.73 0.11 0.05 | 1.89
792 L | 1.03 0.06 \ 1.09
661 D | 5.91 0.39 0.20 | 6.50

44 L | 0.06 0.00 \ 0.06

262 L 0.34 0.02 \ 0.36
_____________ +__+_____________
Totals: \ 922,067.11 57,628.30 25,042.17 | 1,004,737.58

Start-Time:09:37:23.93
End-Time:09:37:36.83

A more recent 1.1 pre-release, on a dual quad-core Xeon box running Linux SLES 10 64-bit:

35 D | 0.31 0.02 0.01 | 0.34

193 D | 1.73 0.11 0.05 | 1.89
792 L | 1.03 0.06 \ 1.09
661 D | 5.91 0.39 0.20 | 6.50

44 L | 0.06 0.00 \ 0.06

262 L | 0.34 0.02 \ 0.36
,,,,,,,,,,,,, SO
Totals: \ 922,067.11 57,628.30 25,042.17 | 1,004,737.58

Start-Time:21:40:48.52
End-Time:21:40:51.92

3.4 seconds cache-hot. Not bad.

28 Chapter 12. 1.12 What about OpenCOBOL and benchmarks?

CHAPTER
THIRTEEN

1.13 CAN OPENCOBOL BE USED FOR
CGI?

Yes. Through standard IO redirection and the extended ACCEPT ... FROM ENVIRONMENT ... feature,
OpenCOBOL is more than capable of supporting advanced Common Gateway Interface programming. See How
do I use OpenCOBOL for CGI? for a sample Hello Web program.

For those developers looking to serve OpenCOBOL applications on hosted systems and no super user privileges, see
How do I'use LD_RUN_PATH with OpenCOBOL? for some pointers.

29

OpenCOBOL FAQ, Release 1.1

30 Chapter 13. 1.13 Can OpenCOBOL be used for CGI?

CHAPTER
FOURTEEN

1.14 DOES OPENCOBOL SUPPORT A
GUI?

Yes, but not out of the box. There is not currently (February 2013) anything that ships with the product.

Third party extensions for Tcl/Tk and bindings for GTK+ do allow for graphical user interfaces. See Does Open-
COBOL support the GIMP ToolKit, GTK+? and Can OpenCOBOL interface with Tcl/Tk?.

141 1.141 GTK

The expectation is that GTK+ will be completely bound as a callable interface. That is currently (February 2013) not
the case, with perhaps 2% of the GTK+ functionality wrapped (but with that 2%, fully functional graphical interfaces
are possible).

14.2 1.14.2 Tecl/Tk

The Tcl/Tk engine is already quite complete but does place most of the burden of GUI development squarely on the
Tk side.

14.3 1.14.3 Vala, WebKit

Vala will also open up a quick path to GUI development with OpenCOBOL. There is already an embedded web
browser using the Vala bindings to WebKit. See Can OpenCOBOL interface with Vala? for a lot more details.

31

OpenCOBOL FAQ, Release 1.1

32 Chapter 14. 1.14 Does OpenCOBOL support a GUI?

CHAPTER
FIFTEEN

1.15 DOES OPENCOBOL HAVE AN
IDE?

Yes and no. There is no IDE that ships with the product. The add1tocobol team is currently (February 2013) at work
creating extensions for the GNAT Programming Studio. This is working out quite nicely and will likely be the IDE of
choice for the add1tocobol OpenCOBOL developers.

See Can the GNAT Programming Studio be used with OpenCOBOL? for more information.
There is also the Eclipse IDE and a major project for integrating COBOL but this will not be OpenCOBOL specific.

Many text editors have systems in place for invoking compilers. SciTE, Crimson Editor, vi and emacs to name but a
few of the hundreds that support edit/compile/test development cycles.

See Does OpenCOBOL work with make? for some information on command line compile assistance.

33

OpenCOBOL FAQ, Release 1.1

34 Chapter 15. 1.15 Does OpenCOBOL have an IDE?

CHAPTER
SIXTEEN

1.16 CAN OPENCOBOL BE USED FOR
PRODUCTION APPLICATIONS?

Depends. OpenCOBOL is still in active development. Feature coverage is growing, and while the current implemen-
tation offers great coverage, applicability to any given situation would need to analyzed and risks evaluated before
commitment to production use.

The licensing allows for commercial use, but OpenCOBOL also ships with notice of indemnity, meaning that there
are no guarantees when using OpenCOBOL, directly or indirectly.

There may be a time when commercial support of OpenCOBOL is offered, but at the time of writing no known offering
exists.

Search google just in case!
And yes, OpenCOBOL is used in production environments.

From [Roger]:

Incidentally, OC has been (and still is) used in production

environments since 2005.

(This includes projects that I personally worked on plus other
projects reported to me; these worldwide)

The OC project would not have been where it is today without the

significant/enormous help from many-many persons. The THANKS
file does not even do justice to this.

16.1 1.16.1 Nagasaki Prefecture

Reported on opencobol.org, The Nagasaki Prefecture, population 1.44 million and 30,000 civil employees is using
OpenCOBOL in support of its payroll management system. A team of 3 ported and maintain a suite of 200 COBOL
programs, mingled with Perl and specialized reporting modules, running on Nec PX9000 big iron and Xeon servers.

16.2 1.16.2 Stories from Currey Adkins

Another post from opencobol.org in April 2009, reprinted with permission.
OpenCOBOL viability

For those concerned about the viability of OpenCOBOL in a production
environment, I offer our situation as an example.

35

http://opencobol.org/
http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

We started loading OpenCOBOL to a Debian (Etch) Parisc box in mid March. With
some valuable help from this forum we were up and running in a few days.

We then explored the CGI capabilities and moved our home-brewed CGI handler
(written in HP3000 Cobol) over. We ended up changing only a few lines.

As Marcr’s post indicates, we found a MySqgl wrapper and made some minor
changes to it.

Starting the second week in April we were in full development of new systems
for commercial use.

Please accept our congratulations to the community and our gratitude for the
help from the forum.

jimc
Another reference by Jim, some 6 months later in February 2010, which seems to be enough time for any rose-coloured

glass effect to have worn off if it was going to.

For our part, the answer is yes.

You may want to read an earlier thread about this. Search on OpenCOBOL
viability.

Having worked with Cobol since the 1960’s, my mindset is that no
conversion is automatic.

In our case we are not converting from a specific dialect like MF,
but instead are either writing entirely new systems or are changing
features (making them web based for example) in older systems.

There are some identified failures in OpenCOBOL execution that have
been discussed in this forum. We have found them to be inconsequential
and simply work around them. Then again I do not remember working with
a bug-free compiler.

Our environment is Debian Linux, OpenCOBOL 1.1, MySQL, ISAM (the one
provided with the 1.1 prerelease), HTML (via CGI) and a new PreProcessor
to relieve the tedium of writing SQL statements.

If you have some "nay sayers" in your organization and would like some
support I will be happy to speak with them.

jimc

I hope people don’t mind a little advertising in this FAQ, but Jim has done a lot for OpenCOBOL and his company is
a community minded company. http://www.curreyadkins.com

16.3 1.16.3 Public Accounting

Another from opencobol.org

As part of an initial study of COBOL compilers for finding an alternative to
that of MicroFocus, OpenCobol was selected to develop a model for the
compilation of a public accounting package (1.5 million lines).

The model had to validate this choice, including with the use of sequential

36 Chapter 16. 1.16 Can OpenCOBOL be used for production applications?

http://www.curreyadkins.com

OpenCOBOL FAQ, Release 1.1

indexed files, with OpenCobol version 0.33 and small adjustments to the COBOL
code (mainly using reserved keywords and keywords not implemented) .

After the functional qualification of this model, the software is in production
since July, 2011 under Linux RedHat Enterprise Linux 4 Advanced Server 32-bit
virtualized environment VMWARE ESX - 4 GB of RAM - processor dual AMD Opteron
6176 (tm).

The software package is deployed for 650 users whose 150 connected
simultaneously, at the peaks of activity and in comparison with the previous
platform on AIX 4.3 and MicroFocus, performance gain is in a report, at best,
1-10 (batch of exploitation of entrustment), at worst, 1 to 4 (batch of
recalculation) .

With the rise of the package version, a functional validation is in progress
since September 2011 with OpenCobol version 1.1 under Linux RedHat Enterprise
Linux 5 Advanced Server 64-bit and dual Quad-Core AMD Opteron 8356 (tm)
processor. No loss of performance related to the new version of OpenCobol (but
related to the package of 10% to 20% loss) after campaign in the two
environments.

16.3. 1.16.3 Public Accounting

37

OpenCOBOL FAQ, Release 1.1

38 Chapter 16. 1.16 Can OpenCOBOL be used for production applications?

CHAPTER
SEVENTEEN

1.17 WHERE CAN I GET MORE
INFORMATION ABOUT COBOL?

The COBOL FAQ by William M Klein is a great place to start.

A google of the search words “COBOL” or “OpenCOBOL” are bound to lead to enough days worth of reading of
in-depth articles, opinions and technical information to satisfy the greatest of curiosities.

The COBUG site COBOL User Groups is also a wonderful resource for OpenCOBOL developers.

This is highly subject to change, but currently (February 2013) a Draft of 20xx is available at
http://www.cobolstandard.info/j4/index.htm and in particular http://www.cobolstandard.info/j4/files/std.zip

Note: While OpenCOBOL can be held to a high standard of quality and robustness, the authors DO NOT claim it to
be a “Standard Conforming” implementation of COBOL.

39

http://home.comcast.net/~wmklein/FAQ/COBOLFAQ.htm
http://www.cobug.com/
http://www.cobolstandard.info/j4/index.htm
http://www.cobolstandard.info/j4/files/std.zip

OpenCOBOL FAQ, Release 1.1

40 Chapter 17. 1.17 Where can | get more information about COBOL?

CHAPTER
EIGHTEEN

1.18 WHERE CAN | GET MORE
INFORMATION ABOUT OPENCOBOL?

Current project activities are at SourceForge. The opencobol.org website is probably a good place search as well.
addltocobol.com is a place to find out about a few of the fan initiatives. (An older archive has been stashed at
http://oldsite.add 1 tocobol.com)

18.1 1.18.1 The OpenCOBOL Programmer’s Guide

A very well written and masterful OpenCOBOL reference and COBOL development guide. By Gary Cutler, Open-
COBOL Programmers Guide.

41

http://sourceforge.net/projects/open-cobol/
http://opencobol.org/
http://add1tocobol.com
http://oldsite.add1tocobol.com
http://opencobol.add1tocobol.com/OpenCOBOL%20Programmers%20Guide.pdf
http://opencobol.add1tocobol.com/OpenCOBOL%20Programmers%20Guide.pdf

OpenCOBOL FAQ, Release 1.1

42 Chapter 18. 1.18 Where can | get more information about OpenCOBOL?

CHAPTER
NINETEEN

1.19 CANIHELP OUT WITH THE
OPENCOBOL PROJECT?

Absolutely. Visit the opencobol.org website and either post a message asking what needs to be done, or perhaps join
the development mailing list to find out the current state of development. See Is there an OpenCOBOL mailing list?
for some details. OpenCOBOL is a GPL licensed open source project and while [Roger] is the lead developer he is
quite open to code submissions. Having a central point of development allows for consistency and the very high level

of quality control enjoyed by OpenCOBOL users.

19.1 1.19.1 Translation Efforts

A new project has started to see native language support in the cobc compile and run-time systems. Please see
http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=1127&forum=1 for details if you think you can

help.
Hi folks!

We’re starting to translate upcoming versions into different
languages. The necessary code changes for OC 2.0 were already done.
Now we need translators.

Before posting every stuff here I want to gather the translators

here. Who is able and willing to translate the strings (currently 667)
into what language (s)

[or has somebody who does this]?

From the last discussions I remember people wanting to do this for
French, Italian, Spanish, German but I don’t remember who exactly said
that he/she will help. We already have a Japanese translation, but
that needs an heavy update.

43

http://opencobol.org/
http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=1127&forum=1

OpenCOBOL FAQ, Release 1.1

44 Chapter 19. 1.19 Can | help out with the OpenCOBOL project?

CHAPTER
TWENTY

1.20 IS THERE AN OPENCOBOL
MAILING LIST?

Yes. Visit opencobol.org for details. The OpenCOBOL development mailing list is graciously hosted by SourceForge.
The ML archive is available at http://sourceforge.net/mailarchive/forum.php?forum_name=open-cobol-list and once
you have subscribed, the list will accept messages at the open-cobol-list email destination at lists.sourceforge.net.

45

http://opencobol.org/
http://sourceforge.net/mailarchive/forum.php?forum_name=open-cobol-list

OpenCOBOL FAQ, Release 1.1

46 Chapter 20. 1.20 Is there an OpenCOBOL mailing list?

CHAPTER
TWENTYONE

1.21 WHERE CAN | FIND MORE
INFORMATION ABOUT COBOL
STANDARDS?

The COBOL 85 standard is documented in
* ANSI X3.23-1985
* ISO 1989-1985
* ANSI X3.23a-1989
* ANSI X3.23b-1993

This is highly subject to change, but currently (February 2013) a Draft of 20xx is available at
http://www.cobolstandard.info/j4/index.htm and in particular http://www.cobolstandard.info/j4/files/std.zip

Note: While OpenCOBOL can be held to a high standard of quality and robustness, the authors DO NOT claim it to
be a “Standard Conforming” implementation of COBOL.

47

http://www.cobolstandards.com/
http://www.cobolstandard.info/j4/index.htm
http://www.cobolstandard.info/j4/files/std.zip

OpenCOBOL FAQ, Release 1.1

48 Chapter 21. 1.21 Where can | find more information about COBOL standards?

CHAPTER
TWENTYTWO

1.22 CAN I SEE THE OPENCOBOL
SOURCE CODES?

Absolutely. Being an open source system, all sources that are used to build the compiler are available and free.

The opencobol.org site has links to release and pre-release archives. Most distributions of GNU/Linux will also have
source code bundles. For example

$ apt-get source open-cobol

on Debian GNU/Linux will retrieve the most recent released package sources.

22.1 1.22.1 A ROBODoc experiment

A ROBODoc experimental project to document the source codes is hosted at ocrobo. See ROBODoc Support for a
sample configuration file.

22.2 1.22.2 A Doxygen pass across the compiler source code

This is mentioned elsewhere, but the OpenCOBOL compiler source code bundle works beautifully with Doxygen.
Mix application and compiler sources for overwhelmingly complete call graphs.

Is there OpenCOBOL API documentation?

Dimitri van Heesch’s 1.7.4 release of Doxygen, http://www.doxygen.org was used to produce
http://opencobol.add1tocobol.com/doxy/.

22.3 1.22.3 A Doxygen pass, application with compiler suite

Along with Gary’s OCic.cbl http://opencobol.add1tocobol.com/doxyapp/ to demonstrate how easy it is to generate
world class, audit friendly source code documentation, drilled right down to how the COBOL runtime is interacting
with the operating system.

22.4 1.22.4 What was used to color the source code listings?

I wrote a Pygments lexer, mushed it into a local copy of Pygments and then call a rst2html-pygments.py program.
Requires a fair amount of mucking about. See ReStructuredText and Pygments for some details.

49

http://www.xs4all.nl/~rfsber/Robo/robodoc.html
http://opencobol.add1tocobol.com/docs/cobc.html
http://www.doxygen.org
http://opencobol.add1tocobol.com/doxy/
http://opencobol.add1tocobol.com/doxyapp/
http://pygments.org/
http://docutils.sourceforge.net/rst.html
http://pygments.org/

OpenCOBOL FAQ, Release 1.1

As of January 2013, the COBOL lexer is in mainline Pygments. No more mucking about required. Georg Brandl
did a wonderful job of refactoring the COBOL highlighter into his Pygments system. Many thanks to Georg, Tim and
team Pocoo.

http://bitbucket.org/birkenfeld/pygments-main/pull-request/72/adding-an-opencobol-lexer

50 Chapter 22. 1.22 Can | see the OpenCOBOL source codes?

http://bitbucket.org/birkenfeld/pygments-main/pull-request/72/adding-an-opencobol-lexer

CHAPTER
TWENTYTHREE

1.23 WHAT HAPPENED TO
OPENCOBOL.ORG?

Due to robot spam, new registrations on opencobol.org were disabled in 2012.
The active site is now hosted by SourceForge, at

https://sourceforge.net/projects/open-cobol/

51

https://sourceforge.net/projects/open-cobol/

OpenCOBOL FAQ, Release 1.1

52 Chapter 23. 1.23 What happened to opencobol.org?

CHAPTER
TWENTYFOUR

1.24 WHAT IS COBOL IN LATIN?

I came up with Publicus Negotiatio Cursus Lingua, and then smarter people suggested:

 negotium Orientatur lingua plebeius
* generalis negotium pertineo lingua
* de communi codice pro calculorum negotii
* codex communis pro calculorum negotii
I like the last one. ccpcn, pronounce that as kick-pickin’.

Thanks to Ray, Paul, and Daniel on LinkedIn.

53

OpenCOBOL FAQ, Release 1.1

54 Chapter 24. 1.24 What is COBOL in Latin?

CHAPTER
TWENTYFIVE

1.25 WHERE CAN | FIND OPEN
COBOL SOURCE CODE?

Although open source COBOL is still rare, that is slowly changing. This entry will be a perpetually growing list, until
the universe is at peace.

lim f(coBoL) = 4212
COBOL—00

Last updated: June 11th, 2013. If you know of a worthy entry, drop me a note.

25.1 1.25.1 on SourceForge

OpenCOBOL is hosted on SourceForge at http://sourceforge.net/projects/open-cobol/
Other projects include:
* http://sourceforge.net/projects/cobcurses/ A curses screen design utility for OpenCOBOL
* http://sourceforge.net/projects/koopa/ a COBOL parser (generator)
* http://sourceforge.net/projects/cobol/ the open COBOL Ultilities Project
* http://sourceforge.net/projects/record-editor/ which accepts COBOL copy books
* http://sourceforge.net/projects/cobol2html/ which auto documents COBOL
* http://sourceforge.net/projects/cobolxmlfilepar/ a one pass XML parser
* http://sourceforge.net/projects/acas/ Applewood Computers Accounting System
* http://sourceforge.net/projects/geekcode2 1 gener/ Geekcode generator, written in COBOL
* http://sourceforge.net/projects/ocic-gui/ Gary Cutler’s Compiler assistant, rewritten in a C# gui

* http://sourceforge.net/projects/apac-accounting/ a Business Management system

25.2 1.25.2 addltocobol

The good folk that host this FAQ, also host http://oldsite.add [tocobol.com and http://add1tocobol.com

55

http://sourceforge.net/projects/open-cobol/
http://sourceforge.net/projects/cobcurses/
http://sourceforge.net/projects/koopa/
http://sourceforge.net/projects/cobol/
http://sourceforge.net/projects/record-editor/
http://sourceforge.net/projects/cobol2html/
http://sourceforge.net/projects/cobolxmlfilepar/
http://sourceforge.net/projects/acas/
http://sourceforge.net/projects/geekcode21gener/
http://sourceforge.net/projects/ocic-gui/
http://sourceforge.net/projects/apac-accounting/
http://oldsite.add1tocobol.com
http://add1tocobol.com

OpenCOBOL FAQ, Release 1.1

25.3 1.25.3 Stickleback

Wim Niemans’ Project Stickleback. http://www.mycobol.net/ and http://stickleback.nlbox.com/

25.4 1.25.4 other places

* http://sites.google.com/site/cobolunit/ a Unit Testing framework for COBOL, written in COBOL

56 Chapter 25. 1.25 Where can | find open COBOL source code?

http://www.mycobol.net/
http://stickleback.nlbox.com/
http://sites.google.com/site/cobolunit/

CHAPTER
TWENTYSIX

1.26 DO YOU KNOW ANY GOOD
JOKES?

Maybe.

* A computer without COBOL and Fortran is like a piece of chocolate cake without ketchup or mustard.
John Krueger

* A determined coder can write COBOL programs in any language.
Author: unknown

* Rumour has it that the object oriented specification for COBOL was code named
ADD I TO COBOL GIVING COBOL.
Author: unknown
A less verbose, more concise version; very unCOBOL that
ADD 1 TO COBOL.
Thanks to aoirthoir
And, just because;
ADD 1 TO COBOL GIVING OpenCOBOL

* A common disrepect of COBOL joke is that the acronym stands for:
Completely Obsolete Business Oriented Language.
Author unkown
We know better. The reality is:
Can’t Obsolesce Because Of Legacy. And why would you want to?
Brian Tiffin

« COBOL
Certainly Old But Often Limber.
Brian Tiffin

* Ruby on Rails? Don’t forget COBOL ON COGS.
http://www.coboloncogs.org/INDEX.HTM

57

http://www.coboloncogs.org/INDEX.HTM

OpenCOBOL FAQ, Release 1.1

Eat COBOL, 200 billion lines can’t be wrong.
Brian Tiffin

What did COBOL yell to the escaping thief?
STOP RUN RETURNING NOW.

Brian Tiffin

* A COBOL programmer’s husband asks, “Honey can you go to the store and get some milk. And if they have
eggs, get a dozen.” After twenty minutes she returns and flops 12 bags of milk on the table. He looks at her
curiously, “Honey, why did you do that?” She responds flatly, “They had eggs.”

Author unknown

What did COBOL reply to the executive? Yes, I can

PERFORM JUMPS THRU HOOPS.

Brian Tiffin

What did OpenCOBOL reply to the executive? Siz; I can

PERFORM JUMPS THRU FLAMING-HOOPS UNTIL HELL-FREEZES-OVER.

And being COBOL, I have to show you how little code it takes:

identification division.
program-id. freeze.

data division.

working-storage section.

01 hell pic 9.
88 hell-freezes-over value 1.

procedure division.
perform jumps thru flaming-hoops until hell-freezes-over.
stop run.

jumps
flaming-hoops.
divide 1 by 0 giving hell.

¢ Wrote COBOL all morning, all afternoon and into the night. Another carpe, diem’ed.

Brian Tiffin, ripped from a meme, then farberized

26.1 1.26.1 Really?

Ok, sorry for the lame.
Here is a link to some actual humour; Bob the Dinosaur, thanks to Scott Adams.

http://dilbert.com/strips/comic/1997-11-04/

26.2 1.26.2 A 5-7-5 haiku?

How about a 5-7-5 haiku?

58 Chapter 26. 1.26 Do you know any good jokes?

http://dilbert.com/strips/comic/1997-11-04/

OpenCOBOL FAQ, Release 1.1

program-id. one.
procedure division.

1 to return-code.

add

btiffinx
Compiles to a program that fails when run. Fails as poetry, fails as code. Your welcome.

One in cbrain

72 . 65
.73 .75 .
85 . 42

Displaying HAIKU and returning 42.

59

26.2. 1.26.2 A 5-7-5 haiku?

http://esolangs.org/wiki/Cbrain

OpenCOBOL FAQ, Release 1.1

60 Chapter 26. 1.26 Do you know any good jokes?

CHAPTER
TWENTYSEVEN

2 HISTORY

History

2.1 What is the history of COBOL?

2.2 What are the Official COBOL Standards?

e 2.3 What is the development history of OpenCOBOL?
e 2.4 What is the current version of OpenCOBOL?

History

27.1 2.1 What is the history of COBOL?

Starting in 1959, a committee was formed under the sponsorship of the United States Department of Defense to recom-
mend a short range option regarding business computing. The Conference on Data System Languages (CODASYL)
led by Joe Wegstein of National Bureau of Standards (now National Institute of Standards and Technology) developed
a new language, and created the first standardized business computer programming language.

The COmmon Business Oriented Language acronym was announced on September 18th, 1959.

Late in 1960, essentially the same COBOL program ran on two different hardware platforms, and stakeholders espied
the potential for fulfilling the objective of industry wide, compatible business systems.

Admiral Grace Hopper is affectionately referred to as the mother of the COBOL language as she and her previous
work with FLOW-MATIC greatly influenced the specifications of the first COBOL.

Standards have been published for:
* COBOL-68

COBOL-74

COBOL-85

COBOL-2002

¢ Draft work for COBOL-20xx is currently (February 2013) underway

and these roughly correspond to the year they were produced. Note the y2k flavour of four digit naming occurred after
the millennium change.

61

http://en.wikipedia.org/wiki/Grace_Hopper

OpenCOBOL FAQ, Release 1.1

Estimates vary, but it is entirely reasonable to believe that of the some 300,000,000,000 (three hundred thousand
million) lines of computer source code in production as of 1995, 200,000,000,000 (two hundred thousand million)
lines were COBOL. A full 2/3rds of the world’s source code at the time.

See the Wikipedia entry for COBOL for a lot more details.

27.2 2.2 What are the Official COBOL Standards?

Many thanks to William Klein, [wmklein] for details on what wordings are to be used when referencing COBOL
Standards:

There are several references to "COBOL 85" and these are often
distinguished from "Intrinsic Functions".

The official (but really obscure) term that should be used is "Amended
Third Standard COBOL". The "clearer" (and IMHO better) term that should
be used is something like

"85 Standard COBOL with its amendments"

By 1991 (actually 1993 for ISO rather than ANSI) there was no such thing
as "just ’85 Standard COBOL". The only recognized Standard was the
"base" document (X3.23-1985) ALONG with its two amendments

— Intrinsic Functions Module Amendment

— Corrections Amendment

An interesting related fact is that the "Intrinsic Functions Module" was
OPTIONAL in the ANSI and ISO COBOL Standards but was REQUIRED (at the
HIGH level) for FIPS COBOL. As the "certification tests" were aimed at
getting US government contracts, most vendors (who were still doing
certification) actually treated Intrinsic Functions required not
optional for "High-level" certification. (They were NOT included in the
FIPS intermediate certification process).

Bottom-Line:

Although some intrinsic functions were added in the 702 Standard (and
more are included in the draft revision), it is not proper (in my
opinion) to distinguish between supporting the ’85 Standard and
supporting intrinsic functions.

P.S. The corrections amendment did make some technical changes but all
of these were included in the ’02 Standard. Therefore, hopefully, what
it did won’t impact OpenCOBOL much.

Note: While OpenCOBOL can be held to a high standard of quality and robustness, the authors DO NOT claim it to
be a “Standard Conforming” implementation of COBOL.

27.3 2.3 What is the development history of OpenCOBOL?

OpenCOBOL was initially developed by Keisuke Nishida [Keisuke] from experience working on TinyCOBOL origi-
nally developed by Rildo Pragana.

The first public release was version 0.9.0 on January 25th, 2002.

62 Chapter 27. 2 History

http://en.wikipedia.org/wiki/COBOL
http://tiny-cobol.sourceforge.net/index.php

OpenCOBOL FAQ, Release 1.1

Development continued apace, with version 0.30 released by Keisuke on August 8th, 2004.
Roger While [Roger] then took up the role as lead developer on October 30th, 2004.
Version 0.31 was released February 1st, 2005.

Version 0.32 was released May 12th, 2005.

Version 0.33 started on May 13th, 2005.

Version 1.0 was released on December 27th, 2007.

Version 1.1 was released on SourceForge on May 4th, 2012.

Version 1.1CE went into active development on May 4th, 2012.

274 2.4 What is the current version of OpenCOBOL?

OpenCOBOL 1.0 was released December 27th, 2007 by Roger While [Roger].

The decision to go 1.0 from the 0.33 version followed many incremental enhancements from 2005 through till late in
2007.

OpenCOBOL 1.1 pre-release became active on December 27th, 2007 and major developments occured publically until
February, 2009. The pre-release source tar can be found at OpenCOBOL 1.1 with installer instructions at OpenCOBOL
Install and in the INSTALLING text file of the sources.

The 1.1 pre-release of February 2009 was tagged as release on SourceForge in May of 2012. The 1.1 community
edition is in development at http://sourceforge.net/projects/open-cobol

274.1 2.4.1 Building the current version

After a download and extract from http://sourceforge.net/projects/open-cobol/files/latest/download ?source=files
S tar xvf open-cobol-1l.l.tar.gz
$ cd open-cobol-1.1
./configure
S make
S make check
$ sudo make install
5> sudo ldconfig

will place a new set of binaries in /usr/local, ready to roll.

Be sure to see What are the configure options available for building OpenCOBOL? for all the available options for
building from sources.

27.4.2 2.4.2 occurlrefresh

If you build a pre-release OC1.1, you will be able to compile the occurlrefresh.cbl (with occurlsym.cpy)
application and an early occurl . c libCURL wrapper that allows file transfers off the Internet. occurlrefresh
includes default filenames for retrieving the most recent pre-release source archive and only updates the local copy if
there has been a newer upstream release.

Thanks to [aoirthoir] for hosting these; currently (February 2013) at
¢ occurlrefresh.cbl

e occurlsym.cpy

27.4. 2.4 What is the current version of OpenCOBOL? 63

http://www.opencobol.org/modules/mydownloads/singlefile.php?cid=1&lid=2
http://www.opencobol.org/modules/bwiki/index.php?InstallGuide
http://www.opencobol.org/modules/bwiki/index.php?InstallGuide
http://sourceforge.net/projects/open-cobol
http://sourceforge.net/projects/open-cobol/files/latest/download?source=files
http://opencobol.add1tocobol.com/occurlrefresh.cbl
http://opencobol.add1tocobol.com/occurlsym.cpy

OpenCOBOL FAQ, Release 1.1

* occurl.c
and then simply
./occurlrefresh
to download any new development archives. 1ibCURL tests the modification timestamps, so this procedure is very
resource efficient, only pulling from the server if there is something new. A —b option is accepted that will spawn off

tar, configure and the make pass to compile a fresh copy. —b does not do an install, you’ll still have to do that
manually after verifying that everything is ok.

64 Chapter 27. 2 History

http://opencobol.add1tocobol.com/occurl.c

CHAPTER
TWENTYEIGHT

3 USING OPENCOBOL

Using OpenCOBOL

* 3.1 How do I install OpenCOBOL?

* 3.2 What are the configure options available for building OpenCOBOL?

* 3.3 Does OpenCOBOL have any other dependencies?

* 3.4 How does the OpenCOBOL compiler work?

* 3.5 What is cobc?

* 3.6 What is cobcrun?

* 3.7 What is cob-config?

* 3.8 What compiler options are supported?

* 3.9 What dialects are supported by OpenCOBOL?

* 3.10 What extensions are used if cobc is called with/without “-ext” for COPY
* 3.11 What are the OpenCOBOL compile time configuration files?

* 3.12 Does OpenCOBOL work with make?

* 3.13 Do you have a reasonable source code skeleton for OpenCOBOL?

* 3.14 Can OpenCOBOL be used to write command line stdin, stdout filters?

* 3.15 How do you print to printers with OpenCOBOL?

e 3.16 Can I run background processes using OpenCOBOL?

e 3.17 Is there OpenCOBOL API documentation?

* 3.18 How do I use LD_RUN_PATH with OpenCOBOL?

* 3.19 What GNU build tool options are available when building OpenCOBOL?
* 320 Why don’t I see any output from my OpenCOBOL program?

Using OpenCOBOL

28.1 3.1 How do I install OpenCOBOL?

Installation instructions can be found at OpenCOBOL Install.

28.1.1 3.1.1 From source with GNU/Linux

S wget http://sourceforge.net/projects/open—-cobol/files/open—-cobol/1l.1/open-cobol-1.1.tar.gz
$ tar xvf open-cobol-l.l.tar.gz

S cd open-cobol-1.1

S ./configure

65

http://www.opencobol.org/modules/bwiki/index.php?InstallGuide

OpenCOBOL FAQ, Release 1.1

S make

S make check

S sudo make install
S sudo ldconfig

28.1.2 3.1.2 Debian

The Debian binary package makes installing OpenCOBOL 1.0 a snap. From root or using sudo
S apt-get install open-cobol

28.1.3 3.1.3 Fedora

From the main Fedora repositories

S yum install open-cobol

28.1.4 3.1.4 Windows

Build from sources under Cygwin or MinGW. Follow the instructions from the site listed above, or read the
OC_GettingStarted_Windows document by [wmklein] available online at

* http://opencobol.add1tocobol.com/oc_gettingstarted_windows.html
* http://opencobol.add1tocobol.com/OC_GettingStarted_Windows.pdf
Also see What is the current version of OpenCOBOL?.

28.1.5 3.1.5 Macintosh

From Ganymede on opencobol.org

HOWTO: Installling OpenCOBOL 1.0.0 (with BerkeleyDB) under Mac OS 10.5.x-10.6.x

On Mac OS X 10.5.x/10.6.x, I have successfully managed to compile and install
OpenCOBOL 1.0.0 (including libdb linking), and am now happily compiling
production systems with it. It’s not *entirely* straightforward, as it involves

installing GMP via MacPorts —-- the xonly wayx that GMP will install properly
because of some eccentricities in Apple’s Xcode development tools (particularly
with relation to ¢99 in gcc), unless you are willing to patch things by hand.

In addition, the earlier BerkeleyDB versions (the 4.x.x ones available via
MacPorts) cause some strange iloctl errors at runtime under Mac OS X Leopard and
Snow Leopard when attempting certain types of ORGANIZATION IS INDEXED
operations; precisely what conditions causes this I am yet to fully ascertain.
The upshot of it is that in order to compile and run a complete OpenCOBOL 1.0.0
installation on Leopard and Snow Leopard, one has to 1) install GMP via
MacPorts; but 2) compile and install a recent version of BerkeleyDB natively.

Probably at some point, I’m going to package this into a pretty-pretty
precompiled .app and .dmg along with a rudimentary Cocoa compiler interface.
Until then, however —-- my COBOL on Mac comrades! —-- please do the following:

—— INSTALLATION STEPS (Tested on both 10.5.x and 10.6.x) —-—
1) Download an appropriate MacPorts distribution for your O0OS:
<http://distfiles.macports.org/MacPorts/>

If you want to use the installer:

* For 10.5.x: MacPorts-1.8.0-10.5-Leopard.dmg

66 Chapter 28. 3 Using OpenCOBOL

http://opencobol.add1tocobol.com/oc_gettingstarted_windows.html
http://opencobol.add1tocobol.com/OC_GettingStarted_Windows.pdf
http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

% For 10.6.x: MacPorts-1.8.0-10.6-SnowLeopard.dmg

From source, MacPorts-1.8.0.tar.gz is confirmed to work on both versions.
NB: Make sure PATH is properly set by install in your active user’s ~/.profile.
2) Update MacPorts: sudo port -d selfupdate

3) Install GMP with MacPorts: sudo port install gmp

4) Download the Oracle Berkeley DB 5.0.21 (or later) .tar.gz source:
<http://www.oracle.com/technology/products/berkeley-db/db/index.html>

5) Untar, cd to the Berkeley DB source folder, then:

cd /build_unix

6) Do the following to configure, make and install Berkeley DB:
../dist/configure

make

sudo make install

7) Download and untar OpenCOBOL 1.0.0, cd to directory

8) Run ./configure, setting CPPFLAGS and LDFLAGS as below (CHANGING ANY
VERSION-SPECIFIC PATHS TO WHAT YOU JUST INSTALLED) as follows:

./configure
CPPFLAGS="-I/opt/local/var/macports/software/gmp/5.0.1_0/opt/local/include/
-I/usr/local/BerkeleyDB.5.0/include/"
LDFLAGS="-L/opt/local/var/macports/software/gmp/5.0.1_0/opt/local/lib
-L/usr/local/BerkeleyDB.5.0/1ib/"

9) Make and install:

make

sudo make install

10) Et voila! Try exiting the directory and invoking cobc.

—— YOU SHOULD THEN BE ABLE TO DO SOMETHING LIKE THIS: ——

phrygia.ganymede-labs.com:bottles ganymede$ sw_vers
ProductName: Mac OS X
ProductVersion: 10.5.6
BuildVersion: 9G55
phrygia.ganymede-labs.com:bottles ganymede$ cobc -V
cobc (OpenCOBOL) 1.0.0
Copyright (C) 2001-2007 Keisuke Nishida
Copyright (C) 2007 Roger While
phrygia.ganymede-labs.com:bottles ganymede$ cobc -v —-x bottles.cbl
preprocessing bottles.cbl into
/var/folders/KI/KI15WCOKGMmvvO980RztgU+++TI/—Tmp—-//cob75450_0.cob translating
/var/folders/KI/KI15WCOKGMmvvO980RztgU+++TI/~Tmp—//cob75450_0.cob into
/var/folders/KI/KI15WCOKGMmvvO980RztgU+++TI/—Tmp—//cob75450_0.c

gcc -pipe -c¢ -I/usr/local/include
-I/opt/local/var/macports/software/gmp/5.0.1_0/opt/local/include/
-I/usr/local/BerkeleyDB.5.0/include/ -I/usr/local/include -02 -Wno-unused
—fsigned-char -Wno-pointer-sign -o
/var/folders/KI/KI15WCOKGMmvvO980RztgU+++TI/~Tmp—//cob75450_0.0
/var/folders/KI/KI15WCOKGMmvvO980RztgU+++TI/-Tmp—-//cob75450_0.c gcc -pipe
-L/opt/local/var/macports/software/gmp/5.0.1_0/opt/local/lib
-L/usr/local/BerkeleyDB.5.0/1ib/ -o bottles
/var/folders/KI/KI15WCOKGMmvvO980RztgU+++TI/—Tmp—//cob75450_0.0
-L/opt/local/var/macports/software/gmp/5.0.1_0/opt/local/lib
-L/usr/local/BerkeleyDB.5.0/1ib/ -L/usr/local/lib -lcob -1lm -lgmp
-L/usr/local/lib -lintl -liconv -lc -R/usr/local/lib -lncurses -1db

With lots of sloppy LINKAGE SECTION kisses,
—-— Ganymede

28.1. 3.1 How do I install OpenCOBOL? 67

OpenCOBOL FAQ, Release 1.1

28.2 3.2 What are the configure options available for building Open-
COBOL?

configure is a defacto standard development tool for POSIX compliant operating systems, in particular GNU/Linux. It
examines the current environment and creates a Makefile suitable for the target computer and the package being built.

For OpenCOBOL, the . /configure script accepts ——help as a command line option to display all of the available
configuration choices.

‘configure’ configures OpenCOBOL 1.1 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...
To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:
-h, --help display this help and exit
—-help=short display options specific to this package
—-help=recursive display the short help of all the included packages
-V, —--version display version information and exit
--—-quiet, --silent do not print ‘checking...’ messages
——cache—-file=FILE cache test results in FILE [disabled]
-C, —--config-cache alias for ‘--cache-file=config.cache’
-n, ——no-create do not create output files
——srcdir=DIR find the sources in DIR [configure dir or ‘..’]

Installation directories:

——prefix=PREFIX install architecture-independent files in PREFIX
[/usr/local]

——exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
[PREFIX]

By default, ‘make install’ will install all the files in
‘/usr/local/bin’, ‘/usr/local/lib’ etc. You can specify

an installation prefix other than ‘/usr/local’ using ‘--prefix’,
for instance ‘--prefix=S$HOME’.

For better control, use the options below.

Fine tuning of the installation directories:

——bindir=DIR user executables [EPREFIX/bin]

——sbindir=DIR system admin executables [EPREFIX/sbin]
—--libexecdir=DIR program executables [EPREFIX/libexec]

-—datadir=DIR read-only architecture-independent data [PREFIX/share]
—--sysconfdir=DIR read-only single-machine data [PREFIX/etc]
—--sharedstatedir=DIR modifiable architecture—-independent data [PREFIX/com]
——localstatedir=DIR modifiable single-machine data [PREFIX/var]
—--1ibdir=DIR object code libraries [EPREFIX/1ib]

——includedir=DIR C header files [PREFIX/include]

——oldincludedir=DIR C header files for non-gcc [/usr/include]
——infodir=DIR info documentation [PREFIX/info]

——mandir=DIR man documentation [PREFIX/man]

Program names:
——-program-prefix=PREFIX prepend PREFIX to installed program names
——program-suffix=SUFFIX append SUFFIX to installed program names

68 Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

——program—-transform—name=PROGRAM run sed PROGRAM on installed program names

System types:
—-build=BUILD configure for building on BUILD [guessed]
—-—-host=HOST cross—compile to build programs to run on HOST [BUILD]

Optional Features:

——disable-FEATURE do not include FEATURE (same as —--enable-FEATURE=no)
——enable-FEATURE [=ARG] include FEATURE [ARG=yes]
——enable-maintainer-mode enable make rules and dependencies not useful

(and sometimes confusing) to the casual installer
—-—-disable-dependency-tracking speeds up one-time build
—-—enable-dependency-tracking do not reject slow dependency extractors
——enable-experimental (OpenCOBOL) enable experimental code (Developers only!)
——enable—-param—-check (OpenCOBOL) enable CALL parameter checking
——enable-shared [=PKGS]

build shared libraries [default=yes]
——enable-static[=PKGS]

build static libraries [default=yes]
——enable-fast-install [=PKGS]

optimize for fast installation [default=yes]
——disable-libtool-lock avoid locking (might break parallel builds)
——disable-rpath do not hardcode runtime library paths
—--disable-nls do not use Native Language Support

Optional Packages:
——with-PACKAGE [=ARG] use PACKAGE [ARG=yes]
——without-PACKAGE do not use PACKAGE (same as ——-with-PACKAGE=no)
—-—with-cc=<cc> OpenCOBOL) specify the C compiler used by cobc
--with-seqra-extfh OpenCOBOL) Use external SEQ/RAN file handler
——with-cisam OpenCOBOL) Use CISAM for ISAM I/O
——with-disam OpenCOBOL) Use DISAM for ISAM I/O
——with-vbisam OpenCOBOL) Use VBISAM for ISAM I/0

(
(
(
(
(
--with-index-extfh (OpenCOBOL) Use external ISAM file handler
(
(
(
(

——with-dbl OpenCOBOL) use Berkeley DB 1.85 (libdb-1.85)

-—with-db OpenCOBOL) use Berkeley DB 3.0 or later (libdb) (default)
—-—-with-1fs64 OpenCOBOL) use large file system for file I/0 (default)
——with-dl OpenCOBOL) use system dynamic loader (default)
--with-patch-level (OpenCOBOL) define a patch level (default 0)

--with-varse (OpenCOBOL) define variable sequential format (default 0)
——with-gnu-1d assume the C compiler uses GNU 1ld [default=no]

—--with-pic try to use only PIC/non-PIC objects [default=use

both]
—--with-tags [=TAGS]
include additional configurations [automatic]

—--with-gnu-1d assume the C compiler uses GNU 1ld default=no
——with-libiconv-prefix[=DIR] search for libiconv in DIR/include and DIR/lib
—-without-libiconv-prefix don’t search for libiconv in includedir and libdir
——with-libintl-prefix[=DIR] search for libintl in DIR/include and DIR/1lib
——without-libintl-prefix don’t search for libintl in includedir and libdir

Some influential environment variables:

cC C compiler command

CFLAGS C compiler flags

LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in a
nonstandard directory <lib dir>

CPPFLAGS C/C++ preprocessor flags, e.g. -I<include dir> if you have
headers in a nonstandard directory <include dir>

CPP C preprocessor

28.2. 3.2 What are the configure options available for building OpenCOBOL? 69

OpenCOBOL FAQ, Release 1.1

CXXCPP C++ preprocessor

Use these variables to override the choices made by ’'configure’ or to help
it to find libraries and programs with nonstandard names/locations.

Report bugs to <open-cobol-list@lists.sourceforge.net>.

28.3 3.3 Does OpenCOBOL have any other dependencies?

OpenCOBOL relies on a native C compiler with POSIX compatibility. GCC being a freely available compiler collec-
tion supported by most operating systems currently (February 2013) in use.

OpenCOBOL requires the following external libraries to be installed:

GNU MP (libgmp) 4.1.2 or later libgmp is used to implement decimal arithmetic. GNU MP is licensed under GNU
Lesser General Public License.

GNU Libtool (libltdl) libltdl is used to implement dynamic CALL statements. GNU Libtool is licensed under GNU
Lesser General Public License.

NOTE - Libtool is not required for Linux and Windows (including MinGW and Cygwin)
The following libraries are optional:

Berkeley DB (libdb) 1.85 or later libdb can be used to implement indexed file /O and SORT/MERGE. Berkeley
DB is licensed under the original BSD License (1.85) or their own open-source license (2.x or later). Note that,
as of 2.x, if you linked your software with Berkeley DB, you must distribute the source code of your software
along with your software, or you have to pay royalty to Oracle Corporation. For more information about Oracle
Berkeley DB dual licensing go to : Oracle / Embedded / Oracle Berkeley DB

Ncurses (libncurses) 5.2 or later libncurses can be used to implement SCREEN SECTION. Ncurses is licensed un-
der a BSD-style license.

28.4 3.4 How does the OpenCOBOL compiler work?

OpenCOBOL is a multi-stage command line driven compiler. Command line options control what stages are per-
formed during processing.

1. Preprocess
2. Translate
3. Compile
4. Assemble
5. Link

6. Build

OpenCOBOL produces intermediate C source code that is then passed to a configured C compiler and other tools. the
GNU C compiler, gcc being a standard.

The main tool, cobc, by default, produces modules, linkable shared object files.

28.4.1 3.4.1 Example of OpenCOBOL stages

Documenting the output of the various stages of OpenCOBOL compilation.

70 Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

28.4.2 3.4.2 Original source code;

S cat hello.cob

000100% HELLO.COB OpenCOBOL FAQ example
000200 IDENTIFICATION DIVISION.

000300 PROGRAM—-ID. hello.

000400 PROCEDURE DIVISION.

000500 DISPLAY "Hello World!".
000600 STOP RUN.

28.4.3 3.4.3 Preprocess

S cobc -E hello.cob

Preprocess only pass. One operation of the preprocessor is to convert FIXED format to FREE format. COPY includes
are also read in along with REPLACE substitution. The above command displayed:

1 "hello.cob"

IDENTIFICATION DIVISION.

PROGRAM-ID. hello.

PROCEDURE DIVISION.
DISPLAY "Hello World!".
STOP RUN.

to standard out.

28.4.4 3.4.4 Translate

$ cobc —-C hello.cob

Translate only; preprocesses and then translates the COBOL sources into C. You can examine these files to get a
good sense of how the OpenCOBOL environment interacts with the native C facilities. OpenCOBOL 1.1 produced

hello.c.hand hello.c.

28.4.5 3.4.5 hello.c.h

/+ Generated by cobc 1.1.0 =/

/+ Generated from hello.cob */

/* Generated at Oct 04 2008 00:19:36 EDT */
/% OpenCOBOL build date Oct 01 2008 22:15:19 =/

/% OpenCOBOL package date Oct 01 2008 16:31:26 CEST */
/+ Compile command cobc -C hello.cob */

/#* PROGRAM-ID : hello x/

static unsigned char b_5[4] __attribute__ ((aligned));
static unsigned char b_1[4] _ _attribute__ ((aligned));
static unsigned char b_2[4] __attribute__ ((aligned));
static unsigned char b_3[4] __attribute__ ((aligned));

/% attributes */
static cob_field attr a_1

{le, 4, 0, 0O, NULL};

static cob_field_attr a_2 = {33, 0, 0, 0, NULL};

/x fields %/

/%
/ *
/%
/%

COB—-CRT-STATUS x/
RETURN—-CODE %/

SORT-RETURN */

NUMBER-OF -CALL-PARAMETERS */

28.4. 3.4 How does the OpenCOBOL compiler work?

71

OpenCOBOL FAQ, Release 1.1

static cob_field £ 5 = {4,
/+ constants #*/

static cob_field c_1 = {12,
2
28.4.6 3.4.6 hello.c

/+ Generated by cobc 1.

/% Generated from

/% Generated at

/* OpenCOBOL build date
/+ OpenCOBOL package date
/* Compile command

Oct 04
Oct 01
Oct 01

#define

#include
#include
#include
#include
#include

_ USE_STRING_INLINES 1
<stdio.h>

<stdlib.h>

<string.h>

<math.h>

<libcob.h>

#define COB_SOURCE_FILE
#define COB_PACKAGE_VERSION
#define COB_PATCH_LEVEL

Ly L

/* function prototypes x/
static int hello_ (const int);

int hello (wvoid);

/+ functions */

int
hello ()
{

return hello_ (0);

/% end functions =*/

static int
hello_ (const int entry)

{

#include "hello.c.h"
static
static
static

int initialized = 0;

cob_module module =

/#* perform frame stack x/
int frame_index;
struct frame {

int perform_through;

b_5, &a_1}; / *

(unsigned char =) "He

1.0 #/

hello.cob =*/

2008 00:19:36 EDT */
2008 22:15:19 x/
2008 16:31:26 CEST */

cobc —-C hello.cob #*/

"hello.cob"

/% local variables */

&f_5, NULL,

COB—CRT-STATUS x/

llo World!", &a_2};

cob_field *cob_user_parameters[COB_MAX_FIELD_PARAMS];
{ NULL, NULL,

cob_user_parameters,

72

Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

void *return_address;
} frame_stack[255];

/+ Start of function code x/

if (unlikely(entry < 0)) {
if (!initialized) {
return 0;
}
initialized = 0;
return O;

module.next = cob_current_module;
cob_current_module = &module;
if (unlikely(initialized == 0))

{
if (!cob_initialized) {
cob_fatal_error (COB_FERROR_INITIALIZED);
}
cob_check_version (COB_SOURCE_FILE, COB_PACKAGE_VERSION, COB_PATCH_LEVEL);
if (module.next)
cob_set_cancel ((const char *)"hello", (void x)hello, (void *)hello_);

(x(int) (b_1)) = 0;
(x(int %) (b_2)) = 0;
(x(int ») (b_3)) = 0;

memset (b_5, 48, 4);

initialized = 1;

/+ initialize frame stack =/
frame_index = 0;
frame_stack[0] .perform_through = -1;

/#* initialize number of call params =/

(»(int *) (b_3)) = cob_call_params;
cob_save_call_params = cob_call_params;
goto 1_2;

/#* PROCEDURE DIVISION #*/

/* hello: =*/

1.2:;

/% MAIN SECTION: x/

/+ MAIN PARAGRAPH: x/

/% hello.cob:5: DISPLAY */

{
cob_new_display (0, 1, 1, &c_1);

}
/#* hello.cob:6: STOP x/

28.4. 3.4 How does the OpenCOBOL compiler work? 73

OpenCOBOL FAQ, Release 1.1

cob_stop_run ((x(int =) (b_1)));
}
cob_current_module = cob_current_module->next;
return (*(int *) (b_1));

/* end function stuff =/

28.4.7 3.4.7 Generate assembler

Using the -S switch asks cobc to ask the C compiler tool chain to not process farther than the assembler code
generation phase.

S cobc -S hello.cob

28.4.8 3.4.8 hello.s

.file "cob9141_0.c"
.text
.globl
.type , @function
hello:
pushl
movl
subl
movl
call
leave
ret

.size ,
.data
.align 4
.type , @object
.size , 28
module.5786:
.long 0
.long 0
.long
.long 0
.long
.byte 0
.byte 46
.byte 36
.byte 44
.byte 1
.byte
.byte
.byte
.local
.comm ,256,32
.local
.comm , 4,4
.section
.LCO:

o -

74 Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

.string "Hello World!"

.data
.align 4
.type c_1.C

5
.size c_1.5783,

@object
12

c_1.5783:
.long
.long
.long

.align 4

.type
.size
£ 5.5782:
.long
.long
.long

.align 4

.type
.size
a 2.5781:
.byte
.byte
.byte
.byte
.long

.align 4

.type
.size
a_1.5780:
.byte
.byte
.byte
.byte
.long
.local
.comm
.local
.comm
.local
. comm
.local
.comm

.section

.LC1:

12
.LCO

a_2.5"

f_5.
f_

O 0 O O o N

~
O
N W W

\v\UI
N

o O
ol

o
a1

o 01 O
J

1
J —J -

2, @object
2, 12

.5781, @object
.5781, 8

5780, @object

o ol
® o
o
~
oo

[N BNC N

N dd

~N 00 d

Oy ~J 1 00 0 W W
~ ~ ~
= [N I
~ ~ ~
= = [
[()} ()

~ J
N

6,4,16
.rodata

.string "1.1"

.LC2:
.string

.LC3:
.string
.text
.type

hello_:
pushl
movl
subl
movl
shrl
testl
je

"hello.cob"

"hello"

hell

$ebp

o_, @function

%esp, %ebp

$207

2, %esp

8 (%ebp), %eax

$31,

%eax

%eax, %eax

L4

28.4. 3.4 How does the OpenCOBOL compiler work?

75

OpenCOBOL FAQ, Release 1.1

movl initialized.5784, %eax
testl $eax, %eax
jne .L5
movl 50, —-2052 (%ebp)
Jjmp .L6
.L5:
movl $0, initialized.5784
movl $0, -2052 (%ebp)
Jmp .L6
.L4:
movl cob_current_module, %eax
movl %$eax, module.5786
movl Smodule.5786, cob_current_module
movl initialized.5784, %eax
testl %$eax, %eax
sete %al
movzbl %al, %eax
testl %$eax, %eax
je L7
movl cob_initialized, %eax
testl %eax, %eax
jne .L8
movl $0, (%esp)
call cob_fatal error
.L8:
movl $0, 8 (%esp)
movl $S.LC1, 4 (%esp)
movl $.LC2, (%esp)
call cob_check_version
movl module.5786, %eax
testl %eax, %eax
je .L9
movl Shello_, 8 (%esp)
movl Shello, 4 (%esp)
movl $.LC3, (%esp)
call cob_set_cancel
.L9:
movl S$b_1.5777, %eax
movl 50, (%eax)
movl Sb_2.5778, %eax
movl 50, (%eax)
movl Sb_3.5779, %eax
movl S0, (%eax)
mov1l $4, 8 (%esp)
movl $48, 4 (%esp)
movl Sb_5.5776, (%esp)
call memset
movl $1, initialized.5784
.L7:
movl $0, -4 (%ebp)
movl $-1, —-2044 (%ebp)
mov1l Sb_3.5779, %edx
movl cob_call_params, %eax
movl %$eax, (%edx)
movl cob_call_params, %eax
movl %$eax, cob_save_call_params
.L10:
mov1l $c_1.5783, 12 (%esp)
movl $1, 8 (%esp)

76 Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

movl , 4 (%esp)
movl , (%esp)
call
movl , %eax
movl (%eax), %eax
movl $eax, (%esp)
call
.L6:
movl -2052 (%ebp), %eax
leave
ret
.size ,
.1dent "GCC: (Debian 4.3.1-9) 4.3.1"
.section ,"",Q@progbits

Produces hello.s.

28.4.9 3.4.9 Produce object code

S cobc —-c hello.cob

Compile and assemble, do not link. Produces hello.o.

28.4.10 3.4.10 Build modules

S cobc -m hello.cob

Build dynamically loadable module. The is the default behaviour. This example produces hello.so or
hello.dll.

S cobc -b hello.cob

will do the same thing, but in this case, the extended Build is the same as the single Module build with —m. —b will
build a dynamically loadable module that includes all of the entry points created from multiple command line inputs.
It’s fun; you can mix .cob, .c, and -1 libs and OpenCOBOL does the right thing glueing it all together. —b Build is
suited to Programming In The Large and using cobcrun.

28.4.11 3.4.11 Module run

S cobcrun hello
Hello World!

Will scan the DSO hello.so, and then link, load, and execute hello.

28.4.12 3.4.12 Create executable

$ cobc -x hello.cob
Create an executable program. This examples produces hello or hello.exe.

This is important. cobc produces a Dynamic Shared Object by default. To create executables, you need to use —x.
S ./hello
Hello World!

OpenCOBOL also supports features for multiple source, multiple language programming, detailed in the FAQ at Does
OpenCOBOL support modules?.

28.4. 3.4 How does the OpenCOBOL compiler work? 77

OpenCOBOL FAQ, Release 1.1

28.4.13 3.4.13 sizes for hello on Fedora 16

The directory after using the various cobc options:

—rwxrwxr-x. 1 btiffin btiffin 9730 Apr 22 00:25 hello
—rw-rw-r——. 1 btiffin btiffin 2253 Apr 22 00:26 hello.c

—rw-rw-r——. 1 btiffin btiffin 835 Apr 22 00:26 hello.c.h
—rw-rw-r——. 1 btiffin btiffin 391 Apr 22 00:26 hello.c.l.h
—rw-rw-r——. 1 btiffin btiffin 181 Apr 22 00:24 hello.cob
—rw-rw-r——. 1 btiffin btiffin 3288 Apr 22 00:24 hello.o
—rw-rw-r——. 1 btiffin btiffin 2577 Apr 22 00:26 hello.s
—rwxrwxr-x. 1 btiffin btiffin 9334 Apr 22 00:27 hello.so

28.5 3.5 Whatis cobc?

cobc is the OpenCOBOL compiler. It processes source code into object, library or executable code.

See What compiler options are supported? for more information.

28.6 3.6 What is cobcrun?

cobcrun is the OpenCOBOL driver program that allows the execution of programs stored in OpenCOBOL modules.

The cobc compiler, by default, produces modules (the —m option). These modules are linkable dynamic shared
objects (DSO). Using GNU/Linux for example

$ cobc -x hello.cob
./hello

Hello World!

S cobc hello.cob

5 cobcrun hello

Hello World!

The cobc -x hello.cob built an executable binary called hello. The cobc hello.cob produced a DSO
hello.so, and cobcrun resolves the entry point and executes the code, right from the DSO.

cobcrun is the compiler author’s preferred way to manage OpenCOBOL development. It alleviates knowing which
source file needs —x while encouraging proper modular programming, a mainstay of OpenCOBOL.

28.7 3.7 What is cob-config?

cob-config is a program that can be used to find the C compiler flags and libraries required for compiling. Using
GNU/Linux for example
S cob-config
Usage: cob-config [OPTIONS]
Options:
[-—prefix [=DIR]]
[-—exec-prefix [=DIR]]
[-—version]
[--1libs]
[-—cflags]
S cob-config —--libs
-L/usr/local/lib -lcob -1lm -lgmp -lncurses -1db
S cob-config —--cflags
-I/usr/local/include

78 Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

You may need to use these features during mixed source language development, usually by back-ticking the command
output inline with other gcc commands.

28.8 3.8 What compiler options are supported?

The OpenCOBOL system strives to follow standards, yet also remain a viable compiler option for the many billions
of existing lines of COBOL sources, by supporting many existing extensions to the COBOL language. Many details
of the compile can be controlled with command line options. Please also see What are the OpenCOBOL compile time
configuration files? for more details on this finely tuned control.

$ cobc -V

cobc (OpenCOBOL) 1.1.0

Copyright (C) 2001-2008 Keisuke Nishida / Roger While

Built Oct 29 2008 16:32:02

Packaged Oct 28 2008 19:05:45 CET

$ cobc --help
Usage: cobc [options] file...

Options:

--help Display this message
--version, -V Display compiler version
-V Display the programs invoked by the compiler
-x Build an executable program
-m Build a dynamically loadable module (default)
-std=<dialect> Compile for a specific dialect

cobol2002 Cobol 2002

cobol85 Cobol 85

ibm IBM Compatible

mvs MVS Compatible

bs2000 BS2000 Compatible

mf Micro Focus Compatible

default When not specified

See config/default.conf and config/x.conf
—free Use free source format
-fixed Use fixed source format (default)
-0, -02, -Os Enable optimization
-g Produce debugging information in the output
—debug Enable all run-time error checking
-0 <file> Place the output into <file>
-b Combine all input files into a single
dynamically loadable module

-E Preprocess only; do not compile, assemble or link
-C Translation only; convert COBOL to C
-S Compile only; output assembly file
-c Compile and assemble, but do not link
-t <file> Generate and place a program listing into <file>
-1 <directory> Add <directory> to copy/include search path
-L <directory> Add <directory> to library search path
-1 <lib> Link the library <lib>
-D <define> Pass <define> to the C compiler
—conf=<file> User defined dialect configuration - See -std=
——list-reserved Display reserved words
—-list-intrinsics Display intrinsic functions
—-list-mnemonics Display mnemonic names
—-save-temps (=<dir>) Save intermediate files (default current directory)
-MT <target> Set target file used in dependency list

28.8. 3.8 What compiler options are supported? 79

OpenCOBOL FAQ, Release 1.1

-MF <file>
-ext <extension>

-W

-Wall

-Wobsolete
-Warchaic
-Wredefinition
-Wconstant
-Wparentheses
-Wstrict-typing
~Wimplicit-define
-Wcall-params
-Wcolumn—-overflow
-Wterminator
—-Wtruncate
-Wlinkage
-Wunreachable

—-ftrace
—-ftraceall
—-fsyntax-only
—-fdebugging-1line
—fsource-location
—fimplicit-init
—-fsign-ascii
—-fsign-ebcdic
—fstack-check
—ffold-copy-lower
—ffold-copy—-upper
—fnotrunc
—ffunctions-all
—fmfcomment
—fnull-param

Place dependency list into <file>
Add default file extension

Enable ALL warnings

Enable all warnings except as noted below

Warn if obsolete features are used

Warn if archaic features are used

Warn incompatible redefinition of data items

Warn inconsistent constant

Warn lack of parentheses around AND within OR

Warn type mismatch strictly

Warn implicitly defined data items

Warn non 01/77 items for CALL params (NOT set with -Wall)
Warn text after column 72, FIXED format (NOT set with -Wall)
Warn lack of scope terminator END-XXX (NOT set with -Wall)
Warn possible field truncation (NOT set with -Wall)

Warn dangling LINKAGE items (NOT set with -Wall)

Warn unreachable statements (NOT set with -Wall)

Generate trace code (Executed SECTION/PARAGRAPH)

Generate trace code (Executed SECTION/PARAGRAPH/STATEMENTS)
Syntax error checking only; don’t emit any output

Enable debugging lines (’D’ in indicator column)

Generate source location code (Turned on by -debug or -g)
Do automatic initialization of the Cobol runtime system
Numeric display sign ASCII (Default on ASCII machines)
Numeric display sign EBCDIC (Default on EBCDIC machines)
PERFORM stack checking (Turned on by -debug or -g)

Fold COPY subject to lower case (Default no transformation)
Fold COPY subject to upper case (Default no transformation)
Do not truncate binary fields according to PICTURE

Allow use of intrinsic functions without FUNCTION keyword
"’ or '/’ in column 1 treated as comment (FIXED only)

Pass extra NULL terminating pointers on CALL statements

28.9 3.9 What dialects are supported by OpenCOBOL?

Using the std=<dialect> compiler option, OpenCOBOL can be configured to compile using specific historical
COBOL compiler features and quirks.

Supported dialects include:

* default

* cobol85

* cobol2002
* ibm

* mvs

* mf

* bs2000

For details on what options and switches are used to support these dialect compiles, see the config/ directory
of your OpenCOBOL installation. For Debian GNU/Linux, that will be /usr/share/open—-cobol/config/ if
you used APT to install an OpenCOBOL package or /usr/local/share/open-cobol/config/ after a build

from the source archive.

80

Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

For example: the bs2000.conf file restricts data representations to 2, 4 or 8 byte binary while mf.conf allows data
representations from 1 thru 8 bytes. cobol85.conf allows debugging lines, cobol2002.conf configures the compiler to
warn that this feature is obsolete.

28.10 3.10 What extensions are used if cobc is called with/without ‘“-ext”
for COPY

From Roger on opencobol.org

In the following order -
CpPY, CBL, COB, cpy, cbl, cob and finally with no extension.

User specified extensions (in the order as per command line) are inspected
PRIOR to the above defaults.

ie. They take precedence.

28.11 3.11 What are the OpenCOBOL compile time configuration files?

To assist in the support of the various existent COBOL compilers, OpenCOBOL reads configuration files controlling
various aspects of a compile pass.

Each supported dialect will also have a .conf file in the config/ sub-directory of its instal-
lation. For Debian GNU/Linux, these will be in /usr/share/open-cobol/config/ or
/usr/local/share/open-cobol/config under default package and default make conditions.

For example, the default configuration, default.conf is:

COBOL compiler configuration —%— sh —%-—

Value: any string
name: "OpenCOBOL"

Value: int
tab-width: 8
text-column: 72

Value: ‘cobol2002’, ‘mf’, ‘ibm’
#

assign-clause: mf

If yes, file names are resolved at run time using environment variables.
For example, given ASSIGN TO "DATAFILE", the actual file name will be

1. the value of environment variable ‘DD_DATAFILE’ or

2. the value of environment variable ‘dd_DATAFILE’ or

3. the value of environment variable ‘DATAFILE’ or

4. the literal "DATAFILE"
If no, the value of the assign clause is the file name.
Value: ‘yes’, ‘no’
ilename-mapping: yes

Fh o S S e S S S S

\

Value: ‘yes’, ‘no’
pretty-display: yes

\

Value: ‘yes’, ‘no’

28.10. 3.10 What extensions are used if cobc is called with/without “-ext” for COPY 81

http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

auto-initialize: yes

Value: ‘yes’, ‘no’
complex—odo: no
Value: ‘yes’, ‘no’

indirect-redefines: no

Value: signed unsigned bytes
£
‘2-4-87 1 - 4 2
5 -9 4
10 - 18 8
#

‘1-2-4-8’ 1 - 2 1
3 - 4 2
5- 9 4
10 - 18 8
#

‘1--87 1 - 2 1 - 2 1
3 - 4 3 - 4 2
5 - 6 5 - 7 3
7 -9 8 - 9 4
10 - 11 10 - 12 5
12 - 14 13 - 14 6
15 - 16 15 - 16 7
17 - 18 17 - 18 8

binary-size: 1-2-4-8

\

Value: ‘yes’, ‘no’

binary-truncate: yes

Value: ‘native’, ‘big-endian’
binary-byteorder: big-endian

\

Value: ‘yes’, ‘no’

larger-redefines-ok: no

\

Value: ‘yes’, ‘no’

relaxed-syntax—-check: no

Perform type OSVS - If yes, the exit point of any currently executing perform
is recognized if reached.

Value: ‘yes’, ‘no’

perform-osvs: no

If yes, non-parameter linkage-section items remain allocated
between invocations.

Value: ‘yes’, ‘no’

sticky-linkage: no

If yes, allow non-matching level numbers
Value: ‘yes’, ‘no’
relax—level-hierarchy: no

not-reserved:
Value: Word to be taken out of the reserved words list
(case independent)

82 Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

Dialect features
Value: ‘ok’, ‘archaic’, ‘obsolete’, ‘skip’, ‘ignore’,

author-paragraph: obsolete
memory-size-clause: obsolete
multiple-file-tape-clause: obsolete
label-records—clause: obsolete
value-of-clause: obsolete
data-records—-clause: obsolete
top—-level-occurs—clause: skip
synchronized-clause: ok
goto-statement-without-name: obsolete
stop-literal-statement: obsolete
debugging-line: obsolete
padding-character-clause: obsolete
next—-sentence-phrase: archaic
eject-statement: skip
entry-statement: obsolete
move-noninteger-to-alphanumeric: error
odo-without-to: ok

‘unconformable’

28.12 3.12 Does OpenCOBOL work with make?

Absolutely. Very well.

A sample makefile
OpenCOBOL rules

COBCWARN = -W

=

create an executable
%.cob
cobc $(COBCWARN) -x 5 -o

o°

w

)

create a dynamic module
%$.s0: %.cob
cobc $(COBCWARN) -m $° —-o $S@
create a linkable object
%.0: %.cob
cobc $(COBCWARN) -c $° —-o s
generate C code
%.c: %.cob
cobc $(COBCWARN) -C $°
generate assembly
%$.s: %.cob
cobc $(COBCWARN) -S $°
generate intermediate suitable for cobxref
%$.1: %.cob
[-d tmps] || mkdir tmps
cobc $ (COBCWARN) --save-temps=tmps -c $°
hack extension; create an executable; 1f errors, call
%.q: %.cob
cobc $(COBCWARN) -x $” 2>errors.err || vi —g

vim in quickfix

28.12. 3.12 Does OpenCOBOL work with make?

83

OpenCOBOL FAQ, Release 1.1

hack extension; make binary; capture warnings, call vim quickfix
$.qw: %.cob
cobc $(COBCWARN) -x $° 2>errors.err ; vi —q
run ocdoc to get documentation
$.html: $.cob
./ocdoc $” Sx.rst Sx.html S+.css
run cobxref and get a cross reference listing (leaves tmps dir around)
%$.1lst: %$.cob
[-d tmps] || mkdir tmps

cobc $(COBCWARN) —--save-temps=tmps -c $° —-o tmps/$+.0 && ~/writing/addl/tools/cobxref/cobxref |

tectonics for occurlrefresh

occurlrefresh: occurl.c occurlsym.cpy occurlrefresh.cbl
cobc -c -Wall occurl.c
cobc —-x —lcurl occurlrefresh.cbl occurl.o

And now to compile a small program called program. cob, just use

5 make program # for executables

S make program.o # for object files

$ make program.so # for shared library

5 make program.q # create an executable and call vi in quickfix mode

The last rule, occurlrefresh is an example of how a multi-part project can be supported. Simply type

&

S make occurlrefresh

and make will check the timestamps for occurl.c, occurlsym.cpy and occurlrefresh.cbl and then build up the executable
if any of those files have changed compared to timestamp of the binary.

See Tectonics for another word to describe building code.

28.13 3.13 Do you have a reasonable source code skeleton for Open-
COBOL?

Maybe. Style is a very personal developer choice. OpenCOBOL pays homage to this freedom of choice.

Here is the FIXED form header that this author uses. It includes ocdoc lines.
OCOBOL >>SOURCE FORMAT IS FIXED

H Dk ok b ok ok ok ok b ok ok ok ok b ok ok ok ok b ok o

*><# :rPurpose:

*><x :Tectonics: cobc

D> kA ok Ak ok Ak Ak kA kA kb Ak bbb Ak bbb Ak bbb Ak b bk Ak b h kA kb h sk kb h bk kb h ok ok ok ok A ok ko
identification division.

program-id.

environment division.
configuration section.

input-output section.
file-control.

84 Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

*> select

*> assign to

*> organization 1is
x>

data division.
file section.
*>fd

*> 01

working-storage section.
local-storage section.
linkage section.

screen section.

KDk ok K ok o ok ok ok ok ok ok ok ok ok ok ok ok Ak

procedure division.

goback.

end program

*A><F

*><+ Last Update: dd-Mmm-yyyy

Fill in the program-id and end program to compile. Fill in the ocdoc title for generating documentation. See What is
ocdoc? for more information on (one method of) inline documentation.

Here are some templates that can cut and pasted.

Fixed form in lowercase
OCOBOL >>SOURCE FORMAT IS FIXED
*> Kk ok b ok b ok b ok ok ok ok b ok ok ok ok b
*> Author:
x> Date:
*> Purpose:
*> Tectonics: cobc
*> R e b b B i e b b b b I b i b b b b b b i b b b b b b b b i b b b b b b b b b b b b g g
identification division.
program-id.

environment division.
configuration section.

input-output section.
x> file-control.

*> select

*> assign to

*> organization 1is
*>

data division.

x> file section.

*> fd

*> 01

working-storage section.

local-storage section.

linkage section.

28.13. 3.13 Do you have a reasonable source code skeleton for OpenCOBOL? 85

OpenCOBOL FAQ, Release 1.1

screen section.

KDk o ok ok ok ok ok ok ok ok ok ok o ok ok b ok ok ok ok ok ok ok ok ok ok A

procedure division.

goback.
end program

Fixed form in UPPERCASE

OCOBOL >>SOURCE FORMAT IS FIXED

KK AR AR AR A AR AR A AR A A A A AR A AR A AR A XA KA AAA AR AR A AR A A A A I A A A A A AR AR A AR XA A XK

* Author:

* Date:

* Purpose:

* Tectonics: cobc

dA A A A A AA A AR A A A A A A A A A A A I A A A A A A A A A A h A

IDENTIFICATION DIVISION.
PROGRAM-ID.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT

ASSIGN TO
ORGANIZATION IS

DATA DIVISION.
FILE SECTION.
FD
01
WORKING-STORAGE SECTION.
LOCAL-STORAGE SECTION.

LINKAGE SECTION.

SCREEN SECTION.

PROCEDURE DIVISION.

GOBACK.
END PROGRAM

AAAAAAAAAAA A AA A AA A AL A AL A AL AL A A A A A A A A A A A A A A

The OCOBOL “sequence number” can safely be removed. It is there to ensure proper alignment in the browser.

FREE FORM can be compiled with cobc —free or use the supported compiler directive:
>>SOURCE FORMAT IS FREE

the above line must start in column 7 unless cobc —free is used.

*>
*>
*>
*>
*>
*>

>>SOURCE FORMAT IS FREE

ok ok ok ok ok b ok ok b ok ok ok ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok b ok ok b ok ok b ok ok ok ok ok ok b ok ok b ok ok b ok ok ok b ok ok b ok ok b ok ok b ok ok ok b ok ok &
Author:

Date:

Purpose:

Tectonics: cobc —free

86

Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

*> Kok ok kb ok ok b ok ok ok ok ok ok b ok ok b ok ok ok ok ok ok ok ok ok b ok ok b ok ok b ok ok ok ok ok ok b ok ok b ok ok ok ok ok ok b ok ok b ok ok b ok ok b ok ok ok b ok ok o ok
identification division.
program-id.

environment division.
configuration section.

input-output section.
file-control.
select
assign to
organization is

data division.
file section.
fd .

01 .

working-storage section.
local-storage section.
linkage section.

screen section.
procedure division.

goback.
end program .

These files can be downloaded from
¢ headfix.cob
* headfixuppper.cob

¢ headfree.cob

Note: There are tricks to ensure that FIXED FORMAT source code can be compiled in a FREE FORMAT mode.
That includes using free form end of line comments, no sequence numbers, free form DEBUG line directives with the
>>D starting in column 5 (so the D ends up in column 7).

28.14 3.14 Can OpenCOBOL be used to write command line stdin, stdout
filters?

Absolutely. It comes down to SELECT name ASSIGN TO KEYBOARD for standard input, and SELECT name
ASSIGN TO DISPLAY for standard out.

Below is a skeleton that can be used to write various filters. These programs can be used as command line pipes, or
with redirections.

S cat datafile | filter
S filter <inputfile >outputfile

28.14. 3.14 Can OpenCOBOL be used to write command line stdin, stdout filters? 87

http://opencobol.add1tocobol.com/sources/headfix.cob
http://opencobol.add1tocobol.com/sources/headfixupper.cob
http://opencobol.add1tocobol.com/sources/headfree.cob

OpenCOBOL FAQ, Release 1.1

filter.cob. You’ll want to change the Ol-transform paragraph to do all the processing of each record. This
skeleton simply copies stdin to stdout, with a limit of 32K records so that may need to be changed as well or tests made
to ensure the default LINE SEQUENTIAL mode of KEYBOARD and DISPLAY are appropriate for the task at hand.
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok A

A><H ===========

*><+ filter

*><H ==s==m======

*><+ :Author: Brian Tiffin

>< :Date: 20090207

>< :Purpose: Standard IO filters

*><# :Tectonics: cobc -x filter.cob

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A ok

identification division.
program-id. filter.

environment division.
configuration section.

input-output section.

file-control.
select standard-input assign to keyboard.
select standard-output assign to display.

data division.
file section.
fd standard-input.
01 stdin-record pic x(32768).
fd standard-output.
01 stdout-record pic x(32768).

working-storage section.

01 file-status pic x value s
88 end-of-file value high-value
when set to false is low-value.

KDk ok A ok

procedure division.
main section.
00-main.

perform O0l-open
perform O0l-read

perform
until end-of-file
perform Ol-transform
perform Ol-write
perform Ol-read
end-perform

00-leave.
perform Ol-close

goback.

88

Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

*> end main

support section.
0l-open.
open input standard-input
open output standard-output
Ol-read.
read standard-input
at end set end-of-file to true
end-read

x> All changes here
Ol-transform.

move stdin-record to stdout-record
*>
Ol-write.

write stdout-record end-write

0l-close.
close standard-input
close standard-output
end program filter.
*><

*><x Last Update: dd-Mmm-yyyy

28.15 3.15 How do you print to printers with OpenCOBOL?

OpenCOBOL and COBOL in general does not directly support printers. That role is delegated to the operating system.
Having said that, there are a few ways to get data to a printer.

28.15.1 3.15.1 printing with standard out

Writing directly to standard out, as explained in Can OpenCOBOL be used to write command line stdin, stdout filters?
and then simply piping to 1pd should usually suffice to get text to your printer.

./cobprog | 1lp
S ./yearend | 1lp —-d $PRESIDENTSPRINTER

Don’t try the above with the DISPLAY verb; use WRITE TO stdout, with stdout selected and assigned to the DISPLAY
name.

28.15.2 3.15.2 calling the system print

Files can be routed to the printer from a running program with sequences such as

CALL "SYSTEM"
USING "lp os-specific-path-to-file"

28.15. 3.15 How do you print to printers with OpenCOBOL? 89

OpenCOBOL FAQ, Release 1.1

RETURNING status
END-CALL

28.15.3 3.15.3 print control library calls

And then we open up the field of callable libraries for print support. Below is some template code for sending files to
a local CUPS install.

OCOBOL >>SOURCE FORMAT IS FIXED

*>
x>
*>
*>
x>
*>

ER R i b b b b i b b b b b b b b b b b b S b b g i b b i b b b b b e b b b S b e b i b b b g i b g i b b b b b i b i g b

Author: Brian
Date: 10-Aug-2009
Purpose: CUPS quick print

Tectonics: cobc —-lcups —-x cupscob.cob

Rt i e b b e b b b b e b b b b e b b b b e b i b b b b i e b b b b b b b b b b b g

identification division.
program—-id. cupscob.

data division.
working-storage section.

01
01
01
01
01

*>

result usage binary-long.
cupsError usage binary-long.
msgPointer usage pointer.
msgBuffer pic x(1024) based.
msgDisplay pic x(132).

LR g b b b g b b b b g b b b b b b b b b b b b b g b b b g b b b b g b b b b b b b b b b b b b b b b g b b b b g g

procedure division.
call "cupsPrintFile"

using
"cupsQueue" & x"00"
"filename.prn" & x"00"
"OpenCOBOL CUPS interface" & x"00"
by value 0
by reference NULL
returning result

end-call

if result equals zero

call "cupsLastError" returning cupsError end-call
display "Err: " cupsError end-display

call "cupsLastErrorString" returning msgPointer end-call
set address of msgBuffer to msgPointer
string
msgBuffer delimited by x"00"
into msgDisplay
end-string
display function trim(msgDisplay) end-display

else

display "Job: " result end-display

end-if

goback.
end program cupscob.

90

Chapter 28. 3 Using OpenCOBOL

http://www.cups.org

OpenCOBOL FAQ, Release 1.1

28.154 3.15.4 print to PDF with CUPS

As it turns out, the above code snippet can be used to print directly to a PDF defined cups-pdf printer. By
S apt—-get install cups cups-pdf

under Debian, you can then

call "cupsPrintFile"
using
"PDFer" & x"oo"
"cupscob.cob" & x"00"
"cupscob.pdf" & x"00"
by value 0
by reference NULL
returning result
end-call

assuming PDFer is a Class or printer with a PDF member. A PDF version of the text in cupscob.cob will be
placed in ~/PDF/ as cupscob.pdf.

Roger While added this wisdom:

Check if your particular distro has cups-pdf in

its repository. (eg. Using Yast with Suse).

If yes, install from there.

If no, use one of the RPM finders on the web to find
a version for your distro.

eg. www.rpmfind.com

The installation of cups-pdf should automatically set
up a dummy printer with the name "cups-pdf".

So you do not actually need to define a class.

You can print directly to "cups-pdf".

(Check defined printers with eg. "lpstat -t")

The output file location is dependent on the cups-pdf
configuration file normally located at /etc/cups/cups—-pdf.conf.
So, eg. on my box the location is defined thus -

Out ${HOME}/Documents/PDFs

The code with a little more documentation, in case it turns out to be useful.

call "cupsPrintFile" *> requires -—lcups
using
"cups-pdf" & x"oo" *> printer class
"cupscob.cob" & x"00" *> input filename
"cupscob.pdf" & x"00" *> title
by value 0 *> num_options
by reference NULL *> options struct <

returning result
on exception
display "hint: use —-lcups for cupsPrintFile" end-display
end-call

28.15.5 3.15.5 Jim Currey’s prtcbl

Jim kindly donated this snippet. One of his earliest efforts establishing a base of OpenCOBOL resources. prtcbl
produces source code listing with results piped to a printer.

A few customizations. This version requires a change to a filename for printer control, location of copybooks, and
possible changes to the system Ip command line.

28.15. 3.15 How do you print to printers with OpenCOBOL? 91

OpenCOBOL FAQ, Release 1.1

Stash a print setup string in the file so named. The program prompts for input, output and printer.

Jim pointed out that this was early attempts with OpenCOBOL as a tool to support better in house development, and
was nice enough to let me reprint it.
OCOBOL IDENTIFICATION DIVISION.
PROGRAM-ID. PRTCBL.
*AUTHOR. J C CURREY.

EE b b b i b b b b b b b g b b b b b e b b e b b b b b b b i b b i b g b b b b b b g b b b b b b b b e b b i b i

* PRINTS A COBOL SOURCE FILE WITH IT’S COPY BOOKS *
* *
* VERSION 001--ORIGINAL VERSION *
* 3/26/2009--J C CURREY *
* *
* 002--ADDS .CPY (CAPS) IF .cpy FAILS TO FIND *
* FILE AND EXPANDS INPUT TO 132 CHARACTERS*
* 4/09/2009--J C CURREY *
* *
* 003--ADDS NOLIST AND LIST SUPPORT (NOTE NOT *
* SUPPORTED BY OPENCOBOL COMPILER) *
* **NOLIST IN COL 7-14 TURNS OFF LISTING %
* **LIST IN COL 7-12 TURNS ON LISTING *
* 4/22/2009--J C CURREY *
* *
* 004--ADDS SUPPORT FOR /testing-set-1/copybooks *
* Copybooks are searched for first in the *
* local directory and if not found, then in x*
* /testing-set-1/copybooks *
* 5/7/2009--J C CURREY *
* *
* 005--CORRECTS MISSING LINE ISSUE ON PAGE BREAKSx*
* IN THE COPY FILE PRINTING SECTION. *
* 1285451--SANDY DOSS *
* 06/19/2009--JEREMY MONTOYA *
* *
* 006--USES EXTERNAL PCL CODE FILE TO INSERT PCL #*
* CODE INTO PRINT FILE FOR FORMATTING. *
* 1330505--JIM CURREY *
* 12/14/2009--PETE MCTHOMPSON *

EuE e e e e b e i b e b e b b b e b e b b e g b b e g b b e b e e b e e b e e b b e b b b b b b b b b e i e i
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
121409 SELECT FORMAT-FILE ASSIGN TO WS-NAME-FORMAT-FILE
121409 ORGANIZATION IS LINE SEQUENTIAL.
SELECT PRINT-FILE ASSIGN TO WS-NAME-PRINT-FILE
ORGANIZATION IS LINE SEQUENTIAL.
SELECT INPUT-FILE ASSIGN TO WS-NAME-INPUT-FILE
ORGANIZATION IS LINE SEQUENTIAL
FILE STATUS IS WS- INPUT-FILE-STATUS.
SELECT COPY-FILE ASSIGN TO WS-NAME-COPY-FILE
ORGANIZATION IS LINE SEQUENTIAL
FILE STATUS IS WS-COPY-FILE-STATUS.
DATA DIVISION.
FILE SECTION.
*

FD PRINT-FILE.

121409 01 FORMAT-LINE PIC X(140).
01 PRINT-LINE.
05 OR-LINE-NUMBER PIC Z(6).

92 Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

05 OR-FILLER-1 PIC XX.
05 OR-TEXT PIC X(132).
121409+
121409 FD FORMAT-FILE.
121409 01 FORMAT-RECORD PIC X (140).
*
FD INPUT-FILE.
01 INPUT-RECORD.
05 IR-BUFFER PIC X(132).
FD COPY-FILE.
01 COPY-RECORD.
05 CR-BUFFER PIC X(132).
*+*NOLIST
* THIS IS ANOTHER LINE
*+*LIST
*
WORKING-STORAGE SECTION.
LR R i b b b b b b b b b b b g b b b b b b b b b b b b b i b b b b b g b b b g g b b b g g g b b o
* CONSTANTS, COUNTERS AND WORK AREAS *
ER R e b b b e b b e b b b b e b b i g b b b b b b b b b b b b b b b i b b b b b b b b b b b g
01 WS-NAME-PROGRAM PIC X(12) VALUE
121409 "prtcbl 006",
01 WS-NO-PARAGRAPH PIC S9(4) COMP.
01 Ws-I PIC S9(4) COMP.
01 WS-J PIC S9(4) COMP.
01 WS-K PIC S9(4) COMP.
01 WS-NAME-PRINT-FILE PIC X(64) VALUE SPACES.
01 WS-NAME-INPUT-FILE PIC X(64) VALUE SPACES.
01 WS-INPUT-FILE-STATUS PIC XX VALUE "00".
050709 01 WS-NAME-COPY-FILE PIC X(128) VALUE SPACES.
050709 01 WS-HOLD-NAME-COPY-FILE PIC X(128) VALUE SPACES.
121409 01 WS-NAME-FORMAT-FILE PIC X(128) VALUE SPACES.
01 WS-COPY-FILE-STATUS PIC XX VALUE "00".
01 WS-LINE-PRINTER-NAME PIC X(16) VALUE SPACES.
01 WS-LINE-NUMBER PIC S9(6) COMP
VALUE ZERO.
01 WS-PAGE-LINE-COUNTER PIC S9(4) COMP
VALUE 999.
01 WS-PAGE-NUMBER PIC S9(4) COMP
VALUE 7ERO.
01 WS—-PRINT-COMMAND PIC X(128).
*
01 WS-ESCAPE-CHARACTER PIC X VALUE X"1B".
*
01 WS-HEADING-LINE PIC X(132).
01 WS-CURRENT-DATE PIC X(21).
01 WS-ED4S PIC zZZZ-.
042209 01 WS-SWITCH-PRINT PIC X VALUE SPACE.
LR b b b i i i b i b i b b i o
* PROCEDURE DIVISION *
Kok ok ok ok ok ok ok ok ok ok ok b b ok ok ok b ok ok ok ok ok ok ok b ok ok ok b ok ok ok b b ok b ok b ok ok ok b ok ok ok b ok ok ok b ok ok ok b kb ok b ko kA
PROCEDURE DIVISION.
0000-MATIN SECTION.
PERFORM 1000-INITIALIZATION THRU 1990-EXIT.
PERFORM 2000-PROCESS THRU 2990-EXIT.
PERFORM 9000-END-OF-PROGRAM THRU 9990-EXIT.
STOP RUN.
LR i b b i b i o
28.15. 3.15 How do you print to printers with OpenCOBOL? 93

OpenCOBOL FAQ, Release 1.1

* INITIALIZATION *
ko ok ok ok ok ok ok ok Sk ok ok ok ok ok ok ok K ok ok kK ok ok Sk ok ok ok ok ok ok ok ok ok k ok ok ok ok ok ok kK ok ok Sk K ok ok Sk ok ok ok ok ok ok ok K ok ok kK ok
1000-INITIALIZATION.
MOVE 1000 TO WS-NO-PARAGRAPH.
DISPLAY "I) ", WS-NAME-PROGRAM, " BEGINNING AT--"
FUNCTION CURRENT-DATE.
1002-GET-INPUT-FILE.
DISPLAY "A) ENTER INPUT-FILE NAME " WITH NO ADVANCING.
ACCEPT WS-NAME-INPUT-FILE.
OPEN INPUT INPUT-FILE.
IF WS-INPUT-FILE-STATUS IS EQUAL TO 35
DISPLAY "W) INPUT FILE NOT FOUND"
GO TO 1002-GET-INPUT-FILE.
DISPLAY "A) ENTER PRINT-FILE (WORK FILE) NAME "
WITH NO ADVANCING.
ACCEPT WS-NAME-PRINT-FILE.
DISPLAY "A) ENTER PRINTER NAME " WITH NO ADVANCING.
ACCEPT WS-LINE-PRINTER-NAME.
OPEN OUTPUT PRINT-FILE.

121409 MOVE "laserjet_113D.txt" TO WS-NAME-FORMAT-FILE.
121409 OPEN INPUT FORMAT-FILE.
121409 1010-OUTPUT-PCL-CODES.
121409 READ FORMAT-FILE NEXT RECORD AT END GO TO 1020-FORMAT-EOEFE.
121409 MOVE FORMAT-RECORD TO FORMAT-LINE.
121409 WRITE FORMAT-LINE.
121409 GO TO 1010-OUTPUT-PCL-CODES.
121409 1020-FORMAT-EOF.
121409 CLOSE FORMAT-FILE.
1990-EXIT.
EXIT.
ok ok ok ok ok ok ok ok ok ok ok b ok ok ok b b ok ok ok ok ok ok ok b ok ok b ok ok ok ok ok ok ok ok b ok ok ok b ok ok ok b b ok ok b ok ok ok ok b ok ok ok ok ok
* DETAIL SECTION *

ok Sk ko ko ok kK K Kk ko ko ok ok K K K o ok ok ko ko ok K K oK K o ok ok ko ko ok ok K ok ok o ok ok ok ok ko ko kK ok
2000-PROCESS.

MOVE 2000 TO WS-NO-PARAGRAPH.

READ INPUT-FILE NEXT RECORD AT END GO TO 2990-EXIT.

ADD 1 TO WS-LINE-NUMBER.

IF WS-PAGE-LINE-COUNTER IS GREATER THAN 112

PERFORM 2800-HEADINGS THRU 2890-EXIT.

MOVE WS-LINE-NUMBER TO OR-LINE-NUMBER.

MOVE SPACES TO OR-FILLER-1.

MOVE INPUT-RECORD TO OR-TEXT.

042209 IF IR-BUFFER (7:6) IS EQUAL TO "x*LIST"
042209 MOVE "Y" TO WS-SWITCH-PRINT.

042209 IF WS—-SWITCH-PRINT IS EQUAL TO "N"

042209 THEN NEXT SENTENCE

042209 ELSE WRITE PRINT-LINE

042209 ADD 1 TO WS-PAGE-LINE-COUNTER.
042209 IF IR-BUFFER (7:8) IS EQUAL TO "%xNOLIST"
042209 MOVE "N" TO WS-SWITCH-PRINT.

IF IR-BUFFER (7:1) IS EQUAL TO "x" GO TO 2000-PROCESS.
MOVE 1 TO WS-1I.
2010-COMPARE-LOOP.
IF IR-BUFFER (WS—-I:2) IS EQUAL TO "x>" GO TO 2090-ENDER.
IF IR-BUFFER (WS-I:6) IS EQUAL TO " COPY " GO TO 2020-COPY.
ADD 1 TO Ws-I.
IF WS-I IS LESS THAN 73 GO TO 2010-COMPARE-LOOP.
GO TO 2000-PROCESS.
2020-CcopPY.

94 Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

SUBTRACT 1 FROM WS-LINE-NUMBER.
ADD 6 TO WsS-1I.
MOVE 1 TO WsS-J.
MOVE SPACES TO WS—-NAME-COPY-FILE.
2022-MOVE-LOOP .
IF IR-BUFFER (WS—-I:1) IS EQUAL TO SPACE
GO TO 2030-OPEN-COPYFILE.
IF IR-BUFFER (WS-I:1) IS EQUAL TO "."
MOVE ".cpy" to WS-NAME-COPY-FILE (WS-J:4)
GO TO 2030-OPEN-COPYFILE.
MOVE IR-BUFFER (WS-I:1) TO WS-NAME-COPY-FILE (WS-J:1).
ADD 1 TO Ws-I, WS-J.
IF WS-I IS GREATER THAN 73
OR WS—J IS GREATER THAN 64
THEN MOVE "x+PROBLEM WITH.COPY STATEMENT ABOVExx"
TO OR-TEXT
WRITE PRINT-LINE
ADD 1 TO WS-PAGE-LINE-COUNTER
GO TO 2000-PROCESS.
GO TO 2022-MOVE-LOOP.
2030-OPEN-COPYFILE.
OPEN INPUT COPY-FILE.
IF WS-COPY-FILE-STATUS IS NOT EQUAL TO "0OO"

040909 MOVE " .CPY" TO WS-NAME-COPY-FILE (WS-J:4)
040909 OPEN INPUT COPY-FILE
040909 IF WS-COPY-FILE-STATUS IS NOT EQUAL TO "0O0O"
050709 MOVE WS-NAME-COPY-FILE TO WS-HOLD-NAME-COPY-FILE
050709 STRING "/testing-set—-1/copybooks/"
050709 WS—-HOLD-NAME-COPY-FILE
050709 INTO WS-NAME-COPY-FILE
* DISPLAY "D) AT.COPY FILE OPEN NAME=\", WS-NAME-COPY-FILE, "\"
050709 OPEN INPUT COPY-FILE
050709 IF WS-COPY-FILE-STATUS IS NOT EQUAL TO "0OO"
050709 ADD 25 TO WS-J
050709 MOVE ".cpy" TO WS-NAME-COPY-FILE (WS—-J:4)
* DISPLAY "D) AT.COPY FILE OPEN NAME=\", WS-NAME-COPY-FILE, "\"
050709 OPEN INPUT COPY-FILE
050709 IF WS-COPY-FILE-STATUS IS NOT EQUAL TO "0O"
050709 MOVE "x%+«COPY FILE ABOVE NOT FOUND***" TO OR-TEXT
050709 WRITE PRINT-LINE
050709 ADD 1 TO WS-LINE-NUMBER
050709 ADD 1 TO WS—-PAGE-LINE-COUNTER
050709 GO TO 2000-PROCESS
050709 END-IF
050709 END-IF
040909 END-IF
040909 END-IF.

2032-PRINT-LOOP.
READ COPY-FILE NEXT RECORD AT END GO TO 2039-EOF.
ADD 1 TO WS-LINE-NUMBER.

061909 % MOVE WS—-LINE-NUMBER TO OR-LINE-NUMBER.
061909 % MOVE SPACES TO OR-FILLER-1.
061909 % MOVE COPY—-RECORD TO OR-TEXT.

IF WS-PAGE-LINE-COUNTER IS GREATER THAN 112
PERFORM 2800-HEADINGS THRU 2890-EXIT.

061909 MOVE WS-LINE-NUMBER TO OR-LINE-NUMBER.
061909 MOVE SPACES TO OR-FILLER-1.

061909 MOVE COPY-RECORD TO OR-TEXT.

042209 IF CR-BUFFER (7:6) IS EQUAL TO "xxLIST"

28.15. 3.15 How do you print to printers with OpenCOBOL? 95

OpenCOBOL FAQ, Release 1.1

042209
042209
042209
042209
042209
042209
042209

042209

MOVE "Y" TO WS—-SWITCH-PRINT.
IF WS-SWITCH-PRINT IS EQUAL TO

THEN NEXT SENTENCE

ELSE WRITE PRINT-LINE

ADD 1 TO WS-PAGE-LINE-COUNTER.
IF CR-BUFFER (7:8) IS EQUAL TO

MOVE "N" TO WS—-SWITCH-PRINT.
GO TO 2032-PRINT-LOOP.
2039-EOF.
CLOSE COPY-FILE.
MOVE "Y" TO WS—-SWITCH-PRINT.
2090-ENDER.
GO TO 2000-PROCESS.

*

*

PAGE HEADINGS

*

*

*

*

2800-HEADINGS.
INITIALIZE PRINT-LINE.
ADD 1 TO WS—-PAGE-NUMBER.

"x*NOLIST"

MOVE FUNCTION CURRENT-DATE TO WS-CURRENT-DATE.

MOVE WS-NAME-INPUT-FILE TO PRINT-LINE.

MOVE WS-PAGE-NUMBER TO WS-ED4S.

MOVE "PAGE" TO PRINT-LINE (66:4).
MOVE WS-ED4S TO PRINT-LINE (71:4).
MOVE WS—-CURRENT-DATE (5:2) TO PRINT-LINE

MOVE "/" TO PRINT-LINE (82:1).

MOVE WS—-CURRENT-DATE (7:2) TO PRINT-LINE

MOVE "/" TO PRINT-LINE (85:1).

MOVE WS—-CURRENT-DATE (1:4) TO PRINT-LINE
MOVE WS—-CURRENT-DATE (9:2) TO PRINT-LINE

MOVE ":" TO PRINT-LINE (94:1).

MOVE WS—-CURRENT-DATE (11:2) TO PRINT-LINE

MOVE ":" TO PRINT-LINE (97:1).

MOVE WS—-CURRENT-DATE (13:2) TO PRINT-LINE

IF WS-PAGE-NUMBER IS EQUAL TO 1
THEN WRITE PRINT-LINE

(80:2) .

(83:2) .

(86:4) .
(92:2) .

(95:2) .

(98:2) .

ELSE WRITE PRINT-LINE AFTER ADVANCING PAGE.

INITIALIZE PRINT-LINE.

WRITE PRINT-LINE.

MOVE 4 TO WS-PAGE-LINE-COUNTER.
2890-EXIT.

EXIT.

END OF JOB

2990-EXIT.
EXIT.

R i b i e e b b b e b e b e b b e b S b b b e b e e b b b i b b b b b b b b b b b b b b e b i o

*

TERMINATION

*

AAAAAAAA A AA A AL A A A A AL A AL A

9000-END-OF-PROGRAM.
MOVE 9000 TO WS-NO-PARAGRAPH.
CLOSE INPUT-FILE.
CLOSE PRINT-FILE.

121409% STRING "lIp -d " DELIMITED BY SIZE,

121409 WS—LINE-PRINTER-NAME DELIMITED BY SIZE,

121409+ "-o0 sides=two-sided-long-edge " DELIMITED BY SIZE,

121409~ "-o Ipi=11 -o cpi=18 -0 page-left=34 " DELIMITED BY SIZE,

121409+ WS—-NAME—-PRINT-FILE DELIMITED BY SIZE

96 Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

121409 INTO WS—-PRINT-COMMAND.
STRING "lp —-d " DELIMITED BY SIZE,
WS—-LINE-PRINTER-NAME DELIMITED BY SIZE,
"-o raw " DELIMITED BY SIZE,
WS—NAME-PRINT-FILE DELIMITED BY SIZE

INTO WS-PRINT-COMMAND.
CALL "SYSTEM" USING WS—-PRINT-COMMAND.
DISPLAY "I) " WS-NAME-PROGRAM " COMPLETED NORMALLY AT--"
FUNCTION CURRENT-DATE.
9990-EXIT.
EXIT.

28.16 3.16 Can I run background processes using OpenCOBOL?

Absolutely. Using the CALL "SYSTEM" service. Some care must be shown to properly detach the input output
handles, and to instruct the processes to ignore hangup signals along with the “run in a background subshell” control.
CALL "SYSTEM"
USING
"nohup whatever 0</dev/null 1>mystdout 2>mystderr &"
RETURNING result
END-CALL

runs whatever in the background, detaches stdin, sends standard output to the file mystdout and standard error to
mystderr.

The above example is for POSIX_ shell operating systems. As always, the commands sent through SYSTEM are VERY
operating system dependent.

28.17 3.17 Is there OpenCOBOL API documentation?

Absolutely. Sort of. And it’s beautiful, complete and awe inspiring.

Dimitri van Heesch’s 1.7.4 release of Doxygen, http://www.doxygen.org was used to produce
http://opencobol.add1tocobol.com/doxy/ and along with Gary’s OCic.cbl http://opencobol.add 1tocobol.com/doxyapp/
to highlight the absolutely beautiful compiler and application documentation available for OpenCOBOL now. These
pages were produced with very little effort with only a few small tweaks to the Doxygen generated Doxyfile (to turn
on all files, and to generate call graphs). The sample pass produces a 1400 page beauty of a reference manual in PDF
generated from the Doxygen LaTex output. 2950 pages for the sample application run.

OpenCOBOL ships as a developer tarball and Doxygen was let loose on the source tree after a ./configure and make
pass. When the -C output of Gary Cutler’s OCic.clb was placed into the tree, the output includes the call graphs that
exercise some of the OpenCOBOL runtime library. This application level documentation is world class.

Regarding the above “sort of”. This was a near effortless use of Doxygen. OpenCOBOL was not touched and the
sources have no explicit Doxygen tags. It also excludes many of the automake, libtool, bison and flex source files.
Even still, beautiful. The compiler API is now an easy grok, and application level documentation (doxyapp using
OCic.cbl as a sample) should satisfy the world’s most ruthless code auditor and meticulous development team lead.

See http://opencobol.add 1tocobol.com/doxy/d2/dd4/structcb__field.html for a tantalizing sam-
ple of «cb_field collaboration diagram and completeness of source code coverage. See
http://opencobol.add1tocobol.com/doxyapp/d4/da8/OCic_8c.html for a view of how Doxygen handles the ap-
plication level documentation. All for free.

28.16. 3.16 Can I run background processes using OpenCOBOL? 97

http://www.doxygen.org
http://opencobol.add1tocobol.com/doxy/
http://opencobol.add1tocobol.com/doxyapp/
http://opencobol.add1tocobol.com/doxy/d2/dd4/structcb__field.html
http://opencobol.add1tocobol.com/doxyapp/d4/da8/OCic_8c.html

OpenCOBOL FAQ, Release 1.1

28.18 3.18 How do I use LD_RUN_PATH with OpenCOBOL?

LD_RUN_PATH can be a saving grace for developers that want to build OpenCOBOL on hosted environments.
LD_RUN_PATH is similar to LD_LIBRARY_PATH but builds the shared library path into cobc and then all of
the binaries compiled with cobc. That means you can cherry pick the link loader paths when you build OpenCOBOL
in a way that can add support for unsupported host features.

If you want a recent version of ncurses on your hosting service, but don’t have root permissions, you can build it into
one of your own directories then

EXPORT LD_RUN_PATH=mylibdir
./configure ; make ; make install

to build your OpenCOBOL. All compiles with cobc will now include mylibdir during compiles, and better yet, the
binaries produced will also include mylibdir in the search path at runtime.

If you don’t have RECORD_PATH in your cobc then you can simply compile with
LD_RUN_PATH=mylibdir cobc -x nextbigthing.cob

to achieve similar results.

With the CGI interface, see How do [use OpenCOBOL for CGI?, you can now build up a complete web side solution
using OpenCOBOL with little worry about being stuck on link library depencencies or running scripts to setup any
path variables before safely using your cgi-bin binaries.

LD_RUN_PATH is magical. It also avoids many security problems that can occur if you rely on LD_LIBRARY_ PATH
user environment settings. Your cobc will have your search path and not some /home /badusers trickery settings
as LD_RUN_PATH searches come before LD_LIBRARY_PATH. Relying on LD_LIBRARY_PATH is deemed a Don’t
do by some experts. LD_RUN_PATH is a much safer bet.

28.19 3.19 What GNU build tool options are available when building Open-
COBOL?

The sources for the OpenCOBOL compiler follows GNU standards whenever possible. This includes being built
around the GNU build system.

28.19.1 3.19.1 Basics

From an end-user perspective, what this means is that the source code distributions follow these basic steps:
tar xvf open-cobol-l.l.tar.gz

cd open-cobol-1.1

./configure

make

make check

sudo make install

sudo ldconfig

But that is just scratching the surface of the possibilities. See What are the configure options available for building
OpenCOBOL? for the first steps with . /configure.

28.19.2 3.19.2 Out of tree builds

Next up, OpenCOBOL fully supports out-of-source-tree builds.

From Roger:

98 Chapter 28. 3 Using OpenCOBOL

OpenCOBOL FAQ, Release 1.1

I mentioned in the past the preferred way of doing
a configure/build ie. Out-of-source-tree build.

eg.
We have OC 2.0 in /home/open-cobol-2.0

We want to test -
OC with BDB

OC with vbisam

OC without db (ISAM)

mkdir /home/0c20110710bdb

cd /home/0c20110710bdb
/home/open—-cobol-2.0/configure —-enable-debug
make

make check

cd tests

cd cobol85

<Get newcob.val - per README>

make test

mkdir /home/0c20110710vbisam

cd /home/0c20110710vbisam

/home/open-cobol-2.0/configure —--enable-debug --with-vbisam
make

make check

cd tests

cd cobol85

<Get newcob.val - per README>

make test

mkdir /home/0c20110710nodb

cd /home/0c20110710nodb

/home/open—-cobol-2.0/configure —--enable-debug —--without-db
make

make check

cd tests

cd cobol85

<Get newcob.val - per README>

make test

For the last example both the OC and ANSI85 tests have been adjusted
to cater for lack of ISAM functionality.

To set your current environment to compile/execute from any of the above
(ie. without doing a "make install" from any directory), then

either "source" or execute as part of current environment

(with .) the following files from the build directory -

tests/atconfig

tests/atlocal

(Note in that order)
So eg.
/home/0c20110710vbisam/tests/atconfig

/home/0c20110710vbisam/tests/atlocal

will set compiler/runtime to this environment in the current shell.

28.19. 3.19 What GNU build tool options are available when building OpenCOBOL?

99

OpenCOBOL FAQ, Release 1.1

Note that both the OC tests and the ANSI85 tests do this internally
(Fairly obvious otherwise we would not be testing the right thing).

Of course, from any of the above example directories you can do
a final "make install”.

28.19.3 3.19.3 Autotest options

By developing the OpenCOBOL system around the GNU build tools, developers receive a great many options for free.
make check can include TESTSUITEFLAGS.
The TESTSUITEFLAGS allows for options that include:

* make check TESTSUITEFLAGS="--1ist" to list the available tests and descriptions
e "——verbose" to show a little more information during the tests
e "——jobs=n" to run n tests in parallel. On multi core systems, the speed up is fairly dramatic. For 425 tests,

normally 1 minute 22 seconds, ——jobs=4 ran in 36 seconds (on a small little AMD Athlon(tm) II X2 215
Processor). The more cores, the more dramatic the improvement.

28.20 3.20 Why don’t I see any output from my OpenCOBOL program?

This is actually a frequently asked question, and it usually has the same answer.

OpenCOBOL uses the Curses and NCurses packages for advanced terminal features and SCREEN SECTION han-
dling. This uses stdscr for input and output, and not the standard CONSOLE, SYSIN, SYSOUT character interface
modes. One feature of the Curses handler is the concept of a secondary screen buffer, which is erased during initial-
ization and then disappears at rundown. This can happen so fast on short display programs that it looks like nothing
happens.

program-id. helloat.
DISPLAY "Hello, world" LINE 5 COLUMN 5 END-DISPLAY
goback.

will cause the Curses package to initialize a secondary buffer, display the Hello string, then immediately restore the
primary buffer during goback. It will look like nothing is output when ./helloat is run. There are a few fixes for this.

* delay rundown with a CALL "CS$SLEEP" USING 5 END-CALL
* ACCEPT an unused variable which will cause a wait for carriage return.
* or even better, dump the secondary buffer from all Curses screen handling.

The last option is discussed here.

28.20.1 3.20.1 SMCUP and RMCUP

https://blogs.oracle.com/samf/entry/smcup_rmcup_hate is a great article that discusses, and sledge-hammer fixes, the
curses init screen clearing issue, leaving output on the stdout terminal, not an alternate screen.

First to find out the actual terminal capabilites, (and what control file is going to change):

$ infocmp | head -2

shows:

Reconstructed via infocmp from file: /home/btiffin/.terminfo/x/xterm-256color
xterm-256color|xterm with 256 colors,

100 Chapter 28. 3 Using OpenCOBOL

https://blogs.oracle.com/samf/entry/smcup_rmcup_hate

OpenCOBOL FAQ, Release 1.1

There is some voodoo with infocmp and tic to worry about. By default, infocmp reads local user files, but this
change can also effect the entire system.

Using a super user context:

[btiffin@localhost junk]$ sudo infocmp | head -2
Reconstructed via infocmp from file: /usr/share/terminfo/x/xterm-256color
xterm-256color|xterm with 256 colors,

gives us the system file.

After creating a just in case copy of /usr/share/terminfo/x/xterm-256color itis time to get rid of the
alternate stdscr.

infocmp >xterm.terminfo
S vi xterm.terminfo

S # get rid of smcup= and rmcup= upto and including the comma
S tic xterm.terminfo

in my case, the temporary xterm.terminfo looked like:

rin=\E[%pl%dT, rmacs=\E (B, rmam=\E[?71, rmcup=\E[?10491,
rmir=\E[41, rmkx=\E[?11\E>, rmm=\E[?10341, rmso=\E[27m,
rmul=\E[24m, rsl=\Ec, rs2=\E[!p\E[?3;41\E[41\E>, sc=\E7,
setab=\E[4%pl%dm, setaf=\E[3%pl%dm,

setb=\E[4%?%pl%{1}%=%t4%e%pl%{3}%=%t6%e%pls{4}%=%t1%e%pls{6}%=%t3%e%plsd%;m,
setf=\E[3%?%p1%{1}%=%t4%e%pl%{3}%=%t6%e%pl%{4}%=%t1%e%pl%{6}%=%t3%e%pl%d%;m,
Sgr=%?3p9%t\E (0%e\E (B%; \E[0%2%p63t; 1%; $2%p2%t; 4%; $2%p13p3% | %t; 7%; 32%p4%t; 5%; 32%p7%t; 8
sgr0=\E (B\E[m, smacs=\E (0, smam=\E[?7h, smcup=\E[?1049%h,

and becomes:
rin=\E[%p1%dT, rmacs=\E (B, rmam=\E[?71,
rmir=\E[41, rmkx=\E[?11\E>, rmm=\E[?210341, rmso=\E[27m,
rmul=\E[24m, rsl=\Ec, rs2=\E[!p\E[?3;41\E[41\E>, sc=\E7,
setab=\E[4%pl%dm, setaf=\E[3%pl%dm,
setb=\E[4%?%pl1%{1}%=%t4%e%pl%{3}%=%t6%e%pls{4}%=%t1%e%pl%{6}%=%t3%e%pl%d%;m,
setf=\E[3%?%pl%{1}%=%t4%e%pl%s{3}%=%t6%e%pls{4}%=%t1%e%pls{6}%=%t3%e%plsd%;m,
sgr=%7%p9%t\E (0%e\E (B%; \E[O°'> P6SL; 1%; $2%Pp2%L;4%; 52%pl%p3%|%t; 7%; %$2%p4%t; 5%;%2%p7%t; 8

sgr0=\E (B\E [m, smacs=\E 0, smam=\E[?7h,

rmcup and smcup edited out.

After the tic command completes, there is a shiny new local /home /btiffin/.terminfo/x/xterm-256color
compiled terminfo file that has no alternate terminal screen capabilities.

As long as you don’t run the terminal info compiler, t ic, as root, the files in /usr/share/terminfo/... will
still be the originals, and a new local copy is made. tic will overwrite the system file if it can, will move on and
create a local compiled file if it can’t.

The script in Sam’s blog, mentioned above, will alleviate doing this manually every time the system updates the
terminfo database.

So now, code like the following that displays data on line 2, column 12 and line 3, column 13

identification division.

program—-id. helloscreen.

procedure division.

display "Hello, world" at 0212 end-display

display "Goodbye, smcup/rmcup" at 0313 end-display
goback.

end program helloscreen.

28.20. 3.20 Why don’t | see any output from my OpenCOBOL program? 101

OpenCOBOL FAQ, Release 1.1

and then the command below; which still blanks the screen, but now leaves output on the terminal after goback.

[btiffin@home forum]$./helloscreen

Hello, world
Goodbye, smcup/rmcup
[btiffin@home forum]$

and OpenCOBOL displays things using advanced terminal capabilities, but leaves the data on screen after image exit.

Never worry about smcup/rmcup hate on curses init again. Not just OpenCOBOL and curses, but vi, less, man and
any other alternate screen application. For the win. This change effects old school TE TI termcap calls too.

Curses will still play havoc with screen section programs in pipes; as stdin, stdout are a little special with curses
involved. This is a minor annoyance that won’t come up as often and piping screen interactive programs has always
been laden in voodoo anyway.

102 Chapter 28. 3 Using OpenCOBOL

CHAPTER
TWENTYNINE

4 RESERVED WORDS

* 4.1 What are the OpenCOBOL RESERVED WORDS?

* 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs?

* 43 Can you clarify the use of FUNCTION in OpenCOBOL?

* 44 What is the difference between the LENGTH verb and FUNCTION LENGTH?
* 4.5 What STOCK CALL LIBRARY does OpenCOBOL offer?

e 4.6 What are the XF4, XF5, and X91 routines?

* 47 Whatis CBL_OC_NANOSLEEP OpenCOBOL library routine?

* 4.8 How do you use C$JUSTIFY?

* 49 What preprocessor directives are supported by OpenCOBOL?

COBOL Reserved Words

29.1 4.1 What are the OpenCOBOL RESERVED WORDS?

COBOL is a reserved word rich language. The OpenCOBOL compiler recognizes:

103

http://en.wikipedia.org/wiki/COBOL

OpenCOBOL FAQ, Release 1.1

Reserved Words

4.1.1

4.1.2

4.13

4.1.4

4.1.5

4.1.6

4.1.7

4.1.8

4.1.9

4.1.10
4.1.11
4.1.12
4.1.13
4.1.14
4.1.15
4.1.16
4.1.17
4.1.18
4.1.19
4.1.20
4.1.21
4.1.22
4.1.23
4.1.24
4.1.25
4.1.26
4.1.27
4.1.28
4.1.29
4.1.30
4.1.31
4.1.32
4.1.33
4.1.34
4.1.35
4.1.36
4.1.37
4.1.38
4.1.39
4.1.40
4.1.41
4.1.42
4.1.43
4.1.44
4.1.45
4.1.46
4.1.47
4.1.48
4.1.49
4.1.50
4.1.51
4.1.52
4.1.53

ACCEPT

ACCESS

ACTIVE-CLASS

ADD

ADDRESS

ADVANCING

AFTER

ALIGNED

ALL
ALLOCATE
ALPHABET
ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
ALPHANUMERIC

ALPHANUMERIC-EDITED

ALSO

ALTER
ALTERNATE

AND

ANY

ANYCASE

ARE

AREA

AREAS
ARGUMENT-NUMBER
ARGUMENT-VALUE
ARITHMETIC

AS

ASCENDING
ASSIGN

AT

ATTRIBUTE

AUTO

AUTO-SKIP
AUTOMATIC
AUTOTERMINATE
B-AND

B-NOT

B-OR

B-XOR
BACKGROUND-COLOR
BASED

BEEP

BEFORE

BELL

BINARY
BINARY-C-LONG
BINARY-CHAR
BINARY-DOUBLE
BINARY-LONG
BINARY-SHORT
BIT

4.1.54
4.1.55
4.1.56
4.1.57

o

BLANK
BLINK
BLOCK
BOOLEAN

T~ A

Chapter 29. 4 Reserved Wor

OpenCOBOL FAQ, Release 1.1

Reserved Words

514 words in OC 1.1, 136 of which are marked not yet implemented. 378 functional reserved words, as of August
2008.

29.1.1 4.1.1 ACCEPT

Makes data available from the keyboard or operating system to named data items. OpenCOBOL supports both standard
and extended ACCEPT statements.

Most extended ACCEPT statements will require an advanced terminal screen initialization, which can obscure
CONSOLE input and output.

ACCEPT variable FROM CONSOLE.

ACCEPT variable FROM ENVIRONMENT "path".
ACCEPT variable FROM COMMAND LINE.

ACCEPT variable AT 0101.
ACCEPT screen-variable.

ACCEPT today FROM DATE.
ACCEPT today FROM DATE YYYYMMDD.

29.1.2 4.1.2 ACCESS

Defines a file’s access mode. One of DYNAMIC, RANDOM, or SEQUENTIAL.
SELECT filename

ASSIGN TO "filename.dat"

ACCESS MODE IS RANDOM

RELATIVE KEY IS keyfield.

29.1.3 4.1.3 ACTIVE-CLASS

Not yet implemented. Object COBOL feature.

29.14 4.14 ADD

Sums two or more numerics, with an eye toward financial precision and error detection.
ADD 1 TO cobol GIVING OpenCOBOL END-ADD.

ADD
abcdfghijklmnopgrstuvwzx
GIVING total-of
ON SIZE ERROR
PERFORM log-problem
NOT ON SIZE ERROR
PERFORM graph-result

5
N

END-ADD

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 105

OpenCOBOL FAQ, Release 1.1

29.1.5 4.1.5 ADDRESS

Allows program access to memory address reference and, under controlled conditions, assignment.
SET pointer—-variable TO ADDRESS OF linkage-store.

SET ADDRESS OF based-var TO ADDRESS OF working-var

29.1.6 4.1.6 ADVANCING

Programmer control of newline output and paging.

DISPLAY "Legend: " WITH NO ADVANCING END-DISPLAY.
WRITE printrecord AFTER ADVANCING PAGE END-WRITE.

29.1.7 4.1.7 AFTER

Nested PERFORM clause and can influence when loop conditional testing occurs.

PERFORM
WITH TEST AFTER
VARYING variable FROM 1 BY 1
UNTIL variable > 10
AFTER inner FROM 1 BY 1
UNTIL inner > 4
DISPLAY variable ", " inner END-DISPLAY
END-PERFORM.

Will display 55 lines of output. 1 to 11 and 1 to 5. Removing the WITH TEST AFTER clause would cause 40 lines of
output. 1 to 10 and 1 to 4.

29.1.8 4.1.8 ALIGNED

Not yet implemented feature that will influence the internal alignment of not yet implemented USAGE BIT fields.

29.19 4.1.9 ALL

A multipurpose reserved in context word.
INSPECT variable REPLACING ALL "123" WITH "456".

MOVE TO var.

29.1.10 4.1.10 ALLOCATE

Allocates actual working storage for a BASED element.
ALLOCATE based-var INITIALIZED RETURNING pointer-var.

29.1.11 4.1.11 ALPHABET

* Set up for a mixed case SORT COLLATING SEQUENCE IS
CONFIGURATION SECTION.
SPECIAL-NAMES.

ALPHABET name IS "AaBbCcDdEe..".

106 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.12 4.1.12 ALPHABETIC

One of the OpenCOBOL data class (category) tests.

IF variable IS ALPHABETIC
DISPLAY "alphabetic" END-DISPLAY
END-IF

ALPHABETIC is defined as a data item that uses only A in the PICTURE clause. Finding examples of ALPHABETIC
data use is difficult, which means this type is rarely used, favouring ALPHANUMERIC instead.

When tested, only data that are upper case 2 to Z and lower case a to z will return true, all others, including any
digits 0 to 9 will return false.

29.1.13 4.1.13 ALPHABETIC-LOWER

One of the OpenCOBOL data class (category) tests.
IF variable IS ALPHABETIC-LOWER

DISPLAY "alphabetic-lower" END-DISPLAY
END-IF

29.1.14 4.1.14 ALPHABETIC-UPPER

One of the OpenCOBOL data class (category) tests.
DISPLAY variable "alphabetic-upper " WITH NO ADVANCING
IF variable IS ALPHABETIC-UPPER

DISPLAY "true A-Z, and nothing but A to Z" END-DISPLAY
ELSE

DISPLAY "false A-Z, something else in here" END-DISPLAY
END-IF

29.1.15 4.1.15 ALPHANUMERIC

INITIALIZE data-record REPLACING ALPHANUMERIC BY literal-value

29.1.16 4.1.16 ALPHANUMERIC-EDITED

INITIALIZE data-record
REPLACING ALPHANUMERIC-EDITED BY identifier-1

29.1.17 4.1.17 ALSO

A powerful, multiple conditional expression feature of EVALUATE.

EVALUATE variable ALSO second-test
WHEN "A" ALSO 1 THRU 5 PERFORM
WHEN "A" ALSO 6 PERFORM se
WHEN "A" ALSO 7 THRU 9 PERFORM
WHEN OTHER PERFORM inv
END-EVALUATE

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 107

OpenCOBOL FAQ, Release 1.1

29.1.18 4.1.18 ALTER

Obsolete and once unsupported verb that modifies the jump target for GO TO statements.

Yeah, just don’t. Unless you are writing a state machine engine, maybe. ALTER should rarely be used in COBOL
applications.

Rumour is, 1.1 may support this verb, to increase support for legacy code, and NOT as homage to a good idea. But
to be honest, I do look forward to seeing the first OpenCOBOL Flying Spaghetti Monster for the giggles of righteous
indignation.

Reality is, 2.0 does support ALTER. NIST Test Suite passes over 9,700 tests, up from just under 9,100 with 1.1.

29.1.19 4.1.19 ALTERNATE

Defines an ALTERNATE key for ISAM data structures.
SELECT file

ASSIGN TO filename

ACCESS MODE IS RANDOM

RECORD KEY IS key-field

ALTERNATE KEY IS alt-key WITH DUPLICATES.

29.1.20 4.1.20 AND

COBOL rules of precedence are; NOT, AND, OR.

IF field = "A" AND num = 3
DISPLAY "got 3" END-DISPLAY
END-IF

COBOL also allows abbreviated combined relational conditions.

IF NOT (a NOT > b AND c AND NOT d)
code
END-IF

is equivalent to

IF NOT (((a NOT > b) AND (a NOT > c)) AND (NOT (a NOT > d)))
code
END-IF

29.1.21 4.1.21 ANY

Allows for any value is TRUE in an EVALUATE statement.
EVALUATE TRUE ALSO TRUE

WHEN a > 3 ALSO ANY *> b can be any value *x*
PERFORM a-4-b-any
WHEN a2 = 3 ALSO Db =1

PERFORM a-3-b-1
END-EVALUATE

29.1.22 4.1.22 ANYCASE

Not yet implemented. Will allow case insentive match of currency symbols with FUNCTION NUMVAL-C.

108 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.23 4.1.23 ARE

Allows for multiple conditional VALUES.

01 cond-1 PIC X.
88 first—-truth VALUES ARE "A" "B" "C".
88 second-truth VALUES ARE "X" "y" "z",

29.1.24 4.1.24 AREA

Controls SORT, MERGE and RECORD data definitions.

I-O-CONTROL.
SAME RECORD AREA FOR filel, file2.

29.1.25 4.1.25 AREAS

Plural readability option for AREA
SAME RECORD AREAS

29.1.26 4.1.26 ARGUMENT-NUMBER

Holds the number of OS parsed command line arguments, and can act as the explicit index when retrieving
ARGUMENT-VALUE data. ARGUMENT-NUMBER can be used in ACCEPT FROM and DISPLAY UPON ex-
pressions.

ACCEPT command-line—argument—-count FROM ARGUMENT-NUMBER END-ACCEPT

DISPLAY 2 UPON ARGUMENT-NUMBER END-DISPLAY
ACCEPT indexed-command-line—-argument FROM ARGUMENT-VALUE END-ACCEPT

See COMMAND-LINE for more information on the unparsed command invocation string.

29.1.27 4.1.27 ARGUMENT-VALUE

Returns the next command line argument. This post from John on opencobol.org is an excellent idiom for parsing
command line arguments without too much worry as to the order.

>>source format is free

kD> ok o ok ok ok ok o ok

*> Author: jrls (John El11is)
*> Date: Nov-2008
*> Purpose: command line processing

kD ok o ok ok ok ok ok ok A ok ok
identification division.

program—-id. cmdline.

data division.

*>

working-storage section.

kD ko ok

01 argv pic x(100) wvalue .

88 recv value "-r", "—--recv".

88 email value "-e", "--email".

88 delivered value "-d", "--delivered".
01 cmdstatus pic x value

88 lastcmd value "1".

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 109

http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

01 reptinfo.

05 rept-recv pic x(30) value s
05 rept-howsent pic x(10) value sp-
*>
procedure division.
0000-start.
*>

perform until lastcmd

move low-values to argv
accept argv from argument-value
if argv > low-values
perform 0100-process—arguments
else
move "1" to cmdstatus
end-if

end-perform

display reptinfo.

stop run.
*>
0100-process—arguments.
*>

evaluate true

when recv

if rept-recv = spaces
accept rept-recv from argument-value
else
display "duplicate " argv
end-if
when email
move "email" to rept-howsent
when delivered
move "delivered" to rept-howsent
when other display "invalid switch: " argv

end-evaluate.

Example run:

./cmdline —--recv "john ellis" -e -f
invalid switch: -f
john ellis email

29.1.28 4.1.28 ARITHMETIC

Not yet implemented feature of the not yet implemented OPTIONS paragraph of the IDENTIFICATION DIVISION.

29.1.29 4.1.29 AS

PROGRAM-ID. program-name AS literal.

29.1.30 4.1.30 ASCENDING

COBOL table suport.

01 CLUBTABLE.
05 MEMBER-DATA OCCURS 1 TO 6000000000 TIMES
DEPENDING ON PEOPLE
ASCENDING KEY IS HOURS-DONATED.

110 Chapter 29. 4 Reserved Words

http://en.wikipedia.org/wiki/COBOL

OpenCOBOL FAQ, Release 1.1

29.1.31 4.1.31 ASSIGN

Assign a name to a file or other external resource.
SELECT input-file
ASSIGN TO "filename.ext"

The actual filename used is dependent on a configuration setting. Under default configuration settings,
filename-mapping is setto yes.
See What are the OpenCOBOL compile time configuration files? for details.

If yes, file names are resolved at run time using
environment variables.

For example, given ASSIGN TO "DATAFILE", the actual

file name will be

1. the value of environment variable ’'DD_DATAFILE’ or
2. the value of environment variable ’dd_DATAFILE’ or
3. the value of environment variable ’'DATAFILE’ or

4. the literal "DATAFILE"

If no, the value of the assign clause is the file name.
#

Value: ’'yes’, ’'no’
filename-mapping: yes

So, under GNU/Linux, bash shell

. /myprog

the program will find the data in /tmp/opencobol .dat
$ export DD_DATAFILE='/tmp/other.dat’
S ./myprog

this run of the same program will find the datain /tmp/other.dat

As shown in the sample .conf comments, the order of environment variable lookup proceeds through three enviroment
variables before using a literal as the filename.

* DD_DATAFILE

* dd_DATAFILE

* DATAFILE

* and finally “DATAFILE”

where DATAFILE is the name used in
ASSIGN TO name

and can be any valid COBOL identifier, or string leading to a valid operating system filename.

29.1.32 4.1.32 AT

Controls position of ACCEPT and DISPLAY screen oriented verbs.
*> Display at line 1, column 4 <x
DISPLAY "Name:" AT 0104 END-DISPLAY

*> Accept starting at line 1, column 10 for length of field <x
ACCEPT name-var AT 0110 END-ACCEPT

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 111

OpenCOBOL FAQ, Release 1.1

29.1.33 4.1.33 ATTRIBUTE

Not yet implemented, but when it is, it will allow
SET screen—-name ATTRIBUTE BLINK OFF

29.1.34 4.1.34 AUTO

Automatic cursor flow to next field in screen section.

29.1.35 4.1.35 AUTO-SKIP

Alias for AUTO

29.1.36 4.1.36 AUTOMATIC

LOCK MODE IS AUTOMATIC. See MANUAL and EXCLUSIVE for more LOCK options.

29.1.37 4.1.37 AUTOTERMINATE

Alias for AUTO

29.1.38 4.1.38 B-AND

Not yet implemented BIT field operation. See What STOCK CALL LIBRARY does OpenCOBOL offer? CBL_AND
for alternatives allowing bitwise operations.

29.1.39 4.1.39 B-NOT

Not yet implemented BIT field operation. See What STOCK CALL LIBRARY does OpenCOBOL offer? CBL_NOT
for alternatives allowing bitwise operations.

29.1.40 4.1.40 B-OR

Not yet implemented BIT field operation. See What STOCK CALL LIBRARY does OpenCOBOL offer? CBL_OR
for alternatives allowing bitwise operations.

For example:
OCOBOL >>SOURCE FORMAT IS FIXED

H Dk ok b ok ok ok ok b ok o o

x> Author: Brian Tiffin
x> Date: 20110626
*> Purpose: Demonstrate alternative for B-OR

*> Tectonics: cobc -x bits.cob

*> R i e b b b i b b b b b b b b i b b b b b b i b g
identification division.

program—-id. bits.

data division.

112 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

working-storage section.

01 sl pic 999 usage comp-5.
01 t2 pic 999 usage comp-5.
01 len pic 9.

01l result usage binary-long.

*> Ak ok ok kb ok ok b ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok ok ok b ok ok b ok ok b ok ok ok ok ok ok b ok ok b ok ok b ok ok ok ok ok ok o ok
procedure division.

move 2 to sl

move 4 to t2

move 1 to len

*> CBIL_OR takes source, target and length value 2 OR 4 is 6. *
call "CBL_OR" using sl t2 by value len returning result end-call
display sl space t2 space len space result end-display
goback.
end program bits.

giving:

$ cobc -x bits.cob

$./bits

002 006 1 +0000000000

For a COBOL source code solution to BIT operations, Paul Chandler was nice enough to publish BITWISE.cbl and a
full listing is included at BITWISE.

29.141 4.141 B-XOR

Not yet implemented BIT field operation. See What STOCK CALL LIBRARY does OpenCOBOL offer? CBL_XOR
for alternatives allowing bitwise operations.

29.142 4.1.42 BACKGROUND-COLOR

05 BLANK SCREEN BACKGROUND-COLOR 7 FOREGROUND-COLOR O.

29.1.43 4.1.43 BASED

01 based-var PIC X(80) BASED.

A sample posted by [human]

OCOBO L #————— ===~~~ ——
IDENTIFICATION DIVISION.
PROGRAM-ID. ’'MEMALL' .
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. DECIMAL-POINT IS COMMA.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
DATA DIVISION.
FILE SECTION.
*
WORKING-STORAGE SECTION.
*
77 mychar pic x.
01 REC-TEST BASED.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 113

OpenCOBOL FAQ, Release 1.1

03 REC-TEST-PART1 PIC X(5500000).
03 REC-TEST-PART2 PIC X(0100000).
03 REC-TEST-PART3 PIC X(1200000) .
03 REC-TEST-PART4 PIC X(1200000).
03 REC-TEST-PARTS5 PIC X(1700000).

PROCEDURE DIVISION.
declaratives.
end declaratives.

main section.

00.
FREE ADDRESS OF REC-TEST
display ’'MEMALL loaded and REC-TEST FREEd before ALLOCATE’
accept mychar

IF ADDRESS OF REC-TEST = NULL

display 'REC-TEST was not allocated before’
ELSE

display 'REC-TEST was allocated before’
END-IF
accept mychar

ALLOCATE REC-TEST

move all ’9’ to REC-TEST

display ’'REC-TEST allocated and filled with '
REC-TEST (1:9)

end-display

accept mychar

IF ADDRESS OF REC-TEST = NULL
display 'REC-TEST was not allocated before’
ALLOCATE REC-TEST
display ’'REC-TEST allocated again, filled with '
REC-TEST (1:9)
end-display
ELSE
display ’'REC-TEST was allocated before’
END-IF
accept mychar

FREE ADDRESS OF REC-TEST
display ’'REC-TEST FREEd’
accept mychar

stop run

continue.
ex. exit program.

114 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.44 4.1.44 BEEP

Ring the terminal bell during DISPLAY output. Alias for BELL
DISPLAY "Beeeeep" LINE 3 COLUMN 1 WITH BEEP END-DISPLAY.

29.145 4.1.45 BEFORE

Sets up a PERFORM loop to test the conditional before execution of the loop body. See AFTER for the alternative.
BEFORE is the default.

MOVE 1 TO counter
PERFORM WITH TEST BEFORE
UNTIL counter IS GREATER THAN OR EQUAL TO limiter
CALL "subprogram" USING counter RETURNING result END-CALL
MOVE result TO answers (counter)
ADD 1 TO counter END-ADD
END-PERFORM
Also used with the WRITE verb.
WRITE record-name
BEFORE ADVANCING some-number LINES
And to control how the INSPECT verb goes about its job.
INSPECT character-var TALLYING
the-count FOR ALL "tests" BEFORE "prefix"
And not currently (February 2013) supported, in the declaratives for REPORT SECTION control.
USE BEFORE REPORTING

29.146 4.1.46 BELL
Ring the terminal bell during DISPLAY output. Alias for BEEP

DISPLAY "Beeeecep" LINE 3 COLUMN 1 WITH BELL END-DISPLAY.

29.1.47 4.1.47 BINARY

01 result PIC S9(8) USAGE BINARY

29.1.48 4.1.48 BINARY-C-LONG

With OpenCOBOL’s tight integration with the C Application Binary Interface the compiler authors have built in
support that guarantees a native system C long value being the same bit size between COBOL and C modules. This
increases coverage of the plethora of open C library functions that can be directly used with the CALL verb. Including
cases where callback functions that require long stack parameters (that can’t as easily be wrapped in thin C code
layers) can now be used more effectively and safely.

29.1.49 4.1.49 BINARY-CHAR

Defines an 8 bit usage item.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 115

OpenCOBOL FAQ, Release 1.1

29.1.50 4.1.50 BINARY-DOUBLE

Defines a 64 bit usage item.

29.1.51 4.1.51 BINARY-LONG

32 bit native USAGE modifier. Equivalent to S9(8).

29.1.52 4.1.52 BINARY-SHORT

16 bit native USAGE. Equivalent to S9(5).

29.1.53 4.1.53 BIT

Not yet implemented. See What STOCK CALL LIBRARY does OpenCOBOL offer? for alternatives allowing bitwise
operations.

29.1.54 4.1.54 BLANK

05 BLANK SCREEN BACKGROUND-COLOR 7 FOREGROUND-COLOR O.

29.1.55 4.1.55 BLINK

Aaaaaah, my eyes!!

29.1.56 4.1.56 BLOCK

FD file-name
BLOCK CONTAINS 1 TO n RECORDS

29.1.57 4.1.57 BOOLEAN

As yet unsupported modifier.

29.1.58 4.1.58 BOTTOM

A LINAGE setting.
FD mini-report
linage is 16 lines
with footing at 15
lines at top 2
lines at bottom 2.

116 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.59 4.1.59 BY

PERFORM the-procedure
VARYING step-counter FROM 1 BY step-size
UNTIL step-counter > counter-limit

29.1.60 4.1.60 BYTE-LENGTH

Human inscisors average about 16mm.

More to the point, the BYTE-LENGTH returns the length, in bytes, of a data item. See FUNCTION BYTE-LENGTH

29.1.61 4.1.61 CALL

The OpenCOBOL CALL verb accepts literal or identifier stored names when resolving the transfer address. The US-
ING phrase allows argument passing and OpenCOBOL includes internal rules for the data representation of the call
stack entities that depend on the COBOL PICTURE and USAGE clauses. Return values are captured with RETURN-
ING identifier. See What STOCK CALL LIBRARY does OpenCOBOL offer?.

For more information see http://www.opencobol.org/modules/bwiki/index.php?cmd=read&page=UserManual%2F2_3#content_1_0

CALL is the verb that opens up access to the plethora of C based ABI libraries. A plethora, and the standard C library
is accessible without explicit linkage as a bonus.

One item of note is C pointers. Especially those passed around as handles. When calling a C routine that returns a
handle, the RETURNING identifier will receive a C pointer. To use that handle in later CALLSs, the argument from
COBOL should usually by passed BY VALUE. This passes the C pointer, not the address of the COBOL identifier as
the default BY REFERENCE argument handling would do.

Below is a sample that allows fairly carefree use of CBL_OC_DUMP during development. ON EXCEPTION CON-
TINUE.
OCOBOL #>>SOURCE FORMAT IS FIXED

KDk ok b ok ok ok ok ok ok ok ok ok ok A

*> Author: Brian Tiffin

*> Date: 20110701

*> Purpose: Try C library formatted printing, and CALL exception
*> Tectonics: cobc —-x callon.cob

*> or cobc -x callon.cob CBIL_OC_DUMP.cob

F Dk h ok b ok ok ok ok ok ok ok b ok ok ok ok b ok ok ok ok ok ok ok A ok
identification division.
program-id. callon.

data division.
working-storage section.

01 result usage binary-long.
01 pie usage float-short.
01 stuff pic x(12) value ’'abcdefghijkl’.

D> kA kA kA A A A Ak A h A h bk Ak bbb Ak A bbbk bbb A bk bbbk A bk b kb bk b h sk kb h bk kb h ok kb ok Ak ko
procedure division.
move 3.141592654 to pie

*> Get a dump of the memory at pie, but don’t stop if not linked
call "CBL_OC_DUMP" using pie 4 on exception continue end-call

*> Call C’s printf, abort if not available

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 117

http://www.opencobol.org/modules/bwiki/index.php?cmd=read&page=UserManual%2F2_3#content_1_0

OpenCOBOL FAQ, Release 1.1

call static "printf" using
"float-short: %10.8f" & x"0alOO0"
by value pie
returning result
end-call
display pie length of pie result end-display

*> Get a dump of the memory used by stuff, don’t stop if no link
call "CBL_OC_DUMP" using stuff 12 on exception continue end-call

*> Get a dump of the memory used by stuff, abort if not linked <%
call "CBL_OC_DUMP" using stuff 12 end-call

goback.
end program ca

on.

See What is CBL_OC_DUMP? for details of the subprogram.

A runtime session shows:

$ cobc -x callon.cob

$./callon

float-short: 3.14159274

3.1415927 4 +0000000024

libcob: Cannot find module ’CBL_OC_DUMP’
S cobc -x callon.cob CBL_OC_DUMP.cob

$./callon
Offset HEX-— -- —— =5 —— —— —= —= 10 —= —— —= —— 15 —— CHARS—--—-1----5-
000000 db 0Of 49 40 LI

float-short: 3.14159274
3.1415927 4 +0000000024

Offset HEX-- -- —— -5 —— —— —— —— 10 —-= —— —— —— 15 —— CHARS-—--1-—---5-
000000 61 62 63 64 65 66 67 68 69 6a 6b 6C abcdefghijkl. . ..
offset HEX-— -- ——= -5 —— —— —— —— 10 —— —— —— —— 15 —— CHARS——--1----5-
000000 61 62 63 64 65 66 67 68 69 6a 6b 6c abcdefghijkl. . ..

So, the first CALL to CBL_OC_DUMP doesn’t ‘fail’ as the ON EXCEPTION CONTINUE traps the condition and lets
the program carry on without a dump displayed. The last CALL does abend the program with ‘Cannot find module’
when CBL_OC_DUMP is not compiled in.

29.1.62 4.1.62 CANCEL

Virtual cancel of a module is supported. Physical cancel support is on the development schedule.

29.1.63 4.1.63 CD

A control clause of the as yet unsupported COMMUNICATION DIVISION.

29.1.64 4.1.64 CENTER

An as yet unsupported keyword.

118 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.65 4.1.65 CF

Shortform for CONTROL FOOTING, a clause used in REPORT SECTION.

29.1.66 4.1.66 CH

Shortform for CONTROL HEADING, a clause used in PAGE descriptors in the REPORT SECTION.

29.1.67 4.1.67 CHAIN

Invokes a subprogram, with no return of control implied. The chained program unit virtually becomes the main
program within the run unit.

29.1.68 4.1.68 CHAINING
Passes procedure division data through WORKING-STORAGE and can be used for shell command line arguments as
well, as in CALL “myprog” USING string END-CALL.

from opencobol.org by human

WORKING-STORAGE SECTION.
01 cmd-argument.
02 some-text pic x(256).

procedure division Chaining cmd-argument.
display ’'You wrote:’
r>m"r funection trim(some—-text) "’

"from shell command line’
end-display

29.1.69 4.1.69 CHARACTER

PADDING CHARACTER IS

A soon to be obsolete feature.

29.1.70 4.1.70 CHARACTERS

A multi use keyword.

Used in SPECIAL-NAMES
OCOBOL >>SOURCE FORMAT IS FIXED

F Dk k ok b ok ok ok ok b ok ok ok ok b ok ok ok ok b ok o

x> Author: Brian Tiffin

x> Date: 20101031

*> Purpose: Try out SYMBOLIC CHARACTERS
*> Tectonics: cobc -x figurative.cob

*> Rave: OpenCOBOL is stone cold cool

*> %k ok ok kb ok ok b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok ok ok b ok ok b ok ok b ok ok ok ok ok ok b ok ok b ok ok b ok ok ok ok ok ok o ok
identification division.
program-id. figurative.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 119

http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

environment division.
configuration section.
special-names.
symbolic characters TAB is 10
LE is 11
CMA is 45.

data division.

working-storage section.

01 a-comma pic x(1) value ",".
01 lots-of-commas pic x(20).

*> LR g b b b g b b b b g b b b b b b b b b b b b b b b b b g b b b b g b b b g b b b g b b b b b b b b g g b b b g g
procedure division.
display
"thing" TAB "tabbed thing" LF
"and" TAB "another tabbed thing" LF
"other" CMA " things"
end-display

move a-comma to lots-of-commas
display "MOVE a-comma : " lots-of-commas end-display

move CMA to lots—of-commas
display "MOVE symbolic: " lots-of-commas end-display

goback.
end program figurative.

Output:

$ cobc -x figuratives.cob
$./figuratives
thing tabbed thing

and another tabbed thing

other, things

MOVE a-comma : ,

MOVE SymbOliC: rrrrrrrrrrrrrrrrrrrig
Used in INSPECT

INSPECT str TALLYING tal FOR CHARACTERS

Used in a File Description FD

FD file—name
BLOCK CONTAINS integer-1 TO integer-2 CHARACTERS
RECORD IS VARYING IN SIZE FROM integer-5 TO integer-6 CHARACTERS
DEPENDING ON identifier—1.

29.1.71 4.1.71 CLASS

Used to create alphabets in SPECIAL-NAMES.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

CLASS octals IS 0’ THRU ’7’.

PROCEDURE DIVISION.

120 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

IF user-value IS NOT octals

DISPLAY "Sorry, not a valid octal number" END-DISPLAY
ELSE

DISPLAY user-value END-DISPLAY
END-IF

29.1.72 4.1.72 CLASS-ID

An as yet unsupported Object COBOL class identifier clause.

29.1.73 4.1.73 CLASSIFICATION

An as yet unsupported source code internationalization clause.

29.1.74 4.1.74 CLOSE

Close an open file. OpenCOBOL will implicitly close all open resources at termination of a run unit and will display
a warning message stating so, and the danger of potentially unsafe termination.

CLOSE input-file

29.1.75 4.1.75 CODE

A syntactically recognized, but as yet unsupported clause of a report descriptor, RD.

29.1.76 4.1.76 CODE-SET

An as yet unsupported data internationalization clause.

29.1.77 4.1.77 COL

Alias for COLUMNS.

29.1.78 4.1.78 COLLATING
Allows definition within a program unit of a character set.

OBJECT-COMPUTER. name.
PROGRAM COLLATING SEQUENCE IS alphabet-1.

29.1.79 4.1.79 COLS

Alias for COLUMNS.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 121

OpenCOBOL FAQ, Release 1.1

29.1.80 4.1.80 COLUMN

1. A recognized but unsupported REPORT SECTION RD descriptor clause.

2. Also used for positional DISPLAY and ACCEPT, which implicitly uses SCREEN SECTION style ncurses
screen 10.

DISPLAY var—1 LINE 1 COLUMN 23 END-DISPLAY

29.1.81 4.1.81 COLUMNS

A recognized but as yet unsupported RD clause.

29.1.82 4.1.82 COMMA
A SPECIAL-NAMES clause supporting commas in numeric values versus the default period decimal point. COBOL

was way ahead of the internationization curve, and this feature has caused compiler writers no little grief in its time,
a challenge they rise to and deal with for the world’s benefit.

DECIMAL POINT IS COMMA

29.1.83 4.1.83 COMMAND-LINE

Provides access to command line arguments.
ACCEPT the—-args FROM COMMAND-LINE END-ACCEPT

29.1.84 4.1.84 COMMIT

Flushes ALL current locks, synching file I/O buffers. OpenCOBOL supports safe transactional processing with ROLL-
BACK capabilities. Assuming the ISAM handler configured when building the compiler can support LOCK_

29.1.85 4.1.85 COMMON
PROGRAM-ID. CBI_OC_PROGRAM IS COMMON PROGRAM.

Ensures a nested sub-program is also available to other nested sub-programs with a program unit heirarchy.

29.1.86 4.1.86 COMMUNICATION

currently (February 2013) unsupported DIVISION, but see Does OpenCOBOL support Message Queues? for an
alternative.

29.1.87 4.1.87 COMP

See COMPUTATIONAL

29.1.88 4.1.88 COMP-1

See COMPUTATIONAL-1

122 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.89 4.1.89 COMP-2

See COMPUTATIONAL-2

29.1.90 4.1.90 COMP-3

See COMPUTATIONAL-3

29.191 4.1.91 COMP-4

See COMPUTATIONAL-4

29.1.92 4.1.92 COMP-5

See COMPUTATIONAL-5

29.1.93 4.1.93 COMP-X

See COMPUTATIONAL-X

29.1.94 4.1.94 COMPUTATIONAL

Implementors choice; OpenCOBOL is a big-endian default. With most Intel personal computers and operating systems
like GNU/Linux, COMPUTATIONAL-5 will run faster.

29.1.95 4.1.95 COMPUTATIONAL-1

Single precision float. Equivalent to FLOAT-SHORT.

29.1.96 4.1.96 COMPUTATIONAL-2

Double precision float. Equivalent to FLOAT-LONG.

29.1.97 4.1.97 COMPUTATIONAL-3

Equivalent to PACKED DECIMAL. Packed decimal is two digits per byte, always sign extended and influenced by a
.conf setting binary-size COMPUTATIONAL-6 is UNSIGNED PACKED.

29.1.98 4.1.98 COMPUTATIONAL-4

Equivalent to BINARY.

29.1.99 4.1.99 COMPUTATIONAL-5

Native form.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 123

OpenCOBOL FAQ, Release 1.1

29.1.100 4.1.100 COMPUTATIONAL-6

Unsigned packed decimal form, see COMPUTATIONAL-3.

29.1.101 4.1.101 COMPUTATIONAL-X

Native form.

29.1.102 4.1.102 COMPUTE

Computational arithmetic.
COMPUTE circular—-area = radius x* 2 % FUNCTION PI END-COMPUTE

OpenCOBOL supports the normal gamut of arithmetic expressions.
e Add +
* Subtract -
* Multiply *
* Divide /
* Raise to power **
Order of precedence rules apply.
1. unary minus, unary plus
2. exponentiation
3. multiplication, division
4. addition, subtraction
Spaces and expressions
Due to COBOL allowing dash in user names, care must be taken to properly space arithmetic expressions.

Some examples of seemingly ambiguous and potentially dangerous code

OCOBOL*> %k ok ok ok b ok ok b ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok b ok ok b ok ok b ok ok ok b ok ok b ok ok b ok ok ok ok ok ok b ok ok b ok ok b b ok ok ok ok ok o ok
identification division.
program—-id. computing.

data division.
working-storage section.
01 answer pic s9(8).

01 var pic s9(8).

KDk o ok

procedure division.

compute answer = 3xvar—-1 end-compute
goback.
end program computing.

That is NOT three times var minus one, OpenCOBOL will complain.

S cobc —-x computing.cob
computing.cob:18: Error: ’'var—-1’ is not defined

124 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

whew, saved!

OCOBOL*> ER R b i e b i b b i b b b b b e b b i b b b b e b b i b b i

identification division.
program—-id. computing.

data division.
working-storage section.
01 answer pic s9(8).

01 var pic s9(8).

01 var-1 pic s9(8).

*>
procedure division.
compute answer = 3xvar-1 end-compute

goback.
end program computing.

With the above source, the compile will succeed.

&

S cobc —-x computing.cob

Kk ok ok ok ok ok ok b ok ok ok ok ok ok ok b ok ok ok b ok ok ok b ok ok ok ok b ok ok ok b ok ok ok b ok ok ok ok ok ok ok ok ok ok ok b ok ok ok b ok ok ok ok ko ok A

OpenCOBOL will (properly, according to standard) compile this as three times var-1. Not saved, if you meant 3

times var minus 1.

OpenCOBOL programmers are strongly encouraged to use full spacing inside COMPUTE statements.

OCOBOL*> AAAAA A AL A AL A d AL d A d A A A A h A A A A A A A A d A h Ak h Ak

identification division.
program—-id. computing.

data division.
working-storage section.
01 answer pic s9(8).

01 var pic s9(8).

01 var-1 pic s9(8).

*>
procedure division.
compute

answer = 3 x var — 1

on size error

display "Problem, call the ghost busters"

not on size error

LR g b b b b g g b b b g b b b b g b b b g g b b b b g b b b g b b b b g b b b b g b b b g b b b b g b b b g g b b b g g

end-display

display "All good, answer is trustworthy" end-display

end-compute

goback.
end program computing.

COMPUTE supports ON SIZE ERROR, NOT ON SIZE ERROR imperatives for safety, and the ROUNDED modifier

for bankers.

29.1.103 4.1.103 CONDITION

As yet unsupported USE AFTER EXCEPTION CONDITION clause.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS?

125

OpenCOBOL FAQ, Release 1.1

29.1.104 4.1.104 CONFIGURATION

A SECTION of the ENVIRONMENT DIVISION. Holds paragraphs for
* SOURCE-COMPUTER
* OBJECT-COMPUTER
¢ REPOSITORY
e SPECIAL-NAMES

29.1.105 4.1.105 CONSTANT

An extension allowing constant definitions
01 enumerated-value CONSTANT AS 500.

29.1.106 4.1.106 CONTAINS

An FD clause:
FD a-file RECORD CONTAINS 80 CHARACTERS.

29.1.107 4.1.107 CONTENT

A CALL clause that controls how arguments are passed and expected.
CALL "subprog" USING BY CONTENT calpha-var

alpha-var will not be modifieable by subprog as a copy is passed.

See REFERENCE and VALUE for the other supported CALL argument control.

29.1.108 4.1.108 CONTINUE

A placeholder, no operation verb.

if action-flag = "C" or "R" or "U" or "D"
continue
else
display "invalid action-code" end-display
end-if

29.1.109 4.1.109 CONTROL

As yet unsupported REPORT SECTION clause for setting control break data fields.

29.1.110 4.1.110 CONTROLS

As yet unsupported REPORT SECTION clause for setting control break data fields.

126 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.111 4.1.111 CONVERTING

A clause of the INSPECT verb.
INSPECT X CONVERTING "012345678" TO "999999999",

29.1.112 4.1.112 COPY

The COBOL include pre-processor verb. Also see REPLACE and Does OpenCOBOL support COPY includes?.

29.1.113 4.1.113 CORR

Alias for CORRESPONDING.

29.1.114 4.1.114 CORRESPONDING

Move any and all sub fields with matching names within records.
01 bin-record.
05 first-will usage binary-short.
05 second-will usage binary-long.
05 this-wont-move usage binary-long.
05 third-will usage binary-short.
01 num-record.
05 first-will pic 999.
05 second-will pic s9(9).
05 third-will piec 999.
05 this-doesnt-match pic s9(9).

move corresponding bin-record to num-record
display

first-will in num-record

second-will in num-record

third-will in num-record
end-display

29.1.115 4.1.115 COUNT

Sets the count of characters set in an UNSTRING substring.

From the OpenCOBOL Programmer’s Guide’s UNSTRING entry.
UNSTRING Input—-Address
DELIMITED BY "," OR "/"
INTO
Street—-Address DELIMITER D1 COUNT CI
Apt—-Number DELIMITER D2 COUNT C2
City DELIMITER D3 COUNT C3
State DELIMITER D4 COUNT C4
Zip—-Code DELIMITER D5 COUNT C5
END-UNSTRING

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 127

OpenCOBOL FAQ, Release 1.1

29.1.116 4.1.116 CRT

SPECIAL-NAMES.
CONSOLE IS CRT
CRT STATUS is identifier-—1.

CONSOLE IS CRT allows “CRT” and “CONSOLE” to be used interchangeably on DISPLAY but this is a default
for newer OpenCOBOL implementations.

CRT STATUS IS establishes a PIC 9(4) field for screen ACCEPT status codes. There is also an implicit COB-CRT-
STATUS register defined for all programs, that will be used if no explicit field is established.

29.1.117 4.1.117 CURRENCY

SPECIAL-NAMES.
CURRENCY SIGN IS literal-1.

Default currency sign is the dollar sign “$”.

29.1.118 4.1.118 CURSOR

Tracks the line/column location of screen ACCEPT.

SPECIAL-NAMES.
CURSOR IS identifier—-2.

identifier-2 is to be declared as PIC 9(4) or 9(6). If 4, the field is LLCC. With 9(6) it is LLLCCC where L is line and
C is column, zero relative.

29.1.119 4.1.119 CYCLE

A clause that causes EXIT PERFORM to return to the top of a loop. See FOREVER for an example.

29.1.120 4.1.120 DATA

A magical DIVISION. One of COBOL’s major strength is the rules surrounding the DATA DIVISION and pictorial
record definitions.

29.1.121 4.1.121 DATA-POINTER

An as yet unsupported Object COBOL feature.

29.1.122 4.1.122 DATE

An ACCEPT source. 6 digit and 8 digit Gregorian dates.
1. ACCEPT ident-1 FROM DATE
2. ACCEPT ident-2 FROM DATE YYYYMMDD

128 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

identification division.
program-id. dates.

data division.
working-storage section.
01 date-2nd
03 date-yy pic 9(2).
03 date-mm pic 9(2).
03 date-dd pic 9(2).
01 date-3rd
03 date-yyyy pic 9(4).
03 date-mm pic 9(2).
03 date-dd pic 9(2).

procedure division.
accept date-2nd from date end-accept

> Just before the 3rd millennium, programmers admitted <
> that 2 digit year storage was a bad idea and ambiguous <x
accept date-3rd from date yyyymmdd end-accept

display date-2nd space date-3rd end-display

goback.
end program dates.

./dates
110701 20110701

29.1.123 4.1.123 DAY

An ACCEPT source. Access the current date in Julian form. Returns yyddd and yyyyddd formats.
1. ACCEPT ident-1 FROM DAY

2. ACCEPT ident-2 FROM DAY YYYYDDD
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok b ok ok ok ok ok ok ok ok ok ok A

x> Author: Brian Tiffin
*> Date: 2011182 (July 01)
*> Purpose: Accept from day in Julian form

*> Tectonics: cobc -x days.cob

D> ko hk ok Ak Ak k ok ok k ok ok ok ok k ok ok ok ok k ok kA ok oh kA ok ok ok ok ok ok ok ok ok ok h ok ok ok ok h k ok ok ok h k ok k kA kA A
identification division.

program-id. days.

data division.
working-storage section.
01 julian-2nd.
03 Jjulian-yy pic 9(2).
03 julian-days pic 9(3).
01 julian-3rd.
03 julian-yyyy pic 9(4).
03 julian-days pic 9(3).

procedure division.
accept julian-2nd from day end-accept

x> Just before the 3rd millennium, programmers admitted <%

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 129

OpenCOBOL FAQ, Release 1.1

x> that 2 digit year storage was a bad idea and ambiguous <#
accept julian-3rd from day yyyyddd end-accept

display julian-2nd Jjulian-3rd end-display

goback.
end program days.
$ make days
cobc -W -x days.cob -o days

$./days
11182 2011182

29.1.124 4.1.124 DAY-OF-WEEK

An ACCEPT source. Single digit day of week. 1 for Monday, 7 for Sunday.

accept the-day from day-of-week

29.1.125 4.1.125 DE

Report Writer shortcut for DETAIL. Recognized, but not yet implemented. This author found this type of shortcut
very unCOBOL, until trying to layout a report, when it made a lot more practical sense in FIXED form COBOL.

29.1.126 4.1.126 DEBUGGING

A SOURCE-COMPUTER clause and DECLARATIVE phrase.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER mine
WITH DEBUGGING MODE.

DEBUGGING MODE can also be toggled on with the -fdebugging-line cobc option, and will compile in ‘D’ lines.

PROCEDURE DIVISION.
DECLARATIVES.
decl-debug section.

USE FOR DEBUGGING ON ALL PROCEDURES
decl-paragraph.

DISPLAY "Why is this happening to me?" END-DISPLAY
END DECLARATIVES.

USE FOR DEBUGGING sets up a section that is executed when the named section is entered. Powerful. It can also
name a file, and the debug section is evaluated after open, close, read, start etc. Identifiers can be also be named and
the debug section will trigger when referenced (usually after).

29.1.127 4.1.127 DECIMAL-POINT

Allows internationization for number formatting. In particular

IDENTIFICATION DIVISION.

PROGRAM-ID. ’'MEMALL’.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECIAL-NAMES. DECIMAL-POINT IS COMMA.

130 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

will cause OpenCOBOL to interpret numeric literals along the lines of 123,45 as one hundred twenty three and forty
five one hundreths.

DECIMAL-POINT IS COMMA, while world friendly, can be the cause of ambiguous parsing and care must be taken
by developers that use comma to separate parameters to FUNCTIONS.

29.1.128 4.1.128 DECLARATIVES

An imperative entry that can control exception handling of file operations and turn on debug entry points.

procedure division.
declaratives.
handle—-errors section.
use after standard error procedure on filename-1.
handle-error.
display "Something bad happened with " filename-1 end-display.

helpful-debug section.
use for debugging on main-file.
help-me.

display "Just touched " main-file end-display.

end declaratives.

29.1.129 4.1.129 DEFAULT

A multi-use clause used in
e CALL ... SIZE IS DEFAULT
¢ ENTRY ... SIZE IS DEFAULT
e INITIALIZE ... WITH ... THEN TO DEFAULT

29.1.130 4.1.130 DELETE

Allows removal of records from RELATIVE and INDEXED files.
DELETE filename—-1 RECORD
INVALID KEY
DISPLAY "no delete" END-DISPLAY
NOT INVALID KEY
DISPLAY "record removed" END-DISPLAY
END-DELETE

4.1.130.1 O0C2.0

Allows file deletes.
DELETE FILE

filename-1 filename-2 filename-3
END-DELETE

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 131

OpenCOBOL FAQ, Release 1.1

29.1.131 4.1.131 DELIMITED

A fairly powerful keyword used with the STRING and UNSTRING verbs. Accepts literals and the BY SIZE modifier.

STRING null-terminated
DELIMITED BY
INTO no-zero
END-STRING

29.1.132 4.1.132 DELIMITER

Tracks which delimiter was used for a substring in an UNSTRING operation.

From Gary’s OCic.cbl
UNSTRING Expand-Code—Rec

DELIMITED BY ". " OR " "
INTO SPI-Current-Token
DELIMITER IN Delim

WITH POINTER Src-Ptr
END-UNSTRING

29.1.133 4.1.133 DEPENDING

Sets a control identifier for variable OCCURS table definitions.

01 TABLE-DATA.
05 TABLE-ELEMENTS

OCCURS 1 TO 100 TIMES DEPENDING ON crowd-size
INDEXED BY cursor-var.
10 field-1 PIC X.

29.1.134 4.1.134 DESCENDING

Controls a descending sort and/or retrieval order, with
* SORT filename ON DESCENDING KEY alt-key
e OCCURS 1 TO max-size TIMES DESCENDING KEY key-for-table

29.1.135 4.1.135 DESTINATION

Currently unsupported data descriptor. Part of VALIDATE.

29.1.136 4.1.136 DETAIL

A recognized but currently unsupported report descriptor detail line control clause.

29.1.137 4.1.137 DISABLE

An unsupported COMMUNICATION SECTION control verb.

132 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.138 4.1.138 DISK

A SELECT devicename phrase.
ASSIGN TO DISK USING dataname

Alternative spelling of DISC is allowed.

29.1.139 4.1.139 DISPLAY

A general purpose output verb.
* prints values to default console or other device

* set the current ARGUMENT-NUMBER influencing subsequent access ACCEPT FROM ARGUMENT-VALUE
statements

* specify explicit COMMAND-LINE influencing subsequent access with ACCEPT FROM COMMAND-LINE,
but not ARGUMENT-VALUE access

* sets enviroment variables, as part of a two step process. (Use the more concise SET ENVIRONMENT instead)
1. DISPLAY “envname” UPON ENVIRONMENT-NAME
2. DISPLAY “envname-value” UPON ENVIRONMENT-VALUE
DISPLAY "First value: " a-variable " and another string" END-DISPLAY
DISPLAY "1" 23 "4" END-DISPLAY

The setting of environment variables does not influence the owning process shell.

DISPLAY "ENVNAME" UPON ENVIRONMENT-NAME END-DISPLAY

DISPLAY "COBOL value" UPON ENVIRONMENT-VALUE
ON EXCEPTION stop run
NOT ON EXCEPTION continue

END-DISPLAY

CALL "SYSTEM" USING "echo S$ENVNAME"

gives:

$ ENVNAME="parent shell value"

$./disps

COBOL value

$ echo $SENVNAME

parent shell value

29.1.140 4.1.140 DIVIDE

Highly precise arthimetic. Supports various forms:
* DIVIDE INTO

DIVIDE INTO GIVING

DIVIDE BY GIVING

DIVIDE INTO REMAINDER

* DIVIDE BY REMAINDER

For example:

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 133

OpenCOBOL FAQ, Release 1.1

DIVIDE dividend BY divisor GIVING answer ROUNDED REMAINDER r
ON SIZE ERROR
PERFORM log-division—error
SET division—-error TO TRUE
NOT ON SIZE ERROR
SET division-error TO FALSE
END-DIVIDE

The 20xx draft standard requires conforming implementations to use 1,000 digits of precision for intermediate results.
There will be no rounding errors when properly calculating financials in a COBOL program.

29.1.141 4.1.141 DIVISION

Ahbh, sub-divisions. I think my favourite is the DATA DIVISION. It gives COBOL a distinctive and delicious flavour
in a picturesque codescape.

Divisions must be specified in the order below within each source program unit.
1. IDENTIFICATION DIVISION.
2. ENVIRONMENT DIVISION.
3. DATA DIVISION.
4. PROCEDURE DIVISION.
A handy mnemonic may be “I Enter Data Properly”.

OpenCOBOL is flexible enough to compile files with only a PROCEDURE DIVISION, and even then it really only
needs a PROGRAM-ID. See What is the shortest OpenCOBOL program? for an example.

29.1.142 4.1.142 DOWN

Allows decrement of an index control or pointer variable.
SET ind-1 DOWN BY 2

Also used for SCREEN SECTION scroll control.
SCROLL DOWN 5 LINES

29.1.143 4.1.143 DUPLICATES

Allows duplicate keys in indexed files.
SELECT filename

ALTERNATE RECORD KEY IS altkey WITH DUPLICATES
Also for SORT control.
SORT filename ON DESCENDING KEY keyfield

WITH DUPLICATES IN ORDER
USING sort-in GIVING sort-out.

29.1.144 4.1.144 DYNAMIC

A file access mode allowing runtime control over SEQUENTIAL and RANDOM access for INDEXED and RELA-
TIVE ORGANIZATION.

134 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

SELECT filename
ORGANIZATION IS RELATIVE
ACCESS MODE IS DYNAMIC

29.1.145 4.1.145 EBCDIC

Extended Binary Coded Decimal Interchange Code.

A character encoding common to mainframe systems, therefore COBOL, therefore OpenCOBOL. Different than
ASCII and OpenCOBOL supports both through efficient mappings. See http://en.wikipedia.org/wiki/EBCDIC for
more info.

ASCII to EBCDIC conversion the OpenCOBOL way

SPECIAL-NAMES.
ALPHABET ALPHA IS NATIVE.
ALPHABET BETA IS EBCDIC.

PROCEDURE DIVISION.
INSPECT variable CONVERTING ALPHA TO BETA

29.1.146 4.1.146 EC

An unsupported shortform for USE AFTER EXCEPTION CONDITION

29.1.147 4.1.147 EGI

An unsupported COMMUNICATION SECTION word.

29.1.148 4.1.148 ELSE

Alternate conditional branch point.

IF AGE IS

DISPLAY "Cigar time" END-DISPLAY
ELSE

DISPLAY "What is it with kids anyway?" END-DISPLAY
END-IF

For multi branch conditionals, see EVALUATE.

29.1.149 4.1.149 EMI

An unsupported COMMUNICATION SECTION word.

29.1.150 4.1.150 ENABLE

An unsupported COMMUNICATION SECTION control verb.

29.1.151 4.1.151 END

Ends things. Programs, declaratives, functions.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 135

http://en.wikipedia.org/wiki/EBCDIC

OpenCOBOL FAQ, Release 1.1

29.1.152 4.1.152 END-ACCEPT

Explicit terminator for ACCEPT.

29.1.153 4.1.153 END-ADD

Explicit terminator for ADD.

29.1.154 4.1.154 END-CALL

Explicit terminator for CALL.

29.1.155 4.1.155 END-COMPUTE

Explicit terminator for COMPUTE.

29.1.156 4.1.156 END-DELETE

Explicit terminator for DELETE.

29.1.157 4.1.157 END-DISPLAY

Explicit terminator for DISPLAY.

29.1.158 4.1.158 END-DIVIDE

Explicit terminator for DIVIDE.

29.1.159 4.1.159 END-EVALUATE

Explicit terminator for EVALUATE.

29.1.160 4.1.160 END-IF

Explicit terminator for IF.

29.1.161 4.1.161 END-MULTIPLY

Explicit terminator for MULTIPLY.

29.1.162 4.1.162 END-OF-PAGE

A LINAGE phrase used by WRITE controlling end of page imperative clause.

136

Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.163 4.1.163 END-PERFORM

Explicit terminator for PERFORM.

29.1.164 4.1.164 END-READ

Explicit terminator for READ.

29.1.165 4.1.165 END-RECEIVE

Explicit terminator for RECEIVE.

29.1.166 4.1.166 END-RETURN

Explicit terminator for RETURN.

29.1.167 4.1.167 END-REWRITE

Explicit terminator for REWRITE.

29.1.168 4.1.168 END-SEARCH

Explicit terminator for SEARCH.

29.1.169 4.1.169 END-START

Explicit terminator for START.

29.1.170 4.1.170 END-STRING

Explicit terminator for STRING.

29.1.171 4.1.171 END-SUBTRACT

Explicit terminator for SUBTRACT.

29.1.172 4.1.172 END-UNSTRING

Explicit terminator for UNSTRING.

29.1.173 4.1.173 END-WRITE

Explicit terminator for WRITE.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 137

OpenCOBOL FAQ, Release 1.1

29.1.174 4.1.174 ENTRY

Always for CALL entry points without being fully specified sub-programs. Great for defining callbacks required by
many GUI frameworks.

See Does OpenCOBOL support the GIMP ToolKit, GTK+? for an example.

29.1.175 4.1.175 ENTRY-CONVENTION

An as yet unsupported clause.

29.1.176 4.1.176 ENVIRONMENT

Divisional name. And allows access to operating system environment variables. OpenCOBOL supports
* CONFIGURATION SECTION
* INPUT-OUTPUT SECTION
within the ENVIROMENT DIVISION.
Also a context sensitive keyword for access to the process environment variables.
* SET ENVIRONMENT “env-var” TO value
¢ ACCEPT var FROM ENVIRONMENT “env-var” END-ACCEPT

29.1.177 4.1.177 ENVIRONMENT-NAME

Provides access to the running process environment variables.

29.1.178 4.1.178 ENVIRONMENT-VALUE

Provides access to the running process environment variables.

29.1.179 4.1.179 EO

An unsupported shortform for USE AFTER EXCEPTION OBJECT

29.1.180 4.1.180 EOL

ERASE to End Of Line.

29.1.181 4.1.181 EOP

LINAGE clause shortform for END-OF-PAGE.

29.1.182 4.1.182 EOS

ERASE to End Of Screen.

138 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.183 4.1.183 EQUAL

Conditional expression to compare two data items for equality.

29.1.184 4.1.184 EQUALS

Conditional expression to compare two data items for equality.

29.1.185 4.1.185 ERASE

A screen section data attribute clause that can control which portions of the screen are cleared during DISPLAY, and
ACCEPT.

01 form-record.

02 first-field PIC xxx
USING identifier—1
ERASE EOL.

29.1.186 4.1.186 ERROR

A DECLARATIVES clause that can control error handling.
USE AFTER STANDARD ERROR PROCEDURE ON filename-l

Program return control.
STOP RUN WITH ERROR STATUS stat-var.

29.1.187 4.1.187 ESCAPE

Programmer access to escape key value during ACCEPT.
ACCEPT identifier FROM ESCAPE KEY END-ACCEPT

Data type is 9(4).

29.1.188 4.1.188 ESI

Unsupported COMMUNICATION SECTION control.

29.1.189 4.1.189 EVALUATE

A very powerful and concise selection construct.

EVALUATE & ALSO b ALSO TRUE
WHEN 1 ALSO 1 THRU 9 ALSO c EQUAL 1 PERFORM all-life
WHEN 2 ALSO 1 THRU 9 ALSO c EQUAL 2 PERFORM life
WHEN 3 THRU 9 ALSO 1 ALSO c EQUAL 9 PERFORM disabi
WHEN OTHER PERFORM invalid

END-EVALUATE

ity

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 139

OpenCOBOL FAQ, Release 1.1

29.1.190 4.1.190 EXCEPTION
Allow detection of CALL problem.
CALL "CBL_OC_DUMP" ON EXCEPTION CONTINUE END-CALL

29.1.191 4.1.191 EXCEPTION-OBJECT

Unsupport object COBOL data item reference.

29.1.192 4.1.192 EXCLUSIVE

Mode control for file locks.

29.1.193 4.1.193 EXIT

OpenCOBOL supports
* EXIT
EXIT PROGRAM
EXIT PERFORM [CYCLE]
EXIT SECTION
EXIT PARAGRAPH

Controls flow of the program. EXIT PERFORM CYCLE causes an inline perform to return control to the VARYING,
UNTIL or TIMES clause, testing the conditional to see if another cycle is required. EXIT PERFORM without the
CYCLE option causes flow to continue passed the end of the current PERFORM loop.

29.1.194 4.1.1949 EXPANDS

Unsupported COMMUNICATION SECTION control.

29.1.195 4.1.195 EXTEND

Open a resource in an append mode.

29.1.196 4.1.196 EXTERNAL

Clause to specify external data item, file connection and program unit.

77 shared-var PIC S9(4) IS EXTERNAL AS ’'shared_var’.

29.1.197 4.1.197 FACTORY

An unsupported object COBOL keyword.

140

Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.198 4.1.198 FALSE

Logical false and conditional set condition.

01 record-1 pic 9.
88 conditional-1 values 1,2,3 when set to false is 0.
set conditional-1 to true

display record-1 end-display

set conditional-1 to false
display record-1 end-display

if conditional-1

display "BAD" end-display
end-if
Runs as:

$./conditionals
1
0

Also used in EVALUATE, inverting the normal sense of WHEN

evaluate false
when 1 equal 1
display "Not displayed, as 1 equal 1 is true" end-display
when 1 equal 2
display "This displays because 1 equal 2 is false" end-display
when other
display "the truest case, nothing is false" end-display
end-evaluate

29.1.199 4.1.199 FD

The record side of the COBOL file system. The File Descriptor. COBOL provides lots of control over file access. FD
is part of that engine.

Sort files use SD

Some FD phrases are old, and their uses have been overtaken by features of modern operating systems.
* BLOCK CONTAINS
* RECORDING MODE IS

Others are pretty cool. LINAGE is one example. FD supports a mini report writer feature. Control over lines per
page, heaVer, footer and a line counter, LINAGE IS, thatis implicitly maintained by OpenCOBOL during file writes.
These files are usually reports, but they don’t have to be, LINAGE can be used for a simple step counter when you’d
like progress displays of file updates.

Other recognized file descriptions include:

* RECORD IS VARYING IN SIZE FROM 1 TO 999999999 DEPENDING ON size-variable Record sizes need
to fit in PIC 9(9), just shy of a thousand million.

CODE-SET IS alphabet-name

DATA RECORD IS data-name

LABEL RECORDS ARE STANDARD (or OMITTED)
RECORD CONTAINS 132 CHARACTERS

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 141

OpenCOBOL FAQ, Release 1.1

FD filename-sample
RECORD IS VARYING IN SIZE FROM 1 TO 32768 CHARACTERS
DEPENDING ON record-size—-sample.

29.1.200 4.1.200 FILE

FILE is another multi use COBOL word.
¢ A SECTION of the DATA DIVISION.

The FILE section holds file description paragraphs and buffer layouts.

data division.

FILE section.

fd cobol-file-selector.

01 cobol-io-buffer pic x(132).

* a context word for setting name for FILE STATUS fields in FILE-CONTROL paragraphs.

Some programmers don’t like seeing COBOL code that does not verify and test FILE STATUS, so you should. See
ISAM for the numeric codes supported.
environment division.
input-output section.
file-control.
select optional data-file assign to file-name
organization is line sequential
FILE STATUS is data-file-status.
select mini-report assign to "mini-report".

* a context word as part of the PROCEDURE DIVISION declarative statements allowing for out-of-band excep-
tion handling for file access.

Exception handling with declaratives can be powerful, but some programmers find the out of band nature of where the
source code that caused a problem compared to where the error handler is, distasteful.

procedure division.
declaratives.

error-handling section.

USE AFTER EXCEPTION FILE filename-maybe.
error—handler.

display "Exception on filename" end-display

end declaratives.

Support for USE AFTER EXCEPTION FILE is a work in progress. Using DECLARATIVES forces use of section
names in the PROCEDURE DIVISION.

* acontext word as part of DELETE FILE filenames.
DELETE FILE file-selector-1 file-selector-2

DELETE FILE is supported in OpenCOBOL 2.0.

29.1.201 4.1.201 FILE-CONTROL

Files. The paragraph in the INPUT-OUTPUT section, in the ENVIRONMENT division. It’s verbose, a little voodooey,
and worth it.

142 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

environment division.
input-output section.
FILE-CONTROL.
select optional data-file assign to file-name
organization is line sequential
file status is data-file-status.

select mini-report assign to "mini-report".

29.1.202 4.1.202 FILE-ID

File naming clause. Assigned name may be device, FD clause specifies value of the file identifier.
VALUE OF FILE-ID IS file—-ids in summary-array

more specifically

environment division.
input-output section.
file—-control.
select cobol-file-selector
assign to disk

organization indexed

access mode dynamic

record key fd-key-field

file status file-status—-field.

data division.

file section.

fd cobol-file-selector label record standard
VALUE OF FILE-ID is "actual-filename.dat".

An alternative, and likely more common, method is to set the actual filename (or the enviroment variable that refer-
ences the actual filename) in the ASSIGN clause. OpenCOBOL has a configuration setting to control how the actual
filenames are mapped, see ASSIGN. VALUE OF FILE-ID is not ISO standard COBOL.

29.1.203 4.1.203 FILLER

Data division clause, for unnamed data allocations; filler, if you will.

01 the-record.
05 first-field pic x(10).
05 filler pic x(35) value "this space intentionally left blank".

04 third-field pic x(10).

FILLER is an optional word, and this code snippet is equivalent.

01 the-record.
05 first-field pic x(10).
05 pic x(35) value "this space intentionally left blank".
05 third-field pic x(10).

Personal preference of this author is to explicitly type FILLER.

29.1.204 4.1.204 FINAL

Final. A recognized but currently not supported Report Writer feature.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 143

OpenCOBOL FAQ, Release 1.1

29.1.205 4.1.205 FIRST

First. A recognized but currently not supported Report Writer feature.

29.1.206 4.1.206 FLOAT-EXTENDED

OpenCOBOL recognizes but does not yet support FLOAT-EXTENDED and will abend a compile.

29.1.207 4.1.207 FLOAT-LONG

OpenCOBOL supports floating point long.

identification division.
program-id. threes.

data division.
working-storage section.

01 fshort usage float-short.
01 flong wusage float-long.
01 fpic pic 9v9 (35) .

procedure division.

compute fshort = 1 / 3 end-compute
display "as short " fshort end-display
compute flong = 1 / 3 end-compute
display "as long " flong end-display
compute fpic = 1 / 6 end-compute

display "as pic " fpic end-display
compute fpic rounded = 1 / 6 end-compute
display "rounded " fpic end-display
goback.

end program threes.

displays:

$./threes

as short 0.333333343267440796

as long 0.333333333333333315

as pic 0.16666666666666666666666666666666666
rounded 0.16666666666666666666666666666666667

29.1.208 4.1.208 FLOAT-SHORT

OpenCOBOL supports short floating point.

29.1.209 4.1.209 FOOTING

A well supported LINAGE clause.

29.1.210 4.1.210 FOR

Recognized but unsupported Report Writer clause.

144 Chapter 29

. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.211 4.1.211 FOREGROUND-COLOR

Screen section foreground color control. See What are the OpenCOBOL SCREEN SECTION colour values?

29.1.212 4.1.212 FOREVER

Provides for infinite loops. Use EXIT PERFORM or EXIT PERFORM CYCLE to control program flow.

identification division.
program-id. foreverloop.

data division.

working-storage section.
01 cobol pic 9 value 0.
01l ¢ pic 9 value 1.
01 fortran pic 9 value 2.

procedure division.

perform forever
add 1 to cobol

display "cobol at " cobol end-display
if cobol greater than fortran

exit perform
end-if

if cobol greater than c
exit perform cycle
end-if

display "cobol still creeping up on c" end-display
end-perform

display "cobol surpassed c and fortran" end-display

goback.
end program foreverloop.

Which produces:

$ cobc -free -x foreverloop.cob
$./foreverloop

cobol at 1

cobol still creeping up on c
cobol at 2

cobol at 3

cobol surpassed c and fortran

I asked on opencobol.org for some input, and an interesting conversation ensued. I've included the forum thread
archive, nearly in its entirety, to give a sense of various programmer styles and group thought processing. See Per-
forming FOREVER?.

29.1.213 4.1.213 FORMAT

Source format directive.
123456 >>SOURCE FORMAT IS FIXED

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 145

OpenCOBOL FAQ, Release 1.1

29.1.214 4.1.214 FREE

Properly cleans up ALLOCATE alloted memory, and source format directive.
>>SOURCE FORMAT IS FREE

01 var PIC X(1024) BASED.
ALLOCATE var
CALL "buffer-thing" USING BY REFERENCE var END-CALL

MOVE var TO working-store
FREE var

29.1.215 4.1.215 FROM

ACCEPT var FROM ENVIRONMENT "path"
ON EXCEPTION
DISPLAY "No path" END-DISPLAY
NOT ON EXCEPTION
DISPLAY var END-DISPLAY
END-ACCEPT

29.1.216 4.1.216 FULL

A screen section screen item control operator, requesting the normal terminator be ignored until the field is completely
full or completely empty.

29.1.217 4.1.217 FUNCTION

Allows use of the many OpenCOBOL supported intrinsic functions.
DISPLAY FUNCTION TRIM(" trim off leading spaces" LEADING) END-DISPLAY.

See Does OpenCOBOL implement any Intrinsic FUNCTIONs? for details.

29.1.218 4.1.218 FUNCTION-ID

Not yet implemented, but it will allow for user defined FUNCTION.

29.1.219 4.1.219 GENERATE

Not yet implemented beyond simple parsing REPORT writer feature.

29.1.220 4.1.220 GET

Unsupported.

29.1.221 4.1.221 GIVING

Destination control for computations, and return value clause.
ADD 1 TO cobol GIVING OpenCOBOL.

146 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.222 4.1.222 GLOBAL

A global name is accessible to all contained programs.

29.1.223 4.1.223 GO

GO TO is your friend. Edsger was wrong. Transfer control to a named paragraph or section. See ALTER for details
of monster goto power.

29.1.224 4.1.224 GOBACK

A return. This will work correctly for all cases. A return to the operating system or a return to a called program.
GOBACK.

29.1.225 4.1.225 GREATER

COBOL conditional expression, IF A GREATER THAN B, See LESS

29.1.226 4.1.226 GROUP

Recognized but unsupported Report Writer clauses.

29.1.227 4.1.227 GROUP-USAGE

An unsupported BIT clause.

29.1.228 4.1.228 HEADING

Recognized but unsupported Report Writer clauses.

29.1.229 4.1.229 HIGH-VALUE

A figurative ALPHABETIC constant, being the highest character value in the COLLATING sequence. It’s invalid to
MOVE HIGH-VALUE to a NUMERIC field.

29.1.230 4.1.230 HIGH-VALUES

Plural of HIGH-VALUE.

29.1.231 4.1.231 HIGHLIGHT

Screen control for field intensity.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 147

OpenCOBOL FAQ, Release 1.1

29.1.232 4.1.232 1-O0

An OPEN mode allowing for both read and write.

29.1.233 4.1.233 I-O-CONTROL

A paragraph in the INPUT-OUTPUT section, allowing sharing memory areas for different files.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
I-O-CONTROL.
SAME RECORD AREA FOR filename-1 filename-2.

29.1.234 4.1.234 ID

Shortform for IDENTIFICATION.

29.1.235 4.1.235 IDENTIFICATION

The initial division for OpenCOBOL programs.
IDENTIFICATION DIVISION.
PROGRAM-ID. sample.

Many historical paragraphs from the IDENTIFICATION DIVISION have been deemed obsolete. OpenCOBOL will
treat these as comment paragraphs. Including

e AUTHOR

DATE-WRITTEN
DATE-MODIFIED
DATE-COMPILED
INSTALLATION
REMARKS
SECURITY

29.1.236 4.1.236 IF

Conditional branching. In COBOL, conditionals are quite powerful and there are many conditional expressions al-
lowed with concise shortcuts.

IF A = 1 OR 2
MOVE 1 TO B
END-IF

29.1.237 4.1.237 IGNORING

READ filename—-1 INTO identifer—-1 IGNORING LOCK END-READ

148 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.238 4.1.238 IMPLEMENTS

Unsupported Object COBOL expression.

29.1.239 4.1.239 IN

A data structure reference and name conflict resolution qualifier.
MO "abc" TO field IN the-record IN the-structure

Synonym for OF

29.1.240 4.1.240 INDEX
01 cursor-var USAGE INDEX.

SET cursor-var UP BY 1.

29.1.241 4.1.241 INDEXED

An ISAM file organization.

environment division.
input-output section.
file-control.
select optional indexing
assign to "indexing.dat"
organization is indexed
access mode is dynamic
record key is keyfield of indexing-record
alternate record key is splitkey of indexing-record
with duplicates

Sets an indexing control identifier for OCCURS data arrays.
01 TABLE-DATA.
05 TABLE-ELEMENTS
OCCURS 1 TO 100 TIMES DEPENDING ON crowd-size
INDEXED BY cursor-var.
10 field-1 PIC X.

29.1.242 4.1.242 INDICATE

GROUP INDICATE is an as yet unsupported REPORT SECTION RD clause that specifies that printable item is ouput
only on the first occurrence of its report group for that INITIATE, control break, or page advance.

29.1.243 4.1.243 INHERITS

An unsupported Object COBOL clause.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 149

OpenCOBOL FAQ, Release 1.1

29.1.244 4.1.244 INITIAL

A modifier for the PROGRAM-ID clause, that causes the entire DATA DIVISION to be set to an initial state each time
the subprogram is executed by CALL.

ocobol >>SOURCE FORMAT IS FIXED

KDk o ok ok b ok ok ok ok ok ok ok ok ok ok A

x> Author: Brian Tiffin
x> Date: 20111226
*> Purpose: Small sample of INITIAL procedure division clause

x> Tectonics: cobc -x -w —g —debug initialclause.cob

D kA kA Ak A Ak Ak Ak sk hhh b b Ak d b b hkd b b h kbbb h kb kb h ok k kb ok kb bk ok ok h ok kb kA ok ko
identification division.

program-id. initialclause.

D> ok k ok ok kA kA kAT Ak kA kA kA A Ak A Ak Ak A A Ak ok Ak Ak kA — ok hk kA kA kb A — ok h kA ok ok ok kA — ko
procedure division.

call "with-initial" end-call

call "without-initial" end-call

call "with-initial" end-call

call "without-initial" end-call

call "without-initial" end-call

goback.

end program initialclause.

D> ok k Ak A A A A AT Ak A A A A A A A Ak A A A Ak A A — Ak A h bk A bk d A —h bk b h bbb A —h bk hA ok h bk A — %
D> ok k ok ok kA kA kT Ak ok ok k Ak kA Ak A Ak Ak A A Ak ok Ak Ak kA — ok ok kA sk kb A — kb ok ok ok ok kA — ok ok
identification division.

program—-id. with-initial is initial.

data division.
working-storage section.
01 the-value pic 99 wvalue 42.

KD ok b ok k— Ak
procedure division.
display "Inside with-initial with : " the-value end-display
multiply the-value by 2 giving the-value

on size error

display "size overflow" end-display

end-multiply
goback.
end program with-initial.

A ok hh A A A A A AT A KA A A A kb b — kbbb kbbb bk — kA A A A A A A — ko hhhh kb bk — kb sk kb ok ok kA — & A&
D> ok k Ak A A A A AT Ak A A A A A A A Ak A A A Ak A A Ak A Ak Ak A A —h kb h bk A bk b A —h kb hA kb kA — %k
identification division.

program-id. without—-initial.

data division.
working-storage section.
01 the-value pic 99 value 42.

KD ok ok ok ok ok ok ok ok kT ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok — A ok
procedure division.

display "Inside without-initial with: " the-value end-display
multiply the-value by 2 giving the-value

150 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

on size error
display "size overflow" end-display
end-multiply
goback.
end program without-initial.

Gives:

[btiffin@home cobol]l$./initialclause
Inside with-initial with : 42
Inside without-initial with: 42
Inside with-initial with : 42

Inside without-initial with: 84
size overflow
Inside without-initial with: 84
size overflow

INITIAL sets the-value to 42 upon each and every entry, without-initial multiplies through 42, 84, 168 (or would
have).

29.1.245 4.1.245 INITIALIZE

A sample of the INITIALIZE verb posted to opencobol.org by human

OCOBOL#—————————————————— e ———
IDENTIFICATION DIVISION.
PROGRAM-ID. ’'INITTEST'.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. DECIMAL-POINT IS COMMA.
INPUT-OUTPUT SECTION.
DATA DIVISION.
*
WORKING-STORAGE SECTION.
*
77 mychar pic x.
77 mynumeric pic 9.
01 REC-TEST BASED.
03 REC-TEST-PART1 PIC X(10) value all ’9’.
03 REC-TEST-PART2 PIC X(10) wvalue all 'A’.
01 fillertest.
03 fillertest-1 PIC 9(10) wvalue 2222222222.

03 filler PIC X value ' |’.
03 fillertest-2 PIC X(10) wvalue all 'A’.
03 filler PIC 9(03) wvalue 111.
03 filler PIC X value ’.’.

Main section.

00.

*
display ’'fillertest '/

"on start:’

end-display
display fillertest
end-display
accept mychar

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 151

http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

initialize fillertest

display ’'fillertest '
"after initialize:’

end-display

display fillertest

end-display

accept mychar

initialize fillertest replacing numeric by 9
display ’'fillertest '/

"after initialize replacing numeric by 9:’
end-display
display fillertest
end-display
accept mychar

initialize fillertest replacing alphanumeric by ’'X’
display ’'fillertest '/

"after initialize replacing alphanumeric by "X":’
end-display
display fillertest
end-display
accept mychar

initialize fillertest replacing alphanumeric by all ’'X’
display ’'fillertest '/

"after initialize replacing alphanumeric by all "X":’/
end-display
display fillertest
end-display
accept mychar

initialize fillertest with filler
display ’'fillertest '/

"after initialize with filler:’
end-display
display fillertest
end-display
accept mychar

initialize fillertest all to value
display ’'fillertest '/

"after initialize all to value:’
end-display
display fillertest
end-display
accept mychar

ALLOCATE REC-TEST

display ’'REC-TEST after allocating:’
end-display

display REC-TEST

end-display

accept mychar

initialize REC-TEST all to value
display 'REC-TEST after initalize all to value:’
end-display

152 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

display REC-TEST
end-display
accept mychar

stop run

continue.
ex. exit program.

Outputs:

fillertest on start:

2222222222 |AAAAAAAAAATLL.

fillertest after initialize:

0000000000 | 111.

fillertest after initialize replacing numeric by 9:
0000000009 | 111.

fillertest after initialize replacing alphanumeric by "X":
00000000091X 111.

fillertest after initialize replacing alphanumeric by all "X":
0000000009 | XXXXXXXXXX111.

fillertest after initialize with filler:

0000000000 000

fillertest after initialize all to value:

2222222222 |AAAAAAAAAATLL.

REC-TEST after allocating:

REC-TEST after initalize all to value:

9999999999AAAAAAAAAA

29.1.246 4.1.246 INITIALIZED

A modifier for the ALLOCATE verb, filling the target with a default value.

77 based-var PIC X(9) BASED VALUE "ALLOCATED".
77 pointer-var USAGE POINTER.

ALLOCATE based-var

DISPLAY ":" based-var ":" END-DISPLAY

FREE based-var

ALLOCATE based-var INITIALIZED RETURNING pointer-var
DISPLAY ":" based-var ":" END-DISPLAY

displays:

:ALLOCATED:

29.1.247 4.1.247 INITIATE

Initialize internal storage for named REPORT SECTION entries.
Not currently (February 2013) supported.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 153

OpenCOBOL FAQ, Release 1.1

29.1.248 4.1.248 INPUT

A mode of the OPEN verb for file access.
OPEN INPUT file

A SORT clause allowing programmer controlled input read passes where sortable records are passed to the sort algo-
rithm using RELEASE.

procedure division.

sort sort-work
on descending key work-rec
collating sequence is mixed
input procedure is sort-transform
output procedure is output-uppe

display sort-return end-display.
goback.

29.1.249 4.1.249 INPUT-OUTPUT

A section in the ENVIRONMENT DIVISION of a COBOL source file containing FILE and I-O control paragraphs.

environment division.
input-output section.
file-control.
select htmlfile
assign to filename
organization is record sequential.

OpenCOBOL supports
* FILE-CONTROL
* [-O-CONTROL
paragraphs within the INPUT-OUTPUT SECTION.

29.1.250 4.1.250 INSPECT

Provides very powerful parsing and replacement to COBOL and OpenCOBOL supports the full gamet of options.

ocobol identification division.
program-id. inspecting.

data division.

working-storage section.

01 ORIGINAL pPic XXXX/XX/XXBXX/XX/XXXXXXX/XX.
01 DATEREC pic XXXX/XX/XXBXX/XX/XXXXXXX/XX.

procedure division.
move function when-compiled to DATEREC ORIGINAL
INSPECT DATEREC REPLACING ALL "/" BY ":" AFTER INITIAL
display

"Intrinsic function WHEN-COMPILED " ORIGINAL

end-display
display

154 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

" after INSPECT REPLACING " DATEREC
end-display

goback.
end program inspecting.

Example output:

Intrinsic function WHEN-COMPILED 2010/03/25 23/05/0900-04/00
after INSPECT REPLACING 2010/03/25 23:05:0900-04:00

29.1.251 4.1.251 INTERFACE

Unsupported.

29.1.252 4.1.252 INTERFACE-ID

An unsupported Object COBOL clause in the IDENTIFICATION division.

29.1.253 4.1.253 INTO

Division.
DIVIDE 2 INTO B GIVING C.

29.1.254 4.1.254 INTRINSIC

Used in REPOSITORY to allow the optional use of “FUNCTION” keyword.

environment division.
configuration section.
repository.

function all intrinsic.

The source unit will now allow for program lines such as
move trim(" abc") to dest

move function trim(" abc") to dest

to compile the same code.

29.1.255 4.1.255 INVALID

Key exception imperative phrase.
READ filename-1
INVALID KEY
DISPLAY "Bad key"
NOT INVALID KEY
DISPLAY "Good read"
END-READ

29.1.256 4.1.256 INVOKE

Unsupported Object COBOL method call.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS?

155

OpenCOBOL FAQ, Release 1.1

29.1.257 4.1.257 IS

Readability word. A IS LESS THAN B is equivalent to A LESS B.

29.1.258 4.1.258 JUST

Alias for JUSTIFIED.

29.1.259 4.1.259 JUSTIFIED

Tweaks storage rules in wierd JUST ways, lessening the voodoo behind MOVE instructions, he said, sarcastically.
77 strl pic x(40) Jjustified right.

29.1.260 4.1.260 KEY

Multi use, always means key:

- RELATIVE KEY IS

— ALTERNATE RECORD KEY IS

— NOT INVALID KEY

— SORT filename ON DESCENDING KEY keyfield
— START indexing KEY IS LESS THAN keyfield

29.1.261 4.1.261 KEYBOARD

A special value for Standard Input
file-control.

select cgi-in

assign to ke

oard.

29.1.262 4.1.262 LABEL

A record label. As with most record labels, falling into disuse.

29.1.263 4.1.263 LAST

Used in START to prepare a read of the last record. A recognized but unsupported Report Writer clause.
START filename—-1 LAST
INVALID KEY

MOVE TO record-count
>>D DISPLAY "No last record for " filename-1 END-DISPLAY
END-START

29.1.264 4.1.264 LC_ALL

A reserved but unsupported category group. See Setting Locale. OpenCOBOL is ‘locale’ aware, but it is currently
more external than in COBOL source. For now, it is safest to assume LC_ALL=C, but this can be configured differ-
ently when OpenCOBOL is built.

156 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.265 4.1.265 LC_COLLATE

A reserved but unsupported category name. Will be used with SET.

29.1.266 4.1.266 LC_CTYPE

A reserved but unsupported Locale category name. Will be used with SET.

29.1.267 4.1.267 LC_MESSAGES
A reserved but unsupported category name. See Setting Locale. OpenCOBOL is ‘locale’ aware, but it is currently
more external than in COBOL source.

OpenCOBOL 2.0 extends locale support to the compiler messages.

S export LC_MESSAGES=es_ES

S cobc -x fdfgffd.cob

cobc: fdfgffd.cob: No existe el fichero o el directorio

29.1.268 4.1.268 LC_MONETARY

A reserved but unsupported Locale category name. Will be used with SET.

29.1.269 4.1.269 LC_NUMERIC

A reserved but unsupported Locale category name. Will be used with SET.

29.1.270 4.1.270 LC_TIME

A reserved but unsupported Locale category name. Will be used with SET.

29.1.271 4.1.271 LEADING

Multipurpose.
DISPLAY FUNCTION TRIM(var—-1 LEADING) END-DISPLAY

INSPECT FUNCTION REVERSE (TEST-CASE)
TALLYING B-COUNT
FOR LEADING ' '.

DISPLAY B-COUNT.

INSPECT X REPLACING LEADING BY

as well as use in the COBOL preprocessor:

COPY "copy.inc"
REPLACING LEADING ==TEST== BY ==FIRST==
LEADING ==NORM== BY ==SECOND==,

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 157

OpenCOBOL FAQ, Release 1.1

29.1.272 4.1.272 LEFT

SYNCHRONIZED control.

29.1.273 4.1.273 LENGTH

A ‘cell-count’ length. Not always the same as BYTE-LENGTH.

29.1.274 4.1.274 LESS

A comparison operation.

IF requested LESS THAN OR EQUAL TO balance
PERFORM transfer

ELSE
PERFORM reject

END-IF

29.1.275 4.1.275 LIMIT

Recognized but unsupported Report Writer clause.

29.1.276 4.1.276 LIMITS

Recognized but unsupported Report Writer clause.

29.1.277 4.1.277 LINAGE

LINAGE is a SPECIAL-REGISTER supported by OpenCOBOL. A counter is maintained for file WRITE and can be
used for pageing and other control.
COBOL LR i b g b b b g b b b i b b b b b g b b b g b b b b g b b b b g g b b b g b b b g g b b b b b b b b g g b b b g b b b b g g g

* Example of LINAGE File Descriptor
Author: Brian Tiffin

%

* Date: 10-July-2008

* Tectonics: § cocb -x linage.cob

* S ./linage <filename ["linage.cob"]>
* S cat -n mini-report

AAAAAAAAAAA A AL A AL A A A A AL A A A A A A A A A A A A AL A AL A
IDENTIFICATION DIVISION.
PROGRAM-ID. linage-demo.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
select optional data-file assign to file-name
organization is line sequential
file status is data-file-status.
select mini-report assign to "mini-report".

DATA DIVISION.
FILE SECTION.
FD data-file.

158 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

01 data-record.
88 endofdata value high-values.
02 data-line pic x(80).
FD mini-report
linage is 16 lines
with footing at 15
lines at top 2
lines at bottom 2.
01 report-line pic x(80).

WORKING-STORAGE SECTION.
01 command-arguments pic x(1024).

01 file-name pic x(160).
01 data-file-status pic 99.
01 1lc pic 99.
01 report-line-blank.
02 filler pic x(18) value all "x".
02 filler pic x(05) value spaces.
02 filler pic x(34)
VALUE "THIS PAGE INTENTIONALLY LEFT BLANK".
02 filler pic x(05) value spaces.
02 filler pic x(18) value all "x".
01 report-line-data.
02 body-tag pic 9(6).
02 line-3 pic x(74).
01 report-line-header.
02 filler pic x(6) VALUE "PAGE: ".
02 page—-no pic 9999.
02 filler pic x(24).
02 filler pic x(5) VALUE " LC: ".
02 header-tag pic 9(6).
02 filler pic x(23).
02 filler pic x(6) VALUE "DATE: ".
02 page-date pic x(6).
01 page-count pic 9999.

PROCEDURE DIVISION.

accept command-arguments from command-line end-accept.
string
command-arguments delimited by space
into file-name
end-string.
if file-name equal spaces
move "linage.cob" to file-name
end-if.

open input data-file.
read data-file
at end
display
"File: " function trim(file-name) " open error"

end-display
go to ecarly-exit

end-read.

open output mini-report.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 159

OpenCOBOL FAQ, Release 1.1

write report-line
from report-line-blank
end-write.

move 1 to page-count.
accept page-date from date end-accept.
move page-count to page-no.
write report-line
from report-line-header
after advancing page
end-write.

perform recadwrite-loop until endofdata.

display
"Normal termination, file name: "
function trim(file-name)
" ending status: "
data-file-status
end-display.
close mini-report.

* Goto considered harmful? Bah! :)
early-exit.

close data-file.

exit program.

stop run.

LR e R i i i i i b b i i i i b b b i b i b i i b i b b b b b b i b b b i b b i
readwrite-loop.
move data-record to report-line-data
move linage-counter to body-tag
write report-line from report-line-data
end-of-page
add 1 to page-count end—-add
move page-count to page-no
move linage-counter to header-tag
write report-line from report-line—header
after advancing page
end-write
end-write
read data-file
at end set endofdata to true
end-read

PR b b i i i i i b b e b i o
* Commentary

* LINAGE is set at a 20 line logical page

* 16 body lines

* 2 top lines

* A footer line at 15 (inside the body count)

* 2 bottom lines

Build with:

S cobc -x —-Wall -Wtruncate linage.cob

Evaluate with:

%

3%

%

*

S ./linage
This will read in linage.cob and produce a useless mini-report

%

%

$ cat -n mini-report

160 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

Kk Sk ok ok ok ok b ok b ok ok b ok ok ok ok

END PROGRAM linage-demo.

Using

S ./linage except.cob

Produces a mini-report of:
Ak hk kA A A A AAAA KA KKK * Kk THIS PAGE INTENTIONALLY LEFT BLANK A Ak Ak A ARk A AR A A KK *hh kK

PAGE: 0001 LC: 000000 DATE: 090206
000001 IDENTIFICATION DIVISION.

000002 PROGRAM-ID. MINIPROG.

000003 ENVIRONMENT DIVISION.

000004 CONFIGURATION SECTION.

000005 SOURCE-COMPUTER. LINUX.

000006 OBJECT-COMPUTER. LINUX.

000007 SPECIAL-NAMES.

000008 INPUT-OUTPUT SECTION.

000009 FILE-CONTROL.

000010 SELECT PRINTFILE ASSIGN TO "XXRXWXX"
000011 FILE STATUS RXWSTAT.

000012 DATA DIVISION.

000013 FILE SECTION.

000014 FD PRINTFILE.

PAGE: 0002 LC: 000015 DATE: 090206
000001 01 PRINTREC PIC X (132).

000002 WORKING-STORAGE SECTION.

000003 01 RXWSTAT PIC XX.

000004 01 str pic x(4).

000005 PROCEDURE DIVISION.

000006 AOO-MAIN SECTION.

000007 001-MAIN-PROCEDURE.

000008 OPEN INPUT PRINTFILE.

000009 DISPLAY "File Status: " RXWSTAT.

000010 DISPLAY "EXCEPTION-FILE: " FUNCTION EXCEPTION-FILE.
000011 DISPLAY "Return Length: "

000012 FUNCTION LENGTH (FUNCTION EXCEPTION-FILE) .

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 161

OpenCOBOL FAQ, Release 1.1

000013 DISPLAY "EXCEPTION-STATUS: " FUNCTION EXCEPTION-STATUS.

000014 DISPLAY "EXCEPTION-STATEMENT: " FUNCTION EXCEPTION-STATEMENT.

PAGE: 0003 LC: 000015 DATE: 090206
000001 STRING "TOOLONG" DELIMITED SIZE INTO RXWSTAT.

000002 DISPLAY "EXCEPTION-STATUS: " FUNCTION EXCEPTION-STATUS.

000003 DISPLAY "EXCEPTION-STATEMENT: " FUNCTION EXCEPTION-STATEMENT.

000004 DISPLAY "EXCEPTION-LOCATION: " FUNCTION EXCEPTION-LOCATION.

000005 STOP RUN.

See except.cob under the FUNCTION EXCEPTION-STATUS entry.

29.1.278 4.1.278 LINAGE-COUNTER

An internal OpenCOBOL noun, or Special Register. Value is readonly and is maintained during WRITE:s to files that
have a LINAGE clause. Useful for quick reports and logical page layouts.

29.1.279 4.1.279 LINE

LINE SEQUENTTIAL files. Screen section line control.

29.1.280 4.1.280 LINE-COUNTER

Special register for the unsupported Report Writer.

29.1.281 4.1.281 LINES

Screen section line control, screen occurs control and area scrolling.

29.1.282 4.1.282 LINKAGE
A SECTION in the DATA DIVISION. Used for call frame data handling when the current run unit may not be in

charge of the location of working storage. Defaults to uninitialized references which must be set with USING in a
CALL or explicitly with SET ADDRESS. References without initialization will cause an addressing segfault.

29.1.283 4.1.283 LOCAL-STORAGE

A SECTION in the DATA DIVISION. Data defined in local storage will be local to the running module and re-entrant
within subprogram call trees.

29.1.284 4.1.284 LOCALE

Unsupported in OpenCOBOL 1.1pre-rel. Support added in 2.0
A SPECIAL-NAMES entry giving OpenCOBOL an international flair.

162 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

LOCALE spanish IS "ES_es’.

29.1.285 4.1.285 LOCK

Record management.
SELECT filename-1 ASSIGN TO 'master.dat’ LOCK MODE IS MANUAL.

29.1.286 4.1.286 LOW-VALUE

A figurative ALPHABETIC constant, being the lowest character value in the COLLATING sequence.
MOVE TO alphanumeric-1.

IF alphabetic-1 EQUALS
DISPLAY "Failed validation" END-DISPLAY
END-IF.

It’s invalid to MOVE LOW-VALUE to a numeric field.

29.1.287 4.1.287 LOW-VALUES

A pluralized form of LOW-VALUE. Equivalent.
MOVE TO alphanumeric-1.

29.1.288 4.1.288 LOWLIGHT

A screen attribute for DISPLAY and SCREEN SECTION fields.

SCREEN SECTION.
01 example.
05 FILLER
LINE 1 COLUMN 10
VALUE IS "Example:"
LOWLIGHT.

Will display the Example: legend in a dimmed video if supported with the current terminal settings.

29.1.289 4.1.289 MANUAL

LOCK MODE IS MANUAL WITH LOCK ON MULTIPLE RECORDS. See AUTOMATIC and EXCLUSIVE for
more LOCK options.

29.1.290 4.1.290 MEMORY

An OBJECT-COMPUTER clause.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
OBJECT-COMPUTER.

MEMORY SIZE IS 8 CHARACTERS.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 163

OpenCOBOL FAQ, Release 1.1

29.1.291 4.1.291 MERGE

Combines two or more identically sequenced files on a set of specified keys.
MERGE sort-file

ON DESCENDING KEY key-field-1

WITH DUPLICATES IN ORDER

COLLATING SEQUENCE IS user-alphabet
USING filename-1 filename-2
GIVING filename-3

29.1.292 4.1.292 MESSAGE

Unsupported Communication Section clause.

29.1.293 4.1.293 METHOD

Unsupported Object COBOL feature.

29.1.294 4.1.294 METHOD-ID

Unsupported Object COBOL feature.

29.1.295 4.1.295 MINUS

Screen section relative line and column control.
05 some-field pic x(16)

line number is plus 1

column number is minus 8

29.1.296 4.1.296 MODE

Locking mode. See MANUAL, AUTOMATIC, EXCLUSIVE.

29.1.297 4.1.297 MOVE

A workhorse of the COBOL paradigm. MOVE is highly flexible, intelligent, safe and sometimes perplexing data
movement verb.

01 alphanum-3 PIC XXX.

01 num2 PIC 99.

MOVE "ABCDEFG" TO xvar3
DISPLAY xvar3 END-DISPLAY

MOVE 12345 TO num2
DISPLAY num? END-DISPLAY

displays:
ABC
45

164 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

Note the 45, MOVE uses a right to left rule when moving numerics.

Groups can be moved with
MOVE CORRESPONDING ident-1 TO ident-2

in which case only the group items of the same name will be transferred from the ident-1 group to the ident-2 fields.

29.1.298 4.1.298 MULTIPLE

LOCK MODE IS MANUAL WITH LOCK ON MULTIPLE RECORDS.

29.1.299 4.1.299 MULTIPLY

A mathematic operation.

MULTIPLY var-1 BY var—-2 GIVING var-3
ON SIZE ERROR
SET invalid-result TO TRUE
END-MULTIPLY

29.1.300 4.1.300 NATIONAL

NATIONAL character usage. Not yet supported. OpenCOBOL does support PICTURE N.

29.1.301 4.1.301 NATIONAL-EDITED

Category.

29.1.302 4.1.302 NATIVE

Alphabet.

29.1.303 4.1.303 NEGATIVE
Conditional expression.
IF 2 IS NEGATIVE

SET in-the-red TO TRUE
END-IF

29.1.304 4.1.304 NESTED

An unsupported program-protoype CALL clause.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS?

165

OpenCOBOL FAQ, Release 1.1

29.1.305 4.1.305 NEXT

With READ, to read the next record, possibly by KEY. Also an obsolete control flow verb.
READ index-sequential-file NEXT RECORD INTO ident-1
IF condition-1

NEXT SENTENCE

ELSE
PERFORM do-something.

29.1.306 4.1.306 NO

Specify NO locks, NO sharing, NO rewind.
CLOSE filename-1 WITH NO REWIND

READ file-1 WITH NO LOCK

29.1.307 4.1.307 NONE

Unsupported DEFAULT IS NONE.

29.1.308 4.1.308 NORMAL

Program return control
STOP RUN WITH NORMAL STATUS status-val

See ERROR

29.1.309 4.1.309 NOT

Conditional negation. See AND, OR. Also used in operational declaratives such as NOT ON SIZE ERROR, in which

case the operation succeeded without overflowing the receiving data field.
IF NOT testing
CALL "thing"
NOT ON EXCEPTION
DISPLAY "Linkage to thing, OK" END-DISPLAY
END-CALL
END-IF

29.1.310 4.1.310 NULL

Void. A zero address pointer. A symbolic literal.
CALL "thing" RETURNING NULL END-CALL

SET ADDRESS OF ptr TO NULL
IF ptr EQUAL NULL
DISPLAY "ptr not valid" END-DISPLAY

END-IF

MOVE CONCATENATE (TRIM(cbl-string TRAILING) NULL) TO c-string

166 Chapter 29

. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.311 4.1.311 NULLS

Plural of NULL.
MOVE ALL NULLS TO var

29.1.312 4.1.312 NUMBER

Screen section LINE COLUMN control.
05 some-field pic x(16) LINE NUMBER 5.

29.1.313 4.1.313 NUMBERS

Plural of NUMBER.

29.1.314 4.1.314 NUMERIC

Category.

29.1.315 4.1.315 NUMERIC-EDITED

Category.

29.1.316 4.1.316 OBJECT

Unsupported Object COBOL feature.

29.1.317 4.1.317 OBJECT-COMPUTER

Environment division, configuration section run-time machine paragraph.

OpenCOBOL supports
OCOBOL identification division.
program-id. runtime-computer.

environment division.
configuration section.
object—-computer.

memory size is 8 characters

program collating sequence is bigiron—alphabet

segment-limit is 64

character classificiation is spanish-locale.
repository.

function all intrinsic.
special—-names.

alphabet bigiron-alphabet is ebedic
symbolic characters BS 1is 9
TAB is 10
LF is 11
NEWLINE is 11

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS?

167

OpenCOBOL FAQ, Release 1.1

CMA is 45
locale spanish-locale is "es_ES".

29.1.318 4.1.318 OBJECT-REFERENCE

Unsupported Object COBOL feature.

29.1.319 4.1.319 OCCURS

Controls multiple occurances of data structures.
01 main-table.
03 main-record occurs 366 times depending on the-day.
05 main-field pic x occurs 132 times depending on the-len.

29.1.320 4.1.320 OF

A data structure reference and name conflict resolution qualifier.
MOVE "abc" TO the-field OF the-record OF the-structure

Synonym for IN

29.1.321 4.1.321 OFF

Turn off a switch. See ON.

SPECIAL-NAMES.
SWITCH-1 IS mainframe
ON STATUS IS bigiron
OFF STATUS IS pc

SET mainframe TO OFF

29.1.322 4.1.322 OMITTED

Allows for placeholders in call frames and testing for said placeholders. Also allows for omitted label records, and
void returns. OMITTED is only allowed with BY REFERENCE data.

CALL "thing" USING
BY REFERENCE string-var
BY VALUE number-var
BY REFERENCE OMITTED
GIVING NULL

END-CALL

PROGRAM-ID. thing.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 default-float usage float-long.

168 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

LINKAGE-SECTION.

77 string-var pic x(80).

77 number-var pic 9(8).

77 float-var usage float-long.

PROCEDURE DIVISION
USING
BY REFERENCE OPTIONAL string-var
BY VALUE number-var
BY REFERENCE OPTIONAL float-var
RETURNING OMITTED.

IF float-var IS OMITTED
SET ADDRESS OF float-var TO default-float
END-IF

29.1.323 4.1.323 ON

Turn on a switch. See OFF.

SPECIAL-NAMES.
SWITCH-1 IS mainframe
ON STATUS IS bigiron
OFF STATUS IS pc

SET mainframe TO ON

Starts declaratives.

ADD 1 TO wafer-thin-mint
ON SIZE ERROR
SET get—-a-bucket TO TRUE
END-ADD

See SIZE, EXCEPTION.

29.1.324 4.1.324 ONLY

Sharing control. SHARING WITH READ ONLY

29.1.325 4.1.325 OPEN
Opens a file selector. Modes include INPUT, OUTPUT, I-O, EXTEND. May be OPTIONAL in the FD.

OPEN INPUT SHARING WITH ALL OTHER infile
OPEN EXTEND SHARING WITH NO OTHER myfile

29.1.326 4.1.326 OPTIONAL

Allows for referencing non-existent files. Allows for optionally OMITTED call arguments.

Code below shows optional file open and optional CALL arguments.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 169

OpenCOBOL FAQ, Release 1.1

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT OPTIONAL nofile ASSIGN TO "file.not"
ORGANIZATION IS LINE SEQUENTIAL.

DATA DIVISION.
LINKAGE SECTION.
77 arg PIC 99.

PROCEDURE DIVISION USING OPTIONAL arg

OPEN INPUT nofile
CLOSE nofile

IF arg IS OMITTED OR NOT NUMERIC
MOVE 0 TO RETURN-CODE
ELSE
MOVE arg TO RETURN-CODE
END-IF
GOBACK.

29.1.327 4.1.327 OPTIONS

A currently unsupported paragraph of the IDENTIFICATION division.

29.1.328 4.1.328 OR

Logical operation. See AND, NOT. OpenCOBOL supports COBOL’s logical expression shortcuts. Order of prece-
dence can be controlled with parenthesis, and default to NOT, AND, OR, right to left.

IF A NOT EQUAL 1 OR 2 OR 3 OR 5
DISPLAY "FORE!" END-DISPLAY
END-IF

29.1.329 4.1.329 ORDER

Sort clause to influence how duplicates are managed.

sort sort-work
ascending key work-rec with duplicates in order
using sort-in
giving sort-out.

In 1.1pre-rel, WITH DUPLICATES IN ORDER is a default.

29.1.330 4.1.330 ORGANIZATION

Defines a file’s storage organization. One of INDEXED, RELATIVE, SEQUENTIAL. OpenCOBOL also supports a
LINE SEQUENTIAL structure.

170 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.331 4.1.331 OTHER

File sharing option, ALL OTHER, NO OTHER.

EVALUATE' s else clause.

OCOBOL*> Here be dragons <x*
EVALUATE TRUE
WHEN a IS 1
PERFORM paragraph-1
WHEN OTHER
ALTER paragraph-1 TO paragraph-2
PERFORM paragraph-3
END-EVALUATE

29.1.332 4.1.332 OUTPUT
File OPEN mode. Procedure named in SORT
sort sort-work
on descending key work-rec
collating sequence is mixed

input procedure is sort-transform
output procedure is output-uppercase.

29.1.333 4.1.333 OVERFLOW

Declarative clause for STRING and UNSTRING that will trigger on space overflow conditions.

29.1.334 4.1.334 OVERLINE

A display control for SCREEN section fields.

29.1.335 4.1.335 OVERRIDE

Unsupportd Object COBOL METHOD-ID clause.

29.1.336 4.1.336 PACKED-DECIMAL

Numeric USAGE clause, equivalent to COMPUTATIONAL-3. Holds each digit in a 4-bit field.

From the opencobol-2.0 tarball testsuite

OCOBOL
IDENTIFICATION DIVISION.
PROGRAM-ID. prog.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 G-1.
02 X-1 PIC 9(1) VALUE 1
PACKED-DECIMAL.
02 FILLER PIC X(18) VALUE
01 G-2.
02 X-2 PIC 9(2) VALUE 12

PACKED-DECIMAL.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 171

OpenCOBOL FAQ, Release 1.1

02 FILLER
01 G-3.
02 X-3

02 FILLER
01 G-4.
02 X-4

02 FILLER
01 G-5.
02 X-5

02 FILLER
01 G-6.
02 X-6

02 FILLER
01 G-7.
02 X-7

02 FILLER
01 G-8.
02 X-8

02 FILLER
01 G-9.
02 X-9

02 FILLER
01 G-10.
02 X-10

02 FILLER
01 G-11.
02 X-11

02 FILLER
01 G-12.
02 X-12

02 FILLER
01 G-13.
02 X-13

02 FILLER
01 G-14.
02 X-14

02 FILLER
01 G-15.
02 X-15

02 FILLER
01 G-16.
02 X-16

02 FILLER
01 G-17.
02 X-17

PIC X(18) VALUE

SPACE.

PIC 9(3) VALUE 123

PACKED-DECIMAL.
PIC X(18) VALUE

SPACE.

PIC 9(4) VALUE 1234

PACKED-DECIMAL.
PIC X(18) VALUE

SPAC

PIC 9(5) VALUE 12345

PACKED-DECIMAL.
PIC X(18) VALUE

SPACE.

PIC 9(6) VALUE 123456

PACKED-DECIMAL.
PIC X(18) VALUE

SPAC

PIC 9(7) VALUE 1234567

PACKED-DECIMAL.
PIC X(18) VALUE

SPACE.

PIC 9(8) VALUE 12345678

PACKED-DECIMAL.
PIC X(18) VALUE

SPACE.

PIC 9(9) VALUE 123456789

PACKED-DECIMAL.
PIC X(18) VALUE

PIC 9(10) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

PIC 9(11) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

PIC 9(12) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

PIC 9(13) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

PIC 9(14) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

PIC 9(15) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

PIC 9(16) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

PIC 9(17) VALUE

SPACE.

1234567890

SPACE.

12345678901

SPACE.

123456789012

12345678901234

SPACE.

123456789012345

1234567890123456

SPACE.

12345678901234567

172

Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

02 FILLER
01 G-18.
02 X-18

02 FILLER
01 G-s1.
02 X-s1

02 FILLER
01 G-s2.
02 X-S2

02 FILLER
01 G-s3.
02 X-S3

02 FILLER
01 G-s4.
02 X-S4

02 FILLER
01 G-S5.
02 X-S5

02 FILLER
01 G-S6.
02 X-s6

02 FILLER
01 G-s7.
02 X-S7

02 FILLER
01 G-s8.
02 X-s8

02 FILLER
01 G-59.
02 X-s9

02 FILLER
01 G-s10.
02 X-s10

02 FILLER
01 G-sl1l1.
02 X-s11

02 FILLER
01 G-s12.
02 X-S12

02 FILLER
01 G-s13.
02 X-s13

02 FILLER
01 G-sl14.

PACKED-DECIMAL.

PIC X(18) VALUE ¢

PIC 9(18) VALUE
PACKED-DECIMAL.

PIC X(18) VALUE ¢

PIC S9(1) VALUE
PACKED-DECIMAL.

PIC X(18) VALUE S

PIC S9(2) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

PIC S9(3) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

PIC S9(4) VALUE
PACKED-DECIMAL.

PIC X(18) VALUE ¢

PIC S9(5) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

PIC S9(6) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

PIC S9(7) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

PIC S9(8) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

PIC S9(9) VALUE
PACKED-DECIMAL.
PIC X(18) VALUE

-1234567

SPACE.

-12345678

SPACE.

-123456789

SPACE.

PIC S9(10) VALUE -1234567890

PACKED-DECIMAL.
PIC X(18) VALUE

SPACE.

PIC S9(11) VALUE -12345678901

PACKED-DECIMAL.
PIC X(18) VALUE

SPACE.

PIC S9(12) VALUE -123456789012

PACKED-DECIMAL.
PIC X(18) VALUE

SPACE.

PIC S9(13) VALUE -1234567890123

PACKED-DECIMAL.
PIC X(18) VALUE

SPACE.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS?

173

OpenCOBOL FAQ, Release 1.1

02 X-s14

02 FILLER

01 G-S15.

02 X-S15

02 FILLER

01 G-sl6.

02 X-s16

02 FILLER

01 G-s17.

02 X-S17

02 FILLER

01 G-s18.

02 X-s18

02 FILLER

PROCEDURE

*>

Dump all values <%

PIC S9(14) VALUE -12345678901234
PACKED-DECIMAL.
PIC X(18) VALUE SP

PIC S9(15) VALUE -123456789012345
PACKED-DECIMAL.
PIC X(18) VALUE SPACE.

PIC S9(16) VALUE -1234567890123456
PACKED-DECIMAL.
PIC X(18) VALUE SPACE.

ACY
AL

PIC S9(17) VALUE -12345678901234567

PACKED-DECIMAL.
PIC X(18) VALUE SP

ACY
AC

PIC S9(18) VALUE -123456789012345678

PACKED-DECIMAL.
PIC X(18) VALUE SPACE.

DIVISION.

CALL "dump" USING G-1

END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.
CALL "dump"
END-CALL.

USING

USING

USING

USING

USING

USING

USING

USING

USING

USING

USING

USING

USING

USING

USING

USING

USING

USING

G-2

G-3

G-4

G-5

G-6

G=7

G-8

G-9

G-10

G-11

G-12

G-13

G-15

G-16

G-17

G-18

G-sS1

174

Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

CALL "dump" USING G-S2

END-CALL.

CALL "dump" USING G-S3

END-CALL.

CALL "dump" USING G-S4

END-CALL.

CALL "dump" USING G-S5

END-CALL.

CALL "dump" USING G-S6

END-CALL.

CALL "dump" USING G-S7

END-CALL.

CALL "dump" USING G-S8

END-CALL.

CALL "dump" USING G-S9

END-CALL.

CALL "dump" USING G-S10
END-CALL.

CALL "dump" USING G-S11
END-CALL.

CALL "dump" USING G-S12
END-CALL.

CALL "dump" USING G-S13
END-CALL.

CALL "dump" USING G-S14
END-CALL.

CALL "dump" USING G-S15
END-CALL.

CALL "dump" USING G-S16
END-CALL.

CALL "dump" USING G-S17
END-CALL.

CALL "dump" USING G-S18
END-CALL.

INITIALIZE X-1.

CALL "dump" USING G-1
END-CALL.

INITIALIZE X-2.

CALL "dump" USING G-2
END-CALL.

INITIALIZE X-3.

CALL "dump" USING G-3
END-CALL.

INITIALIZE X-4.

CALL "dump" USING G-4
END-CALL.

INITIALIZE X-5.

CALL "dump" USING G-5
END-CALL.

INITIALIZE X-6.

CALL "dump" USING G-6
END-CALL.

INITIALIZE X-7.

CALL "dump" USING G-7
END-CALL.

INITIALIZE X-8.

CALL "dump" USING G-8
END-CALL.

INITIALIZE X-9.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 175

OpenCOBOL FAQ, Release 1.1

CALL "dump" USING
END-CALL.
INITIALIZE %X-10.
CALL "dump" USING
END-CALL.
INITIALIZE X 11.
CALL "dump" USING
END-CALL.
INITIALIZE X 12.
CALL "dump" USING
END-CALL.
INITIALIZE X 13.
CALL "dump" USING
END-CALL.
INITIALIZE X 14.
CALL "dump" USING
END-CALL.
INITIALIZE X-15.
CALL "dump" USING
END-CALL.
INITIALIZE X 16.
CALL "dump" USING
END-CALL.
INITIALIZE X 17.
CALL "dump" USING
END-CALL.
INITIALIZE X-18.
CALL "dump" USING
END-CALL.
INITIALIZE X-S1.
CALL "dump" USING
END-CALL.
INITIALIZE X S2.
CALL "dump" USING
END-CALL.
INITIALIZE X S3.
CALL "dump" USING
END-CALL.
INITIALIZE X-S4.
CALL "dump" USING
END-CALL.
INITIALIZE X-S5.
CALL "dump" USING
END-CALL.
INITIALIZE X S6.
CALL "dump" USING
END-CALL.
INITIALIZE X-S7.
CALL "dump" USING
END-CALL.
INITIALIZE X S8.
CALL "dump" USING
END-CALL.
INITIALIZE X-SO.
CALL "dump" USING
END-CALL.
INITIALIZE X-S10.
CALL "dump" USING
END-CALL.

G-9

G-10

G-11

G-12

G-13

G-14

G-15

G-16

G-17

G-18

G-sS1

G-52

G-S3

G-54

G-S5

G-S6

G-S7

G-S8

G-S9

G-S10

176

Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

INITIALIZE X-S11.

CALL "dump" USING G-S11
END-CALL.

INITIALIZE X-S12.

CALL "dump" USING G-S12
END-CALL.

INITIALIZE X-S13.

CALL "dump" USING G-S13
END-CALL.

INITIALIZE X-S14.

CALL "dump" USING G-S14
END-CALL.

INITIALIZE X-S15.

CALL "dump" USING G-S15
END-CALL.

INITIALIZE X-S16.

CALL "dump" USING G-S16
END-CALL.

INITIALIZE X-S17.

CALL "dump" USING G-S17
END-CALL.

INITIALIZE X-S18.

CALL "dump" USING G-S18
END-CALL.

MOVE 7EFERO TO X-1.

CALL "dump" USING G-1
END-CALL.

MOVE 7ERO TO X-2.

CALL "dump" USING G-2
END-CALL.

MOVE 7ERO TO X-3.

CALL "dump" USING G-3
END-CALL.

MOVE 7ERO TO X-4.

CALL "dump" USING G-4
END-CALL.

MOVE 7ERO TO X-5.

CALL "dump" USING G-5
END-CALL.

MOVE ZERO TO X-6.

CALL "dump" USING G-6
END-CALL.

MOVE ZERO TO X-7.

CALL "dump" USING G-7
END-CALL.

MOVE ZERO TO X-8.

CALL "dump" USING G-8
END-CALL.

MOVE ZERO TO X-9.

CALL "dump" USING G-9
END-CALL.

MOVE ZERO TO X-10.

CALL "dump" USING G-10
END-CALL.

MOVE ZERO TO X-11.

CALL "dump" USING G-11
END-CALL.

MOVE ZERO TO X-12.

CALL "dump" USING G-12

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 177

OpenCOBOL FAQ, Release 1.1

END-CALL.

MOVE ZERO TO X-13.
CALL "dump" USING G-13
END-CALL.

MOVE 7ERO TO X-14.
CALL "dump" USING G-14
END-CALL.

MOVE 7ERO TO X-15.
CALL "dump" USING G-15
END-CALL.

MOVE ZERO TO X-16.
CALL "dump" USING G-16
END-CALL.

MOVE 7ERO TO X-17.
CALL "dump" USING G-17
END-CALL.

MOVE ZERO TO X-18.
CALL "dump" USING G-18
END-CALL.

MOVE 7ERO TO X-Sl.
CALL "dump" USING G-S1
END-CALL.

MOVE ZERO TO X-S2.
CALL "dump" USING G-S2
END-CALL.

MOVE ZERO TO X-S3.
CALL "dump" USING G-S3
END-CALL.

MOVE 7ERO TO X-S4.
CALL "dump" USING G-S4
END-CALL.

MOVE 7ERO TO X-S5.
CALL "dump" USING G-S5
END-CALL.

MOVE ZERO TO X-S6.
CALL "dump" USING G-S6
END-CALL.

MOVE 7ERO TO X-S7.
CALL "dump" USING G-S7
END-CALL.

MOVE ZERO TO X-S8.
CALL "dump" USING G-S8
END-CALL.

MOVE ZERO TO X-S9.
CALL "dump" USING G-S9
END-CALL.

MOVE ZERO TO X-S10.
CALL "dump" USING G-S10
END-CALL.

MOVE 7ERO TO X-S11.
CALL "dump" USING G-S11
END-CALL.

MOVE ZERO TO X-S12.
CALL "dump" USING G-S12
END-CALL.

MOVE ZERO TO X-S13.
CALL "dump" USING G-S13
END-CALL.

MOVE ZERO TO X-S14.

178

Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

CALL "dump" USING G-S14

END-CALL.

MOVE TO X-S15.
CALL "dump" USING G-S15
END-CALL.

MOVE TO X-Sl6.
CALL "dump" USING G-S16
END-CALL.

MOVE TO X-S17.
CALL "dump" USING G-S17
END-CALL.

MOVE TO X-S18.
CALL "dump" USING G-S18
END-CALL.

STOP RUN.

With a support file to dump the first 10 bytes of each record

#include <stdio.h>

#ifdef __ INTEL_COMPILER
#pragma warning (disable : 1419)
#endif

int dump (unsigned char xdata);
int dump (unsigned char =xdata)

{

int i;

for (i = 0; 1 < 10; i++)
printf ("%02x", datalil);

puts ("");

return 0O;
}
Va4

Which captures:

1£202020202020202020
012£2020202020202020
123£2020202020202020
01234£20202020202020
12345£20202020202020
0123456£202020202020
1234567£202020202020
012345678£2020202020
123456789£2020202020
01234567890£20202020
12345678901£20202020
0123456789012£202020
1234567890123£202020
012345678901234£2020
123456789012345£2020
01234567890123456£20
12345678901234567£20
0123456789012345678f
1d202020202020202020
012d2020202020202020
123d2020202020202020
01234d20202020202020
12345d20202020202020
0123456d202020202020
1234567d202020202020
012345678d2020202020

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 179

OpenCOBOL FAQ, Release 1.1

123456789d2020202020
01234567890d20202020
12345678901d20202020
0123456789012d202020
1234567890123d202020
012345678901234d2020
123456789012345d2020
01234567890123456d20
12345678901234567d20
0123456789012345678d
0£202020202020202020
000£2020202020202020
000£2020202020202020
00000£20202020202020
00000£20202020202020
0000000£202020202020
0000000£202020202020
000000000£2020202020
000000000£2020202020
00000000000£20202020
00000000000£20202020
0000000000000£202020
0000000000000£202020
000000000000000£2020
000000000000000£2020
00000000000000000£20
00000000000000000£20
0000000000000000000£
0c202020202020202020
000c2020202020202020
000c2020202020202020
00000c20202020202020
00000c20202020202020
0000000c202020202020
0000000c202020202020
000000000c2020202020
000000000c2020202020
00000000000c20202020
00000000000c20202020
0000000000000c202020
0000000000000c202020
000000000000000c2020
000000000000000c2020
00000000000000000c20
00000000000000000c20
0000000000000000000c
0£202020202020202020
000£2020202020202020
000£2020202020202020
00000£20202020202020
00000£20202020202020
0000000£202020202020
0000000£202020202020
000000000£2020202020
000000000£2020202020
00000000000£20202020
00000000000£20202020
0000000000000£202020
0000000000000£202020

180

Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

000000000000000£2020
000000000000000£2020
00000000000000000£20
00000000000000000£20
0000000000000000000£
0c202020202020202020
000c2020202020202020
000c2020202020202020
00000c20202020202020
00000c20202020202020
0000000c202020202020
0000000c202020202020
000000000c2020202020
000000000c2020202020
00000000000c20202020
00000000000c20202020
0000000000000c202020
0000000000000c202020
000000000000000c2020
000000000000000c2020
00000000000000000c20
00000000000000000c20
0000000000000000000c

29.1.337 4.1.337 PADDING

Defines a character to use for short record padding.
ORGANIZATION IS LINE SEQUENTIAL PADDING CHARACTER IS '+’

29.1.338 4.1.338 PAGE

Write and Report writer clause.
WRITE theline AFTER ADVANCING PAGE

PAGE LIMITS ARE 66 LINES 132 COLUMNS
HEADING iS 4 FIRST DETAIL IS 6
LAST CONTROL HEADING IS 58

LAST DETAIL IS 60
FOOTING IS 62

29.1.339 4.1.339 PAGE-COUNTER

A special register, qualified by Report Name. Report Writer is recognized but not yet supported.

29.1.340 4.1.340 PARAGRAPH

An allowable EXIT point.

NAMED-PARAGRAPH.
PERFORM FOREVER
IF solution

EXIT PARAGRAPH

END-IF

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS?

181

OpenCOBOL FAQ, Release 1.1

PERFORM solve-the-puzzle.
END-PERFORM.

29.1.341 4.1.341 PERFORM

A COBOL procedural and inline control flow verb.
beginning.
PERFORM FOREVER
PERFORM miracles
END-PERFORM
GOBACK.

miracles.

DISPLAY wonders END-DISPLAY.

29.1.342 4.1.342 PF

Report Writer alias for PAGE FOOTING.

29.1.343 4.1.343 PH

Report Writer alias for PAGE HEADING.

29.1.344 4.1.344 PIC

A commonly used shortform of PICTURE.

29.1.345 4.1.345 PICTURE

The PICTURE clause is easily one of COBOL’s greatest strengths. Fully detailed pictorial data definitions. The
internal complexity is left to compiler authors, while developers and management are free to describe data at a very
high conceptual level.

The two most common picture characters are 9 and X, for numeric and alphanumeric data respectively. For alphbetic
data, A can be used.

Aside from data storage pictures, a vast array of edit pictures are allowed for control of input and output formatting.
+-,A,B,N, X, Z,“*”, ‘CR’, ‘DB, E, S, V, ., P, currency symbol

OpenCOBOL offers full standards support of all alpha, alphanumeric and numeric storage specifiers as well as full
support for edit and numeric-edit clauses.
An example of some of the PICTURE options

*>>source format is free

KD ok

*> Author: jrls (John El1lis)
*> Date: Oct-2008
*> Purpose: formated output examples using pic strings.

*> EIR i e b b g b b b b b b b g b b b b b b b b b b b g b b b b b b b b b b g b b e b b b b b b b b b b b b b b b i i

identification division.
program-id. picstring.

182 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

data division.
working-storage section.

*>< K
01 header.
05 filler pic xxx value "1ln".
05 filler pic x(11) value " displ".
05 filler pic x(11) value " disp2".
05 filler pic x(11) value " disp3".
05 filler pic x(11) value " disp4d".
05 filler pic x(12) value " disp5".
05 filler pic x(9) value " anl".
05 filler pic x(14) value " phone™.
05 filler pic x(10) value " date".
*>< K
01 headerLines pic x(90) value all "-".
*>< K

01 displayformats.

05 linenum pic 99 value 1.
05 displ pic zzz,zz9.99 value zero.
05 filler pic x value spaces.
05 disp2 pic $zz,zz9.99 value zecro.
05 filler pic x value spaces.
05 disp3 pic ———,--9.99 value zero.
05 filler pic x value spaces.
05 disp4 pic $-z,zz9.99 value zero.
05 filler pic x value spaces.
05 dispb5 pic -zz,zz9.zz- blank zero value zero.
05 filler pic x value spaces.
*><+anl 1is actually a string field because of the embedded blanks, thus you put value spaces.
05 anl pic 99b99b99 value spaces.
05 filler pic x value spaces.
05 phone pic bxxxbxxxbxxxx value spaces.
05 filler pic x value spaces.
05 dispdate pic 99/99/9999 value zero.
><

procedure division.

0000-start.

*>< Ak
display headerLines.
display header.
display headerLines.

& 2> <ok A

move 220.22 to displ,
disp2.
move -220.22 to disp3,
disp4,
disp5.
inspect dispb5 replacing first "-" by " (",
first n_mn by ll) " .
move 10122008 to dispdate.

& > ok o ok ok A ok
*><xPlease note the results of moving ’“abcd’ to anl.
*><+anl will show up as 00 00 00 because alpha data was
*><xmoved into instead of numeric data.

><

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS?

183

OpenCOBOL FAQ, Release 1.1

*><#The phone field will display
*><*x" Db’

" abc def ghij" because
in the pic string.
F Dok ok ok ok oh ok k k ok ok ok ok ok ok ok ok ok ok ok ok kb ok ok Ak
move "abcd" to anl.
move "abcdefghij" to phone.

display displayformats.

add 1 to linenum.
move zero to disp4,
disp5.

& D> <ok o ok ok ok ok ok ok ok ok ok ok ok ok ok A
*><+Here after moving data to anl and phone, I use the
*><xinspect statement to replace the blanks.

& D> <ok o ok ok ok ok ok ok ok ok ok ok ok ok ok A

move "123456" to anl.

move "5555551234" to phone.

inspect anl replacing all " " by "-".

inspect phone replacing first " " by " (",
first n n by ") "
first n n by n"m_mw .

display displayformats.

inspect phone converting "23456789" to "adgjmptw".
display phone.

perform 0010-endProgram.
*>< Ak

0010-endProgram.

abc def ghij 10/12/2008

stop run.
*F><
Outputs:
1n displ disp2 disp3 disp4 disp5 anl
01 220.22 $220.22 -220.22 $-220.22 (220.22) 00 00 00
02 220.22 $220.22 -220.22 $ 0.00 12-34-56

(333)333-1adg

29.1.346 4.1.346 PLUS

Screen section relative line / column control during layout.

01 form-1 AUTO.
05 LINE 01 COLUMN 01 VALUE "Form!".
05 LINE PLUS 3 COLUMN 01 VALUE value-4.

29.1.347 4.1.347 POINTER

Allocates a restricted use variable for holding addresses.
01 c-handle USAGE IS POINTER.

CALL "open-1lib" RETURNING c-handle

(555)555-1234 10/12/2008

184

Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

ON EXCEPTION
DISPLAY "Can’t link open-1ib" END-DISPLAY
STOP RUN RETURNING 1
END-CALL
IF c-handle EQUAL NULL
DISPLAY "Can’t open—-1lib" END-DISPLAY
STOP RUN RETURNING 1
END-IF

CALL "use-1lib" USING BY VALUE c-handle BY CONTENT "Hello" & x"0O0O"
CALL "close-1ib" USING BY VALUE c-handle

x> Interfacing with the C ABI is just a teenie-weenie bit of voodoo
*> Pass the REFERENCE or use RETURNING if C sets the value. Use

*> VALUE when you want C to have its pointer, not the

*> REFERENCE address of the COBOL POINTER. So most inits are

*> BY REFERENCE (or RETURNING) and most usage, including

*> rundown of C ABI tools, 1is USING BY VALUE.

*> <k

29.1.348 4.1.348 POSITION

Alias for COLUMN in screen section layouts. Also an obsolete, recognized but not supported:
MULTIPLE FILE TAPE CONTAINS file-1 POSITION 1 file-2 POSITION 80

29.1.349 4.1.349 POSITIVE

Class condition.

IF amount IS POSITIVE
DISPLAY "Not broke yet" END-DISPLAY
END-IF

29.1.350 4.1.350 PRESENT

Report Writer clause used for optional field and group output.
05 field PIC X(16) PRESENT WHEN sum > 0.

29.1.351 4.1.351 PREVIOUS

Previous key READ control for INDEXED files.
READ file-1 PREVIOUS RECORD

29.1.352 4.1.352 PRINTER

Special name.

SPECIAL-NAMES.
PRINTER IS myprint

DISPLAY "test" UPON PRINTER END-DISPLAY

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 185

OpenCOBOL FAQ, Release 1.1

29.1.353 4.1.353 PRINTING

Report Writer declarative to SUPPRESS report printing.

29.1.354 4.1.354 PROCEDURE

The COBOL DIVISION that holds the executable statements. Also used with INPUT and OUTPUT sort procedures.

29.1.355 4.1.355 PROCEDURE-POINTER

Alias for PROGRAM-POINTER, capable of holding a callable address.

29.1.356 4.1.356 PROCEDURES

Debug module declarative clause.
USE FOR DEBUGGING ON ALL PROCEDURES

29.1.357 4.1.357 PROCEED

Used in ALTER.

ALTER paragraph-1 TO PROCEED TO paragraph-x

29.1.358 4.1.358 PROGRAM

An EXIT point.

EXIT PROGRAM.

29.1.359 4.1.359 PROGRAM-ID

The program identifier. Case sensitive, unlike all other OpenCOBOL identifiers. OpenCOBOL produces C Applica-

tion Binary Interface linkable entities and this identifier must conform to those rules. Dashes in names are replaced by
a hex string equivalent.

29.1.360 4.1.360 PROGRAM-POINTER

A data USAGE clause defining a field that can hold the executable address of a CALL routine.
77 callback USAGE PROGRAM-POINTER.

SET callback TO ENTRY a-program-—id

CALL callback

29.1.361 4.1.361 PROMPT

Screen section input control.
PROMPT IS ’:’'

186 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.362 4.1.362 PROPERTY

Unsupported Object COBOL phrase.

29.1.363 4.1.363 PROTOTYPE

Unsupported Object COBOL phrase.

29.1.364 4.1.364 PURGE

Unsupported Communication Section clause.

29.1.365 4.1.365 QUEUE

Unsupported Communication Section clause.

29.1.366 4.1.366 QUOTE

320

A figurative constant representing .
DISPLAY 123 END-DISPLAY

Outputs:
n 1 2 3 "

29.1.367 4.1.367 QUOTES

322

A figurative constant representing .

01 var PICTURE X(4).
MOVE TO var
DISPLAY var END-DISPLAY
Outputs:

wnnun

29.1.368 4.1.368 RAISE

Exception handling. There IS support for exceptions in OpenCOBOL but it is currently fairly limited. See FUNCTION
EXCEPTION-LOCATION for a sample. RAISE is not yet recognized.

29.1.369 4.1.369 RAISING

Exception handling. There IS support for exceptions in OpenCOBOL but it is currently limited. RAISING is not yet
recognized.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 187

OpenCOBOL FAQ, Release 1.1

29.1.370 4.1.370 RANDOM

A file access mode. RANDOM access allows seeks to any point in a file, usually by KEY.

29.1.371 4.1.371 RD

Report writer DATA division, REPORT section descriptor. Currently unsupported.

DATA DIVISION.
REPORT SECTION.
RD report-1
PAGE LIMIT IS 66 LINES.

29.1.372 4.1.372 READ

A staple of COBOL. Read a record.
READ infile PREVIOUS RECORD INTO back-record
AT END
SET attop TO TRUE
NOT AT END
PERFORM cursor-calculator
END-READ

29.1.373 4.1.373 RECEIVE

An unsupported Communication Section clause.

29.1.374 4.1.374 RECORD

Multiple use phrase.

FD file
RECORD IS VARYING IN SIZE FROM 1 TO 80 CHARACTERS
DEPENDING ON size-field

SELECT file
ASSIGN TO filename
ACCESS MODE IS RANDOM
RECORD KEY IS key-field
ALTERNATE KEY IS alt-key WITH DUPLICATES.

READ infile NEXT RECORD INTO display-rec END-READ

29.1.375 4.1.375 RECORDING

An obsolete, recognized, but ignored file descriptor clause.

FD file
RECORD IS VARYING IN SIZE FROM 1 TO 80 CHARACTERS
DEPENDING ON size-field
RECORDING MODE IS F'.

188 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.376 4.1.376 RECORDS

Multiple use phrase.
UNLOCK file-1s RECORDS

29.1.377 4.1.377 RECURSIVE

Specifies a PROGRAM-ID as having the recursive attribute. Recursive sub programs can CALL themselves.

This qualifier has implications on how OpenCOBOL allocates storage. Normally storage is stacked, recursion can
chew through stack space very quickly. Sub programs marked RECURSIVE are usually allocated using the memory
heap.

PROGRAM-ID nextbigthing IS RECURSIVE.

29.1.378 4.1.378 REDEFINES

A very powerful DATA division control alllowing for redefinition of memory storage, including incompatible data by

type.
IDENTIFICATION DIVISION.
PROGRAM-ID. prog.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X PIC X.
01 G REDEFINES X.

02 A PIC X.

02 B REDEFINES A PIC 9.
PROCEDURE DIVISION.

STOP RUN.

29.1.379 4.1.379 REEL

A tape device qualifier
CLOSE file REEL FOR REMOVAL

29.1.380 4.1.380 REFERENCE

The default COBOL CALL argument handler. CALL arguments can be

BY REFERENCE
BY CONTENT
BY VALUE

where by reference passes a reference pointer, allowing data modification inside sub programs.

29.1.381 4.1.381 RELATION

Unsupported.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 189

OpenCOBOL FAQ, Release 1.1

29.1.382 4.1.382 RELATIVE

File organization where the position of a logical record is determined by its relative record number.

OCOBOL >>SOURCE FORMAT IS FIXED

*>

AAAAAAAA A AL A A A A A AAAAA A A A A A A A A A A A A A A A A A AR A

*> Author: Brian Tiffin

*> Date: 20110806

*> Purpose: RELATIVE file organization

*> Tectonics: cobc —-g -debug -W -x relatives.cob

*> LR g b b b b g g b b b g b b b b g b b b g g b b b b g b b b g b b b b g b b b g g b b b g b b b b g g b b b g g b b b g

identification division.

program-id.

relatives.

environment division.
configuration section.
repository.

function all intrinsic.

input-output section.

fi

le-control.
select optional relatives
assign to "relatives.dat"
file status is filestatus
organization is relative
access mode is dynamic
relative key is nicknum.

data division.

fi

le section.

fd relatives.

01 person.

05 firstname pic x(48).
05 lastname pic x(64).
05 relationship pic x(32).

working-storage section.

77

77

77

77

filestatus pie 9(2).
88 ineof wvalue 1 when set to false is 0.

satisfaction pic 9.
88 satisfied value 1 when set to false is 0.
nicknum pic 9(2).

title-line pic x(34).

88 writing-names value "Adding, Overwriting. 00 to finish".
88 reading-names value "Which record? 00 to quit".
77 problem pic x(80).

screen section.

01 detail-screen.
05 line 1 column 1 from title-line erase eos.
05 line 2 column 1 wvalue "Record: ".
05 pic 9(2) 1line 2 column 16 using nicknum.
05 line 3 column 1 wvalue "First name: ".
05 pic x(48) line 3 column 16 using firstname.
05 line 4 column 1 wvalue "Last name: ".
05 pic x(64) line 4 column 16 using lastname.

190

Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

05 line 5 column 1 wvalue "Relation: ".
05 pic x(32) 1line column 16 using relationship.
05 pic x(80) line 6 column 1 from problem.

ual

01 show-screen.

05 line 1 column 1 from title-line erase eos.
05 line 2 column 1 wvalue "Record: ".
05 pic 9(2) 1line 2 column 16 using nicknum.
05 line 3 column 1 wvalue "First name: ".
05 pic x(48) line 3 column 16 from firstname.
05 line 4 column 1 wvalue "Last name: ".
05 pic x(64) line 4 column 16 from lastname.
05 line 5 column 1 wvalue "Relation: ".
05 pic x(32) line 5 column 16 from relationship.
05 pic x(80) line 6 column 1 from problem.
D> ok kA kA A A A AT Ak A A A A A A A Ak A A A Ak A A — Ak A bbbk A A —h bk b h bbbk A—h bk h kb kA — &
procedure division.
beginning.

x> Open the file and find the highest record number
x> which is a sequential read operation after START
open input relatives

move 99 to nicknum
start relatives key is less than or equal to nicknum
invalid key
move concatenate (’NO START’ space filestatus)
to problem
move 00 to nicknum
not invalid key
read relatives next end-read
end-start

x> Close and open for i-o
close relatives
open i-o relatives

*> Prompt for numbers and names to add until 00
set writing-names to true
set satisfied to false
perform fill-file through fill-file—end
until satisfied

close relatives

*> Prompt for numbers to view names of until 00
open input relatives

set reading-names to true

set satisfied to false

perform record-request through record-request-end
until satisfied

perform close-shop

ending.
goback.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 191

OpenCOBOL FAQ, Release 1.1

*> get some user data to add
fill-file.
display detail-screen end-display.
accept detail-screen end—-accept.
move spaces to problem
if nicknum equal 0
set satisfied to true
go to fill-file—end
end-if.

write-file.
write person
invalid key
move concatenate ("overwriting: " nicknum) to problem
rewrite person
invalid key
move concatenate (
exception—-location () space nicknum
space filestatus)
to problem
end-rewrite
end-write.
display detail-screen end-display

fill-file-end.

x> get keys to display
record-request.
display show-screen end-display
accept show-screen end-accept
move spaces to problem
if nicknum equals 0
set satisfied to true
go to record-request-end
end-if

*> The magic of relative record number reads
read-relation.
read relatives
invalid key
move exception-location() to problem
not invalid key
move spaces to problem
end-read
display show-screen end-display

record-request-end.

> get out <
close-shop.
close relatives.
goback.

end program relatives.

192 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

with sample screens:
Adding, Overwriting. 00 to finish

Record: 04
First name: Brad
Last name: Tiffin
Relation: brother

allowing for new record additions or overwrites of existing key numbers, and:

Which record? 00 to quit
Record: 03

First name: Brian

Last name: Tiffin

Relation:

where typing in a nicknum record number retrieves the relative record.

29.1.383 4.1.383 RELEASE
Release a record to a SORT. Used with INPUT PROCEDURE of SORT verb.

RELEASE record-1 FROM identifier-1

29.1.384 4.1.384 REMAINDER

Access to integer remainders during division.

DIVIDE
hex-val BY 16 GIVING left-nibble REMAINDER right-nibble
END-DIVIDE

29.1.385 4.1.385 REMOVAL

A close clause.
CLOSE filename-1 REEL FOR REMOVAL

Specifies that the file is stored on multiple removable tapes/disks. Not all systems support such devices.

29.1.386 4.1.386 RENAMES

OpenCOBOL supports regrouping of level 02-49 data items with level 66 and RENAMES.
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok b ok

*> Author: Brian Tiffin
*> Date: 20110606
*> Purpose: Demonstration of 66-level datanames

*> Tectonics: cobc

D> kA kA ok kA kA Ak Ak ok h kA bbb Ak bbb Ak bbb Ak b h kA kb h bk kb kb ok kb h ok ok kb ok ok kb ok A ok kA
identification division.

program—-id. sixtysix.

data division.
working-storage section.
01 master.
05 field-1 pic s9(9).
05 field-2 pic x(16).

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS?

193

OpenCOBOL FAQ, Release 1.1

05 field-3 pic x(4).
05 field-4 pic s9(9).
66 sixtysix renames field-2.
66 group—66 renames field-2 through field-4.

KDk o ok ok b ok ok ok ok ok ok ok ok ok ok A
procedure division.

move -66 to field-1

move "sixtysix" to field-2

move "ABCD" to field-3

multiply field-1 by -1 giving field-4 end-multiply

display "master : " master end-display
display "field-1 : " field-1 end-display
display "sixtysix: " sixtysix end-display
display "group-66: " group-66 end-display
goback.
end program sixtysix.

giving:

$./sixtysix

master : 00000006vsixtysix ABCD000000066

field-1 : -000000066

sixtysix: sixtysix

group-66: sixtysix ABCD000000066

29.1.387 4.1.387 REPLACE

A COBOL text preprocessing operator.

REPLACE ==MARKER== BY ==DISPLAY "REPLACE EXAMPLE" END-DISPLAY==.
identification division.
program-id. prog.

procedure division.
MARKER

goback.

end program prog.

And then to see how that REPLACE is working, use cobc with the -E argument

1 "replacing.cob"

identification division.
program-id. prog.

procedure division.
DISPLAY "REPLACE EXAMPLE" END-DISPLAY

goback.
end program prog.

29.1.388 4.1.388 REPLACING

An INSPECT subclause. A COPY preprocessor clause.

194 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.389 4.1.389 REPORT

Unsupported Report Writer section and File descriptor clause.

29.1.390 4.1.390 REPORTING

Unsupported declarative for Report Writer.

29.1.391 4.1.391 REPORTS

Unsupported Report Writer file descriptor clause associating files with named reports.

29.1.392 4.1.392 REPOSITORY

A paragraph of the CONFIGURATION SECTION. OpenCOBOL supports the FUNCTION ALL INTRINSIC clause
of the REPOSITORY. Allows source code to use intrinsic functions without the FUNCTION keyword.

OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok A ok

x> Author: Brian Tiffin
*> Date: 20110213
*> Purpose: Demonstrate an intrinstric function shortcut

*> Tectonics: cobc —-x functionall.cob

*> R g b g b
identification division.

program-id. functionall.

environment division.
configuration section.
repository.

function all intrinsic.

H Dk ok

procedure division.

display function pi function e end-display
display pi e end-display
goback.

end program functionall.

Sample output:

$ cobc -x functionall.cob

$./functionall

3.1415926535897932384626433832795029 2.7182818284590452353602874713526625
3.1415926535897932384626433832795029 2.7182818284590452353602874713526625

Without the repository paragraph:

$ cobc -x functionall.cob
functionall.cob:19: Error: ’'pi’ undefined
functionall.cob:19: Error: ’'e’ undefined

29.1.393 4.1.393 REQUIRED

Recognized but ignored Screen section field attribute.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 195

OpenCOBOL FAQ, Release 1.1

29.1.394 4.1.394 RESERVE

An unsupported SELECT clause.

29.1.395 4.1.395 RESET

Unsupported Report Writer data control field clause.

29.1.396 4.1.396 RESUME

Unsupported declarative control flow statement.

29.1.397 4.1.397 RETRY

Unsupported record locking wait and retry clause.
* RETRY n TIMES
* RETRY FOR n SECONDS
* RETRY FOREVER

29.1.398 4.1.398 RETURN

Return records in a SORT OUTPUT PROCEDURE.

29.1.399 4.1.399 RETURNING

Specify the destination of CALL results.
01 result PIC S9(8).

CALL "libfunc" RETURNING result END-CALL

Specify the return field for a sub-program.
PROCEDURE DIVISION USING thing RETURNING otherthing

29.1.400 4.1.400 REVERSE-VIDEO

SCREEN section field display attribute. Functionality dependent on terminal and operating system support and set-
tings.

29.1.401 4.1.401 REWIND

A really cool lyric in the Black Eyed Peas song, “Hey Mama”.

196 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.402 4.1.402 REWRITE

Allow overwrite of records where primary key exists.
write person
invalid key
move concatenate ("overwriting: " nicknum) to problem
rewrite person
invalid key
move concatenate (
exception-location () nicknum
filestatus)
to problem
end-rewrite
end-write.

29.1.403 4.1.403 RF

Short form for unsupported REPORT FOOTING.

29.1.404 4.1.404 RH

Short form for unsupported REPORT HEADING.

29.1.405 4.1.405 RIGHT

Ignored SYNCHRONIZED clause.

29.1.406 4.1.406 ROLLBACK

Recognized but not fully supported revert of transactional revert of file writes. See COMMIT.

29.1.407 4.1.407 ROUNDED
Well defined rounding clause applied to arithmetic. Defined well enough for bank managers to feel comfortable

handing their calculations over to a bunch of nerds.
COMPUTE total-value ROUNDED = 1.0 / 6.0 END-COMPUTE

29.1.408 4.1.408 RUN

A stopping point.
STOP RUN RETURNING 1

Terminates run regardless of nesting depth, returning control (and result) to operating system. See GOBACK and
EXIT PROGRAM for other run unit terminations.

29.1.409 4.1.409 SAME

[-O-CONTROL clause for SAME RECORD AREA.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 197

OpenCOBOL FAQ, Release 1.1

29.1.410 4.1.410 SCREEN

Screen section.
OCOBOL >>SOURCE FORMAT IS FIXED

KD Ak h Ak ok ok Ak ok Ak ok ok Ak ok h sk k kb bk kb bk ks k Ak sk kA sk k ok kb kA bk h bk h sk kb A bk bk ok <k

x> Author: Brian Tiffin
*> Date: 20110701
*> Purpose: Play with 2.0 screen section

*> Tectonics: cobc

*> dhk ok ok kb kA A A A bbb b b bbbk bbb bbb bbb bk A A A A A A A A A A A bbbk bbbk kb bk kA < A
identification division.
program-id. screening.

data division.
working-storage section.
01 some-data pic s9(9).

screen section.

01 detail-screen.
03 line 1 column 1 wvalue "title line".
03 line 2 column 1 value "field: ".
03 line 2 column 16 using some-data.

*> g b b b b g e b b b b o b o b b b b P P S 3
procedure division.

display detail-screen end-display

accept detail-screen end—accept

goback.

end program screening.

being a poor representation of the plethora of field attribute control allowed in OpenCOBOL screen section.
Screen field attributes include:

» JUSTIFIED RIGHT

* BLANK WHEN ZERO

* OCCURS integer-val TIMES

* BELL, BEEP

* AUTO, AUTO-SKIP, AUTOTERMINATE

* UNDERLINE

¢ OVERLINE

* SECURE

* REQUIRED

* FULL

« PROMPT

* REVERSE-VIDEO

* BLANK LINE

* BLANK SCREEN

* ERASE EOL

198 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

* ERASE EOS

* SIGN IS LEADING SEPERATE CHARACTER

* SIGN IS TRAILING SEPERATE CHARACTER

* LINE NUMBER IS [PLUS] integer-val

* COLUMN NUMBER IS [PLUS] integer-val

» FOREGROUND-COLOR IS integer-val HHGHLIGHT, LOWLIGHT

* BACKGROUND-COLOR IS integer-val BLINK

* PICTURE IS picture-clause USING identifier

* PICTURE IS picture-clause FROM identifier, literal

» PICTURE IS picture-clause TO identifier

e VALUE is literal
During ACCEPT, USING fields are read/write, FROM fields are read and TO fields are write.
See What are the OpenCOBOL SCREEN SECTION colour values? for colour values.

29.1411 4.1411 SD

SORT file data descriptor.
SD sort—-file-1
RECORD CONTAINS 80 CHARACTERS.

29.1.412 4.1.412 SEARCH

A powerful table and file search verb. See Linear SEARCH for an example.

29.1.413 4.1.413 SECONDS

Clause of unsupported read/write RETRY on lock.

29.1.414 4.1.414 SECTION

COBOL source code is organized in DIVISION, SECTION, paragraphs and sentences. OpenCOBOL supports user
named sections and recognizes the following list of pre-defined sections.

¢ CONFIGURATION

¢ INPUT-OUTPUT

* FILE

* WORKING-STORAGE

* LOCAL-STORAGE

* LINKAGE

* REPORT (recognized but unsupported)
* SCREEN

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 199

OpenCOBOL FAQ, Release 1.1

User defined sections provide for source code organization and use of PERFORM with THROUGH for tried and true
COBOL procedural programming.

29.1.415 4.1.415 SECURE

SCREEN section field attribute. Displayed as asterisks.

29.1.416 4.1.416 SEGMENT

Unsupported Communication section clause.

29.1.417 4.1.417 SELECT

FILE-CONTROL phrase. Associates files with names, descriptors, and options.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT fileresource
ASSIGN TO external-name
FILE STATUS IS identifier
COLLATING SEQUENCE IS alphabet-name
LOCK MODE IS MANUAL WITH LOCK ON MULTIPLE RECORDS
RECORD DELIMITER IS STANDARD
RESERVE num AREA
SHARING WITH NO OTHER
ORGANIZATION IS INDEX
ACCESS MODE IS DYNAMIC
RECORD KEY IS key-field
ALTERNATE RECORD KEY IS key-field-2 WITH DUPLICATES
ALTERNATE RECORD KEY IS key-field-3.

though, naming a quick file can be as simple as
SELECT myfile ASSIGN TO "name.txt".

which will be a default LINE SEQUENTTAL file.

29.1.418 4.1.418 SELF

Unsupported Object COBOL clause.

29.1.419 4.1.419 SEND

Unsupported Communication section verb.

29.1.420 4.1.420 SENTENCE

An obsolete control flow clause. CONTINUE is preferred to NEXT SENTENCE.

200 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.421 4.1.421 SEPARATE

Fine tuned control over leading and trailing sign indicator.
77 field-1 PICTURE S9(8) SIGN IS TRAILING SEPARATE.

29.1.422 4.1.422 SEQUENCE

Controls COLLATING sequence for character compares, by defining a character set.

29.1.423 4.1.423 SEQUENTIAL

OpenCOBOL supports both fixed length SEQUENTIAL and newline terminated LINE SEQUENTIAL file access.

29.1.424 4.1.424 SET

* SET ADDRESS OF ptr-var TO var.
* SET ENVIRONMENT “name” TO “value”.
* SET cond-1 TO TRUE

That last one is pretty cool. An 88 level conditional set TRUE will cause the associated value to change to a value that
satifies the condition as true.
01 field-1 piec 99.

88 cond-1 wvalue 42.

MOVE 0 TO field-1

DISPLAY field-1 END-DISPLAY
SET cond-1 TO TRUE

DISPLAY field-1 END-DISPLAY

00 and 42 are displayed.

29.1.425 4.1.425 SHARING

File sharing option.
* SHARING WITH NO OTHER
* SHARING WITH ALL OTHER
* SHARING WITH READ ONLY

Functionality dependent on build options and operating system running OpenCOBOL.

29.1.426 4.1.426 SIGN

Fine tuned control over leading and trailing sign indicator.
77 field-1 PICTURE S9(8) SIGN IS TRAILING SEPARATE.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 201

OpenCOBOL FAQ, Release 1.1

29.1.427 4.1.427 SIGNED

OpenCOBOL supports the full gamut of COBOL numeric data storage. SIGNED and UNSIGNED being part and
parcel.

29.1.428 4.1.428 SIGNED-INT

A native storage format NUMERIC data USAGE clause. Equivalent to BINARY-LONG, BINARY-LONG SIGNED,
and SIGNED-LONG.

29.1.429 4.1.429 SIGNED-LONG

A native storage format NUMERIC data USAGE clause. Equivalent to BINARY-LONG, BINARY-LONG SIGNED,
and SIGNED-INT.

29.1.430 4.1.430 SIGNED-SHORT

A native storage format NUMERIC data USAGE clause. Equivalent to BINARY-SHORT SIGNED.

29.1.431 4.1.431 SIZE

Multi purpose.
OpenCOBOL allows SIZE IS control on CALL arguments.

Arthimetic operations allow for declaritives on size errors.
ADD 1 TO ocobol
ON SIZE ERROR
SET erroneous TO TRUE
NOT ON SIZE ERROR
DISPLAY "Whee, ADD 1 TO COBOL" END-DISPLAY
END-ADD

STRING has a DELIMITED BY SIZE option to include entire fields.

29.1.432 4.1.432 SORT

OpenCOBOL supports USING, GIVING as well as INPUT PROCEDURE and OUTPUT PROCEDURE clauses for
the SORT verb.

OCOBOL* OpenCOBOL SORT verb example using standard in and standard out
identification division.
program-id. sorting.

environment division.
input-output section.
file-control.
select sort-in
assign keyboard
organization line sequential.
select sort-out
assign display
organization line sequential.

202 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

select sort-work
assign "sortwork".

data division.
file section.
fd sort-in.

01 in-rec pic x(255).
fd sort-out.

01 out-rec pic x(255).
sd sort-work.

01 work-rec pic x(255).

procedure division.

sort sort-work
ascending key work-rec
using sort-in
giving sort-out.

goback.
exit program.
end program sorting.

In the next sample, demonstrating INPUT PROCEDURE and OUTPUT PROCEDURE take note of the RETURN and
RELEASE verbs as they are key to record by record control over sort operations.

Also, just to complicate things, this sample sorts using a mixed-case alphabet (but also places capital A out of order to
demonstrate special cases that can codified in an ALPHABET).

OCOBOL >>SOURCE FORMAT IS FIXED

KA AR A AR A A A A AR A AR AR A A I A A I A A IR A I A A A AR A A A A A A A I A AR A AR A AR A A A AR A A XA A KK

* Author: Brian Tiffin
* Date: 02-Sep—-2008
* Purpose: An OpenCOBOL SORT verb example

%

Tectonics: cobc —-x sorting.cob
./sorting <input >output

%

* or simply
* ./sorting
* for keyboard and screen demos

Kok kb ok ok ok ok b ok b ok ok ok ok ok ok ok
identification division.
program—id. sorting.

environment division.
configuration section.
* This sets up a sort order lower then upper except for A and a
special—-names.

alphabet mixed is " AabBcCdDeEfFgGhHiIjJkK1LmMnNoOpPgQrRsStTu
-"UvVwixXyYz720123456789".

input-output section.
file-control.
select sort-in
assign keyboard
organization is line sequential.
select sort-out
assign display
organization is line sequential.
select sort-work
assign "sortwork".

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 203

OpenCOBOL FAQ, Release 1.1

data division.
file section.
fd sort-in.

01 in-rec pic x(255).
fd sort-out.

01 out-rec pic x(255).
sd sort-work.

01 work-rec pic x(255).

working-storage section.
01 loop-flag pic x value low-value.

procedure division.
sort sort-work
on descending key work-rec
collating sequence is mixed
input procedure is sort-transform
output procedure is output-uppercase.

display sort-return end-display.
goback.

LR B R S R R B b R i i i i i i i i i i i
sort—transform.
move low-value to loop-flag
open input sort-in
read sort-in
at end move high-value to loop-flag
end-read
perform
until loop-flag = high-value
move FUNCTION LOWER-CASE (in-rec) to work-rec
release work-rec
read sort-in
at end move high-value to loop-flag
end-read
end-perform
close sort-in

LR i b S i i i b i i i b i b b b b i i b b i i i b i b i b b b b b b b b b b i b i
output—-uppercase.
move low-value to loop-flag
open output sort-out
return sort-work
at end move high-value to loop-flag
end-return
perform
until loop-flag = high-value
move FUNCTION UPPER-CASE (work-rec) to out-rec
write out-rec end-write
return sort-work
at end move high-value to loop-flag
end-return
end-perform
close sort-out

exit program.

204 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

end program sorting.

Here is a snippet describing TABLE sorts by [jrls_swla]
table define

01 nbr-of-columns pic 9(4) value zero.
01 tcindex2 usage is index.
01 dbtables.

03 tables-columns occurs 1 to 1000 times
depending on nbr-of-columns
ascending key tcTable, tcColumn

indexed by tcindex.

05 tcTable pic x(64) value spaces.
05 tcColumn pic x(64) value spaces.
05 tcAlias pic x(10) value spaces.
05 tcOrder pic 9(4) value zero.
05 tcType pic x(10) value spaces.
05 tcMaxLen pic 9(4) value zero.
*><x
01 aliasName.
05 pic x value "t".
05 anval pic 9(3) value zero.

01 showdata.

05 sdTable pic x(17) value spaces.
05 sdColumn pic x(17) value spaces.
05 sdType pic x(10) wvalue spaces.
05 sdOrder pic zzzzz-.
05 sdMaxLen pic zzzzz.

table load

perform varying rows from 1 by 1
until rows > dbNumRows
call "dbNextRow" using by value dbResult,
by reference ColumnBuff,
by reference CbuffDesc
returning dbResult

add 1 to nbr-of-columns
set tcindex up by 1
move cbTable to tcTable (tcindex)
move cbColumn to tcColumn (tcindex)
move cbType to tcType (tcindex)
move cbOrder to tcOrder (tcindex)
move cbMaxLen to tcMaxLen (tcindex)
if nbr-of-columns = 1

add 1 to anVal
else

set tcindex2 to tcindex

set tcindex2 down by 1

if cbTable <> tcTable (tcindex?2)

add 1 to anVal

end-if
end-if
move aliasName to tcAlias (tcindex)

end-perform.

table sort

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS?

205

OpenCOBOL FAQ, Release 1.1

sort tables-columns ascending key tcTable, tcColumn.
display table

perform varying tcindex from 1 by 1
until tcindex > nbr-of-columns

move tcTable (tcindex) to sdTable
move tcColumn (tcindex) to sdColumn
move tcOrder (tcindex) to sdOrder
move tcType (tcindex) to sdType
move tcMaxLen (tcindex) to sdMaxLen

display showdata
end-perform.

Excercise for the audience. Could the above code be simplified by using
MOVE CORRESPONDING cbRecord to table-columns (tcindex)
MOVE CORRESPONDING table-columns (tcindex) to showdata

with a few judicious field name changes?

4.1.432.1 An OCSORT support tool

There is an external sort utility referenced in What is ocsort?

29.1.433 4.1.433 SORT-MERGE

Used in an [-O-CONTROL paragraph with the SAME clause:
SAME SORT-MERGE AREA FOR filename-1.

The SORT-MERGE keyword and SORT keyword are equivalent in this case.

29.1.434 4.1.434 SORT-RETURN

A SPECIAL-REGISTER used by the OpenCOBOL SORT routines.
* +000000000 for success
* +000000016 for failure
A programmer may set SORT-RETURN in an INPUT PROCEDURE.

29.1.435 4.1.435 SOURCE

Compiler directive controlling source code handling.

>>SOURCE FORMAT IS FIXED
>>SOURCE FORMAT IS FREE

OpenCOBOL allows use of this directive at programmer whim. cobc defaults to FIXED format source handling, so
the directive must occur beyond the sequence and indicator columns unless the -free compile option is used.

Split keys are a pending feature in OpenCOBOL.

SELECT ...
RECORD KEY IS key-name SOURCE is dname-2 dname-3

206 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

Also a pending Report Writer data source clause.

29.1.436 4.1.436 SOURCE-COMPUTER

A paragraph of the IDENTIFICATION division. Treated as a comment.

29.1.437 4.1.437 SOURCES

Currently unsupported SOURCES ARE report writer clause.

29.1.438 4.1.438 SPACE

A figurative constant representing a space character.

29.1.439 4.1.439 SPACES

A figurative constant representing space characters.

29.1.440 4.1.440 SPECIAL-NAMES

OpenCOBOL supports a fair complete set of the SPECIAL-NAMES in common use.
¢ CONSOLEIS CRT
e SYSIN IS mnemonic-name-1
* SYSOUTIS
e SYSLISTIS
e SYSLSTIS
* PRINTER IS
e SYSERRIS
¢ CONSOLE IS mnemonic-name-7
e SWITCH-1 IS mnemonic-name-n ON STATUS IS condition-name-1 OFF STATUS IS condition-name-2
* SWITCH-2

* SWITCH-8 IS ...

¢ CO1 IS mnemonic-name-m

« CI121S

e ALPHABET alphabet-name IS NATIVE, STANDARD-1, STANDARD-2, EBCDIC literal-1 THRU literal-2

[ALSO literal-3]
* SYMBOLIC CHARACTERS symbol-character IS integer-1 IN alphabet-name
* CLASS class-name IS literal THRU literal-2

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS?

OpenCOBOL FAQ, Release 1.1

* LOCALE locale-name IS identifier-1

¢ CURRENCY SIGN IS literal

* DECIMAL-POINT IS COMMA

e CURSOR IS identifier-1

e CRT STATUS IS identifier-1

¢ SCREEN CONTROL IS identifier-1 PENDING
* EVENT STATUS IS identifier-1 PENDING

29.1.441 4.1.441 STANDARD

* LABEL RECORDS ARE STANDARD

29.1.442 4.1.442 STANDARD-1

* ALPHABET IS STANDARD-1
« RECORD DELIMITER IS STANDARD-1
equivalent to ASCII

29.1.443 4.1.443 STANDARD-2

* ALPHABET IS STANDARD-1
¢« RECORD DELIMITER IS STANDARD-1
equivalent to ASCII

29.1.444 4.1.444 START

Sets internal file fields that will influence sequential READ NEXT and READ PREVIOUS for INDEXED files. Can
also be used to seek to the FIRST or LAST record of a file for SEQUENTIAL access modes.
start indexing

key is less than

keyfield of indexing-record
invalid key
display
"bad start: " keyfield of indexing-record
end-display
set no-more-records to true

not invalid key
read indexing previous record
at end set no-more-records to true
end-read
end-start

The conditionals are quite powerful.

208 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

KEY IS GREATER THAN

KEY IS >

KEY IS LESS THAN
KEY IS <

KEY IS EQUAL TO
KEY IS =

KEY IS NOT GREATER THAN
KEY IS NOT >

KEY IS NOT LESS THAN
KEY IS NOT <

KEY IS NOT EQUAL TO

KEY IS NOT =

KEY IS <>

KEY IS GREATER THAN OR EQUAL TO
KEY IS >=

KEY IS LESS THAN OR EQUAL TO
KEY IS <=

See Does OpenCOBOL support ISAM? for some example source code.

29.1.445 4.1.445 STATEMENT

Unsupported.

29.1.446 4.1.446 STATUS

Multi-purpose.
* CRT STATUS IS
» FILE STATUS IS
* EVENT STATUS IS
e SWITCH-1 IS thing ON STATUS IS conditional-1

29.1.447 4.1.447 STEP

Unsupported Report Writer OCCURS subclause.

29.1.448 4.1.448 STOP

End a run and return control to the operating system.
STOP RUN RETURNING 5.

Forms include:
* STOP RUN
e STOP RUN RETURNING stat
e STOP RUN GIVING stat
* STOP literal

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS?

209

OpenCOBOL FAQ, Release 1.1

* STOP RUN WITH ERROR STATUS stat
e STOP RUN WITH NORMAL STATUS stat

29.1.449 4.1.449 STRING

String together a set of variables with controlled delimiters.

01 var PICTURE X(5).

STRING
"abc" DELIMITED BY "b"
"def" DELIMITED BY SIZE
"ghi" DELIMITED BY "z"
INTO var
ON OVERFLOW

DISPLAY "var is full at" LENGTH OF

END-STRING

DISPLAY var END-DISPLAY

Outputs:

var is full at 5
adefg

var END-DISPLAY

OpenCOBOL also fully supports the WITH POINTER clause to set the initial and track the position in the output

character variable.

29.1.450 4.1.450 STRONG

Unsupported.

29.1.451 4.1.451 SUB-QUEUE-1

Unsupported Communication section clause.

29.1.452 4.1.452 SUB-QUEUE-2

Unsupported Communication section clause.

29.1.453 4.1.453 SUB-QUEUE-3

Unsupported Communication section clause.

29.1.454 4.1.454 SUBTRACT

Arithmetic operation.
SUBTRACT a2 b c FROM d ROUNDED END-SUBTRACT

SUBTRACT a FROM b GIVING c
ON SIZE ERROR
SET math-error TO TRUE

210

Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

NOT ON SIZE ERROR
SET math-error TO FALSE
END-SUBTRACT

SUBTRACT CORRESPONDING record-a FROM record-b ROUNDED
ON SIZE ERROR
SET something-wrong TO TRUE

END-SUBTRACT

29.1455 4.1.455 SUM

A REPORT SECTION control break summation field clause. Unsupported.

29.1.456 4.1.456 SUPER

Unsupported Object COBOL clause.

29.1.457 4.1.457 SUPPRESS

Unsupported declarative to suppress printing.

29.1.458 4.1.458 SYMBOL

Unsupported.

29.1.459 4.1.459 SYMBOLIC

SPECTAL-NAMES clause allowing user defined figurative constants.

29.1.460 4.1.460 SYNC

Alias for SYNCHRONIZED

29.1.461 4.1.461 SYNCHRONIZED

Control padding inside record definitions, in particular to match C structures.

01 infile.
03 slice occurs 64 times depending on slices.
05 stext usage pointer synchronized.
05 val float-long synchronized.

05 ftext usage pointer synchronized.

29.1.462 4.1.462 SYSTEM-DEFAULT

OBJECT-COMPUTER clause for locale support.
CHARACTER CLASSIFICATION IS SYSTEM-DEFAULT

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS?

211

OpenCOBOL FAQ, Release 1.1

29.1.463 4.1.463 TABLE

Unsupported keyword, but OpenCOBOL fully supports tables, including SORT.

29.1.464 4.1.464 TALLYING

INSPECT clause for counting occurances of a literal.
INSPECT record-1 TALLYING ident-1 FOR LEADING

29.1.465 4.1.465 TAPE

A device type used in ASSIGN.

29.1.466 4.1.466 TERMINAL

Unsupported Comminication section clause.

29.1.467 4.1.467 TERMINATE

Currently unsupported Report Writer verb to finish up a report. See INITIATE.

29.1.468 4.1.468 TEST

Allows control over when loop conditionals are tested. WITH TEST BEFORE is the default. WITH TEST AFTER

will always evaluate the body of the loop at least once.

perform
with test after
varying x from 1 by xstep
until x >= function e
if x > function e

move function e to x
else
move x to x-value
end-if
compute recip = 1 / x end-compute

move recip to y-value
write outrec end-write
end-perform

29.1.469 4.1.469 TEXT

Unsupported Communication section clause.

29.1470 4.1.470 THAN

Part of the conditional clauses for readability.

IF A GREATER THAN 10
DISPLAY "A > 10" END-DISPLAY
END-IF

value

212

Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.471 4.1.471 THEN

A somewhat disdained keyword that is part of the IF THEN ELSE control structure.

IF A > 10 THEN

DISPLAY "A GREATER THAN 10" END-DISPLAY
ELSE

DISPLAY "A LESS THAN OR EQUAL TO 10" END-DISPLAY
END-IF

29.1472 4.1.472 THROUGH
Used in definitions for alphabets in SPECIAL-NAMES and a procedural clause allowing PERFORM from one label

THROUGH (inclusive) to another label and all paragraphs in between. Also used to specify grouping with RENAMES.
PERFORM 100-open-files THROUGH 100-files-end

29.1.473 4.1.473 THRU

Commonly used alias for THROUGH

29.1474 4.1.474 TIME

An ACCEPT FROM source. Allows access to current clock.

01 current-time.

05 ct-hours pic 99.
05 ct-minutes pic 99.
05 ct-sec s pic 99.
05 ¢ 5 pic 99.

ACCEPT current-time FROM TIME

29.1475 4.1.475 TIMES

A counted loop.
PEFORM 5 TIMES

DISPLAY "DERP" END-DISPLAY
END-PERFORM

29.1.476 4.1.476 TO

Multi-purpose destination specifier.
ADD 1 TO cobol GIVING OpenCOBOL
ON SIZE ERROR
DISPLAY "Potential exceeds expectations" END-DISPLAY
END-ADD

29.1.477 4.1.477 TOP

A LINAGE clause.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 213

OpenCOBOL FAQ, Release 1.1

29.1.478 4.1.478 TRAILING

Multi-purpose. FUNCTION TRIM allows a TRAILING keyword. An INSPECT TALLYING subclause.

29.1479 4.1.479 TRUE

A SET target. Used in EVALUATE to control when the operation succeeds. When used with a conditional 88 level
name, will set the corresponding field to a listed VALUE.

01 field-1 pic =x.

88 cond-1 wvalues ’'a’,’'b’,’c’.
SET cond-1 TO TRUE
DISPLAY field-1 END-DISPLAY

29.1.480 4.1.480 TYPE

An unsupported Report Writer report group clause. Also unsupported data description clause.

29.1.481 4.1.481 TYPEDEF

Unsupported data description clause that will allow user defined record layouts.

29.1.482 4.1.482 UCS-+4

Currently unsupported Universal Character Set alphabet. UCS-4 would store international code points in 4 bytes.

29.1.483 4.1.483 UNDERLINE

SCREEN section field attribute.

29.1.484 4.1.484 UNIT

A close option, alias for REEL.
CLOSE ile—-1 UNIT WITH NO REWIND

29.1.485 4.1.485 UNIVERSAL

Unsupported Object COBOL exception object clause.

29.1.486 4.1.486 UNLOCK

Manual record unlock and buffer write sync.
UNLOCK filename-1 RECORDS

214 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.487 4.1.487 UNSIGNED

Usage clause specifing that a value will not include any sign and therefore can’t be negative.

29.1.488 4.1.488 UNSIGNED-INT

A native storage format NUMERIC data USAGE clause. Equivalent to BINARY-LONG UNSIGNED and
UNSIGNED-LONG.

29.1.489 4.1.489 UNSIGNED-LONG

A native storage format NUMERIC data USAGE clause. Equivalent to BINARY-LONG UNSIGNED and
UNSIGNED-INT.

29.1.490 4.1.490 UNSIGNED-SHORT

A native storage format NUMERIC data USAGE clause. Equivalent to BINARY-SHORT UNSIGNED and
UNSIGNED-SHORT.

29.1.491 4.1.491 UNSTRING

A powerful string decomposition verb.
UNSTRING Input-Address
DELIMITED BY "," OR "/"
INTO
Street-Address DELIMITER D1 COUNT CI
Apt—-Number DELIMITER D2 COUNT C2
City DELIMITER D3 COUNT C3
State DELIMITER D4 COUNT C4
Zip—-Code DELIMITER D5 COUNT C5
WITH POINTER ptr-1
ON OVERFLOW
SET more-fields TO TRUE
END-UNSTRING

29.1.492 4.1.492 UNTIL

Sets a loop conditional.

PERFORM VARYING ident—-1 FROM 1 BY 1 UNTIL ident-1 > 10
CALL "thing" USING BY VALUE ident-1 END-CALL
END-PERFORM

29.1.493 4.1.493 UP

Index and pointer modification.

SET ptr-1 UP BY 4
SET ind-1 UP BY 1

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 215

OpenCOBOL FAQ, Release 1.1

29.1.494 4.1.494 UPDATE

SCREEN section field attribute.

29.1.495 4.1.495

A DISPLAY destination clause.

29.1.496 4.1.496 USAGE

UPON

OpenCOBOL uses standard big-endian internal storage by default. USAGE clauses influence the data represen-
tation. The INTEL architecture uses little-endian form and OpenCOBOL programmers developing for this com-
mon chipset may need to pay heed to this for performance purposes. As per the standards, OpenCOBOL supports

COMPUTATIONAL-5 native usage.

OpenCOBOL enables use of one to eight byte binary representations in both big and little endian forms.

Along with full support of all common COBOL PICTURE clauses both storage and display, OpenCOBOL supports
USAGE clauses of:

BINARY

COMPUTATIONAL, COMP

COMP-1

COMP-2

COMP-3

COMP-4

COMP-5

COMP-X
FLOAT-LONG
FLOAT-SHORT
DISPLAY

INDEX
PACKED-DECIMAL
POINTER
PROGRAM-POINTER
SIGNED-SHORT
SIGNED-INT
SIGNED-LONG
UNSIGNED-SHORT
UNSIGNED-INT
UNSIGNED-LONG
BINARY-CHAR SIGNED

216

Chapter 29. 4 Reserved Words

http://en.wikipedia.org/wiki/COBOL

OpenCOBOL FAQ, Release 1.1

* BINARY-CHAR UNSIGNED

* BINARY-CHAR

* BINARY-SHORT SIGNED

* BINARY-SHORT UNSIGNED
* BINARY-SHORT

* BINARY-LONG SIGNED

e BINARY-LONG UNSIGNED

* BINARY-LONG

* BINARY-DOUBLE SIGNED

* BINARY-DOUBLE UNSIGNED
* BINARY-DOUBLE

* BINARY-C-LONG SIGNED

* BINARY-C-LONG UNSIGNED
* BINARY-C-LONG

29.1.497 4.1.497 USE

Sets up DECLARATIVES paragraphs.
« USE BEFORE DEBUGGING
» USE AFTER EXECEPTION

29.1.498 4.1.498 USER-DEFAULT

OBJECT-COMPUTER clause for locale support.
CHARACTER CLASSIFICATION IS USER-DEFAULT

29.1.499 4.1.499 USING

Specifies arguments to CALL and in PROCEDURE declarations.
* BY REFERENCE (default, pointer to modifiable data is passed)
e BY CONTENT (reference to a copy of the data)

* BY VALUE (actual dereferenced value is placed into call frame)

29.1.500 4.1.500 UTF-16

Unsupported internationalization clause.

29.1.501 4.1.501 UTF-8

Unsupported internationalization clause.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS?

217

OpenCOBOL FAQ, Release 1.1

29.1.502 4.1.502 VAL-STATUS

Alias for the unsupported VALIDATE-STATUS clause of the VALIDATE statement.

29.1.503 4.1.503 VALID

Unsupported.

29.1.504 4.1.504 VALIDATE

Unsupported data validation verb.

29.1.505 4.1.505 VALIDATE-STATUS

Unsupported clause of the VALIDATE statement.

29.1.506 4.1.506 VALUE

An CALL frame argument modifier. Sets values in data descriptions as well as values used with 88 level conditional

names.

29.1.507 4.1.507 VALUES

Plural of VALUE when more than one entry is used in an 88 conditional name.

29.1.508 4.1.508 VARYING

Sets a looping variable.

PERFORM VARYING loop-counter FROM 1 BY 1 UNTIL loop-counter > 10
DISPLAY loop >unter END-DISPLAY

END-PERFORM

29.1.509 4.1.509 WHEN

A very powerful keyword used in EVALUATE phrases for specifying conditional expressions.
EVALUATE TRUE

WHEN A = 10
DISPLAY "A = 10" END-DISPLAY
WHEN A = 15

PERFORM A-IS-15
WHEN B IS EQUAL 6
PERFORM B-I1S5S-6
WHEN C IS GREATER THAN 5
DISPLAY "C > 5" END-DISPLAY
WHEN OTHER
DISPLAY "Default imperative" END-DISPLAY
END-EVALUATE

218 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.1.510 4.1.510 WITH

Multi-purpose.
* WITH LOCK
e DISPLAY WITH screen-attribute
* WITH ROLLBACK (pending)

29.1.511 4.1.511 WORKING-STORAGE

A DATA division section. Unless BASED, all fields are allocated and fixed in memory (for the running program within
a module).

29.1.512 4.1.512 WRITE

Record write. Unlike READ that uses filenames syntax, WRITE uses record buffer syntax which must be related to
the file through the FD file descriptor. OpenCOBOL supports LINAGE and WRITE has support for ‘report’ paging
and line control.

WRITE record-buff END-WRITE
WRITE record-name-1 AFTER ADVANCING PAGE END-WRITE.
WRITE record-name-1

AT END-OF-PAGE
DISPLAY "EOP" END-DISPLAY
END-WRITE

29.1.513 4.1.513 YYYYDDD

Modifies ACCEPT var FROM DAY to use full 4 digit year for the Julian date retrieval.
ACCEPT date-var FROM DAY YYYYDDD

29.1.514 4.1.514 YYYYMMDD

Modifies ACCEPT var FROM DATE to use full 4 digit year.
ACCEPT date-var FROM DATE YYYYMMDD

29.1.515 4.1.515 ZERO

Figurative and numeric constant for the value 0.

29.1.516 4.1.516 ZEROES

Plural of ZERO.

29.1. 4.1 What are the OpenCOBOL RESERVED WORDS? 219

OpenCOBOL FAQ, Release 1.1

29.1.517 4.1.517 ZEROS

Alternate spelling for ZEROES.

29.2 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs?

Yes, many. As of the July 2008 1.1 pre-release

220 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

Intrinsic FUNCTION

* 4.2.1

e 422

* 423

e 424

* 425

* 4.2.6

e 427

e 4238

* 429

* 4.2.10
* 42.11
4212
* 4213
42,14
* 4.2.15
* 4.2.16
e 4217
* 4.2.18
* 4.2.19
* 4.2.20
4221
4222
42723
° 4224
* 4225
* 4.2.26
e 4.2.27
* 4228
* 4.2.29
* 4.2.30
* 4231
4.2.32
4.2.33
4.2.34
* 4235
4.2.36
4.2.37
4.2.38
4.2.39
* 4.2.40
4.2.41
4.2.42
* 4243
4.2.44
* 4.2.45
4.2.46
4.2.47
* 4.2.48
* 4.2.49
* 4.2.50
e 4251
* 4252
* 4253

FUNCTION ABS
FUNCTION ACOS
FUNCTION ANNUITY
FUNCTION ASIN
FUNCTION ATAN
FUNCTION BYTE-LENGTH
FUNCTION CHAR
FUNCTION COMBINED-DATETIME
FUNCTION CONCATENATE
FUNCTION COS
FUNCTION CURRENT-DATE
FUNCTION DATE-OF-INTEGER
FUNCTION DATE-TO-YYYYMMDD
FUNCTION DAY-OF-INTEGER
FUNCTION DAY-TO-YYYYDDD
FUNCTION E
FUNCTION EXCEPTION-FILE
FUNCTION EXCEPTION-LOCATION
FUNCTION EXCEPTION-STATEMENT
FUNCTION EXCEPTION-STATUS
FUNCTION EXP
FUNCTION EXP10
FUNCTION FACTORIAL
FUNCTION FRACTION-PART
FUNCTION INTEGER
FUNCTION INTEGER-OF-DATE
FUNCTION INTEGER-OF-DAY
FUNCTION INTEGER-PART
FUNCTION LENGTH
FUNCTION LOCALE-DATE
FUNCTION LOCALE-TIME
FUNCTION LOCALE-TIME-FROM-SECONDS
FUNCTION LOG
FUNCTION LOG10
FUNCTION LOWER-CASE
FUNCTION MAX
FUNCTION MEAN
FUNCTION MEDIAN
FUNCTION MIDRANGE
FUNCTION MIN
FUNCTION MOD
FUNCTION NUMVAL
FUNCTION NUMVAL-C
FUNCTION ORD
FUNCTION ORD-MAX
FUNCTION ORD-MIN
FUNCTION PI
FUNCTION PRESENT-VALUE
FUNCTION RANDOM
FUNCTION RANGE
FUNCTION REM
FUNCTION REVERSE
FUNCTION SECONDS-FROM-FORMATTED-TIME

* 4255
* 4.2.56
* 4.2.57

0 o

9.2. 41.22.DbeslOpenCOBOL (impfement-anmyntrinsic FUNCTIONs?

FUNCTION SIGN
FUNCTION SIN
FUNCTION SQRT

Y TR T NPT~ m T F~rT A T A T T T TN T A rrr o~ T

OpenCOBOL FAQ, Release 1.1

ABS, ACOS, ANNUITY, ASIN, ATAN, BYTE-LENGTH, CHAR, CONCATENATE, COS,
CURRENT-DATE, DATE-OF-INTEGER, DATE-TO-YYYYMMDD, DAY-OF-INTEGER,
DAY-TO-YYYYDDD, E, EXCEPTION-FILE, EXCEPTION-LOCATION, EXCEPTION-STATEMENT,
EXCEPTION-STATUS, EXP, EXP10, FACTORIAL, FRACTION-PART, INTEGER,
INTEGER-OF-DATE, INTEGER-OF-DAY, INTEGER-PART, LENGTH, LOCALE-DATE,
LOCALE-TIME, LOG, LOG10, LOWER-CASE, MAX, MEAN, MEDIAN, MIDRANGE, MIN, MOD,
NUMVAL, NUMVAL-C, ORD, ORD-MAX, ORD-MIN, PI, PRESENT-VALUE, RANDOM, RANGE, REM,
REVERSE, SECONDS-FROM-FORMATTED-TIME, SECONDS-PAST-MIDNIGHT, SIGN, SIN, SORT,
STANDARD-DEVIATION, STORED-CHAR-LENGTH, SUBSTITUTE, SUBSTITUTE-CASE, SUM, TAN,
TEST-DATE-YYYYMMDD, TEST-DAY-YYYYDDD, TRIM, UPPER-CASE, VARIANCE,
WHEN-COMPILED, YEAR-TO-YYYY

29.2.1 4.2.1 FUNCTION ABS

Absolute value of numeric argument
DISPLAY FUNCTION ABS (DIFFERENCE) .

29.2.2 4.2.2 FUNCTION ACOS

The ACOS function returns a numeric value (in radians) that approximates the arccosine of the argument.

The domain of the arccosine function is -1 to +1. Domain errors return a result of 0. The inverse cosine function
returns a range of 0 thru 7

DISPLAY FUNCTION ACOS(-1).

29.2.3 4.2.3 FUNCTION ANNUITY

Compute the ratio of an annuity paid based on arguments of interest and number of periods.
WORKING-STORAGE SECTION.

77 INTEREST PIC S9V9999 VALUE 0.08.
77 MONTHLY PIC S9V9999 VALUE
77 PERIODS PIC 99 VALUE 36.
77 ANNUITY-VALUE PIC S9V9999 VALUE
PROCEDURE DIVISION.
COMPUTE MONTHLY ROUNDED = INTEREST / 12
COMPUTE ANNUITY-VALUE ROUNDED =
FUNCTION ANNUITY (MONTHLY PERIODS)
DISPLAY "Monthly rate: " MONTHLY
" Periods: " PERIODS
" Annuity ratio: " ANNUITY-VALUE

END-DISPLAY.

Outputs:
Monthly rate: +0.0067 Periods: 36 Annuity ratio: +0.0314

29.24 4.2.4 FUNCTION ASIN

The ASIN function returns a numeric value (in radians) that approximates the arcsine of the argument.

The domain of the arcsine function is -1 to +1. Domain errors return a result of 0. The inverse sine function returns a
range of -7/2 thru /2

DISPLAY FUNCTION ASIN(-1).

222 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.2.5 4.2.5 FUNCTION ATAN

The ATAN function returns a numeric value (in radians) that approximates the arctangent of the argument.

The domain of the arctangent function is all real numbers. The inverse tangent function returns a range of -7/2 thru
/2

DISPLAY FUNCTION ATAN (1) .

29.2.6 4.2.6 FUNCTION BYTE-LENGTH

The BYTE-LENGTH function returns an integer that is the internal storage length of the given argument.
COBOL >>SOURCE FORMAT IS FIXED
R R I R I b S S b b b S R b Ih b S S b S b S b S b S b S b b b S b S b b b b b Sh b S b b Sh b b S b S b S
* Purpose: demonstrate intrinsic FUNCTION BYTE-LENGTH
Kk ok kb ok b ok ok b ok b ok ok
identification division.
program-id. bytelength.

data division.
working-storage section.

01 char-var usage binary-char.

01 short-var usage binary-short.

01 long-var usage binary-long.

01 double-var usage binary-double.
01 numl-var pic 9.

01 numé-var pic 99v99.

01 num9-var pic s9(9).

01 numl8-var pic s9(18).

01 numl8c-var pic s9(18) usage comp.
01 numl8p-var pic s9(18) usage comp-3.
01 edit-var pic $zzzz9.99.

01 string-var pic x(10) value "abc"
01 newline pic x value x’0a’.

procedure division.

display
"numl-var len = " function byte-length (numl-var) newline
"numé4-var len = " function byte-length (num4-var) newline
"num9-var len = " function byte-length (num9-var) newline
"numl8-var len = " function byte-length (numl8-var) newline
"numl8c-var len = " function byte-length (numl8c-var) newline
"numl8p-var len = " function byte-length (numl8p-var) newline
"edit-var len = " function byte-length(edit-var) newline
"12 len = " function byte-length(12) newline
"12.12 len = " function byte-length(12.12) newline
"1234567890.123 " function

byte-length (1234567890.123) newline
"string-var len = " function byte-length(string-var) newline
"trim string = " function

byte-length (function trim(string-var)) newline

"char-var len = " function byte-length(char-var) newline

29.2. 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs? 223

OpenCOBOL FAQ, Release 1.1

"short-var len = " function byte-length (shor
"long-var len " function byte-length (lc I
"double-var len = " function byte-length (double-var)

end-display
goback.
exit program.

Outputs:

numl-var len = 1
numé4-var len = 4
num9-var len = 9
numl8-var len = 18
numl8c-var len = 8
numl8p-var len = 10
edit-var len = 9
12 len = 2
12.12 len = 4
1234567890.123 = 13
string-var len = 10
trim string = 00000003
char-var len = 1

short-var 1len = 2
long-var len = 4
double-var len = 8

29.2.7 4.2.7 FUNCTION CHAR

The CHAR function returns a ONE character alphanumeric field whose value is the character in the current collating
sequence having the ordinal position equal to the value of the integer argument. The argument must be greater than 0
and less than or equal to the number of positions in the collating sequence. Errors in the argument range return O (the
LOW-VALUE by default).

See ASCII or EBCDIC and details of the ALPHABET clause.
DISPLAY FUNCTION CHAR(66).

Would output A in the ASCII character set. Note this may be different than what some expect. OpenCOBOL CHAR
is 1 thru 128 not 0 thru 127 as a C programmer may be used to.

And to add a little confusion, most personal computers use an extended character set, usually erroneously called ASCII
with a range of 0 to 255. A more appropriate name may be ISO-8859-1 Latin 1. See ASCII for more accurate details.
This author is often guilty of this misnomer of the use of the term ASCII.

29.2.8 4.2.8 FUNCTION COMBINED-DATETIME

Returns a common datetime form from integer date (years and days from 1600 to 10000) and numeric time arguments
(seconds in day). Date should be from 1 to 3067671 and time should be from 1 to 86400. The character string returned
is in the form 7.5.

DISPLAY FUNCTION COMBINED-DATETIME (1; 1) END-DISPLAY

Outputs:
0000001.00001

224 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.29 4.2.9 FUNCTION CONCATENATE

Concatenate the given fields. CONCATENATE is an OpenCOBOL extension.

MOVE "COBOL" TO stringvar
MOVE FUNCTION CONCATENATE ("Open"; stringvar) TO goodsystem
DISPLAY goodsystem END-DISPLAY

29.2.10 4.2.10 FUNCTION COS

The COS function returns a numeric value that approximates the cosine of the argument (in radians).

The domain of the cosine function is all real numbers, with a nominal domain of O thru 7 with a zero returned at 7/2.
The cosine function returns a range of -1 thru +1.

DISPLAY FUNCTION COS (1.5707963267949).

29.2.11 4.2.11 FUNCTION CURRENT-DATE

Returns an alphanumeric field of length 21 with the current date, time and timezone information in the form
YYYYMMDDhhmmsscc=£tznn

DISPLAY FUNCTION CURRENT-DATE.

Example Output:
2008080921243796-0400

29.2.12 4.2.12 FUNCTION DATE-OF-INTEGER

Converts an integer date, days on the Gregorian since December 31 1600 to YYYYMMDD form
DISPLAY DATE-OF-INTEGER (1)

DISPLAY DATE-OF-INTEGER (50000)

Outputs:

16010101
17371123

50,000 days after December 31, 1600 being November 23rd, 1737.

29.2.13 4.2.13 FUNCTION DATE-TO-YYYYMMDD

Converts a two digit year date format to four digit year form using a sliding window pivot of the optional second
argument. The pivot defaults to 50.

The OpenCOBOL implementation of DATE-TO-YYYYMMDD also accepts an optional third argument, replacing
the default century value of 1900 and is treated as the years added to the given year portion of the first argument and
modified by the sliding 100 window pivot.

Domain errors occur for year values less than 1600 and greater than 999,999. There is no validation of the input date.

Because of the sliding window, this function is dependent on the date of evaluation

DISPLAY FUNCTION DATE-TO-YYYYMMDD (000101)
DISPLAY FUNCTION DATE-TO-YYYYMMDD (500101)
DISPLAY FUNCTION DATE-TO-YYYYMMDD (610101)
DISPLAY FUNCTION DATE-TO-YYYYMMDD (990101)

29.2. 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs? 225

OpenCOBOL FAQ, Release 1.1

DISPLAY FUNCTION DATE-TO-YYYYMMDD
DISPLAY FUNCTION DATE-TO-YYYYMMDD
DISPLAY FUNCTION DATE-TO-YYYYMMDD
DISPLAY FUNCTION DATE-TO-YYYYMMDD

990101, 50, 1900)
990101, -10, 1900)
990101, 50, 2000)

(
(
(
(990101, 50, 2100)
When run in August, 2008 produces:

20000101
20500101
19610101
19990101
18990101
17990101
19990101
20990101

29.2.14 4.2.14 FUNCTION DAY-OF-INTEGER

Converts a Gregorian integer date form to Julian date form (YYYDDD) based on days since December 31, 1600.
Errors return 0

DISPLAY FUNCTION DAY-OF-INTEGER (97336) .
1867182

97,336 days after 16001231 being the 182nd day of the year 1867. Canada’s date of Confederation and recognized
birthday.

29.2.15 4.2.15 FUNCTION DAY-TO-YYYYDDD

Converts a Julian 2 digit year and three digit dat integer to a four digit year form. See FUNCTION DATE-TO-
YYYYMMDD for some of the details of the calculations involved.

29.2.16 4.2.16 FUNCTIONE

Returns Euler’s number as an alphanumeric field to 34 digits of accuracy after the decimal. E forms the base of the
natural logarithms. It has very unique and important properies such as:

* the derivative of e* is e*
* and the area below the curve of y = I/x for] <= x <= e is exactly 1.

* making it very useful in calculations of Future Value with compound interest.
DISPLAY FUNCTION E END-DISPLAY

outputs:
2.7182818284590452353602874713526625

A small graph to show the magic area.
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok ok ok ok ok ok ok ok ok ok o ok o ok ok ok o ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok b ok ok A

*> Author: Brian Tiffin

*> Date: 29-May-2009, Modified 20110505 to add e tic mark

*> Purpose: Plot Euler’s number (using integral of 1 over Xx)

*> Tectonics: requires access to gnuplot. http://www.gnuplot.info
*> cobc -Wall -x ploteuler.cob

*> OVERWRITES ocgenplot.gp, ocgpdata.txt and images/euler.png

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A

identification division.

226 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

program-id. ploteuler.

environment division.
input-output section.
file-control.
select scriptfile
assign to "ocgenplot.gp"
organization is line sequential.
select outfile
assign to "ocgpdata.txt"
organization is line sequential.

data division.
file section.
fd scriptfile.
01 gnuplot-command pic x(82).

fd outfile.
01 outrec.
03 x-value pic -z9.999.
03 filler pic x.
03 y-value pic -z9.999.

working-storage section.
01 xstep pic 9v99999.
01 x pic 9v99999.
01 recip pic 9v99999.

*> The plot command is xrange 0:3, y 0:2 data col 1 for x 2 for y
01 gpcmds pic x(400) value is

"set style fill solid 1.0; "&
"set grid; "&
"set xtics add ('e’ 2.718281); "og
"plot [0:3] [0:2] "ocgpdata.txt’ using 1:2 \ "&
" with filledcurves below x1 title ’"1/x’; "og
"set terminal png; "g
"set output ’images/euler.png’; "o
"replot .

01 line-cnt pic 999.

01 gptable.

05 gpcmd pic x(50) occurs 8 times.

01 gplot pic x(40) value is ’'gnuplot -persist ocgenplot.gp’.
01 result pic s9(9).

H D ko ok kK ok ok k ok ok sk k ok ok ok ok ok k k ok ko ok ok b ok kA ok A o
procedure division.
display function e end-display

*><+ Create the script to plot the area of Euler’s number

open output scriptfile.

move gpcmds to gptable

perform varying line-cnt from 1 by 1 until line-cnt > 8
move gpcmd (line-cnt) to gnuplot-command
write gnuplot-command end-write

end-perform

close scriptfile

*><x Create the reciprocal data

29.2. 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs? 227

OpenCOBOL FAQ, Release 1.1

open output outfile

move spaces to outrec
compute xstep = function e / 100 end-compute
perform

with test after
varying x from 1 by xstep
until x >= function e
if x > function e
move function e to x-value

else
move x to x-value
end-if
compute recip = 1 / x end-compute

move recip to y-value
write outrec end-write
end-perform
close outfile

*><x Invoke gnuplot
call "SYSTEM" using gplot returning result end-call

if result not = 0
display "Problem: " result end-display
stop run returning result

end-if

goback.

end program ploteuler.

The area in red is exactly 1. Well, not on this plot exactly, as it is somewhat sloppy with the xstep end case and the
precisions.

228 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

1/X —

15 | .

0.5 ¢

[} I
0 0.5 1 1.5 2 25 e 3

See Can OpenCOBOL be used for plotting? for some details on plotting.

29.2.17 4.2.17 FUNCTION EXCEPTION-FILE

This special-register holds the error number and name of the source file that caused an input output exception. See
FUNCTION EXCEPTION-STATUS for an example.

29.2.18 4.2.18 FUNCTION EXCEPTION-LOCATION

This special-register can be queried for the location of the last exception. See FUNCTION EXCEPTION-STATUS for
example source code. Note: This feature requires compilation with -fsource-location compiler switch. This option is
also turned on with -g and -debug debugging info compiles. Information includes PROGRAM-ID, section and source
line.

29.2.19 4.2.19 FUNCTION EXCEPTION-STATEMENT

This special-register holds the statement that was executing when the latest exception was raised. See FUNCTION
EXCEPTION-STATUS for an example. Note: This feature requires compilation with -fsource-location compiler
switch. This option is also turned on with -g debugging info compiles.

29.2. 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs? 229

OpenCOBOL FAQ, Release 1.1

29.2.20 4.2.20 FUNCTION EXCEPTION-STATUS

This FUNCTION returns the current exception status. The example below is courtesy of Roger While, from a post he
made announcing the FUNCTION EXCEPTION- features.

Source format is free, compile with cobc -x -g -free except.cob

IDENTIFICATION DIVISION.
PROGRAM-ID. MINIPROG.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. LINUX.
OBJECT-COMPUTER. LINUX.
SPECIAL-NAMES.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT PRINTEFILE ASSIGN TO "XXRXWXX"
FILE STATUS RXWSTAT.

DATA DIVISION.
FILE SECTION.
FD PRINTFILE.
01 PRINTREC PIC X(132).

WORKING-STORAGE SECTION.
01 RXWSTAT PIC XX.

PROCEDURE DIVISION.
AOO-MAIN SECTION.
001-MAIN-PROCEDURE.
OPEN INPUT PRINTEFILE.
DISPLAY "File Status: " RXWSTAT.
DISPLAY "EXCEPTION-FILE: " FUNCTION EXCEPTION-FILE.
DISPLAY "Return Length: "
FUNCTION LENGTH (FUNCTION EXCEPTION-FILE) .

DISPLAY "EXCEPTION-STATUS: " FUNCTION EXCEPTION-STATUS.
DISPLAY "EXCEPTION-STATEMENT: " FUNCTION EXCEPTION-STATEMENT.
STRING "TOOLONG" DELIMITED SIZE INTO RXWSTAT.

DISPLAY "EXCEPTION-STATUS: " FUNCTION EXCEPTION-STATUS.
DISPLAY "EXCEPTION-STATEMENT: " FUNCTION EXCEPTION-STATEMENT.
DISPLAY "EXCEPTION-LOCATION: " FUNCTION EXCEPTION-LOCATION.
STOP RUN.

Example output:

File Status: 35

EXCEPTION-FILE: 35PRINTFILE

Return Length: 00000011

EXCEPTION-STATUS: EC-I-O-PERMANENT-ERROR

EXCEPTION-STATEMENT: OPEN

EXCEPTION-STATUS: EC-OVERFLOW-STRING

EXCEPTION-STATEMENT: STRING

EXCEPTION-LOCATION: MINIPROG; 001-MAIN-PROCEDURE OF AQO0-MAIN; 29

Tip: See the source file libcob/exception.def for a list of the plethora of run-time exceptions supported by Open-
COBOL.

230 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.2.21 4.2.21 FUNCTION EXP

Returns an approximation of Euler’s number (see FUNCTION E) raised to the power of the numeric argument.
DISPLAY FUNCTION EXP (1) END-DISPLAY

outputs:
2.718281828459045091

Note: Be aware that this approximation seems accurate to “only” 15 decimal places. Diligent programmers need to
be aware of the foibles of floating point mathematics and take these issues into consideration.

29.2.22 4.2.22 FUNCTION EXP10

Returns an approximation of the value 10 raised to the power of the numeric argument.

DISPLAY FUNCTION EXP10(1.0) END-DISPLAY
DISPLAY FUNCTION EXP10(l1.2) END-DISPLAY
DISPLAY FUNCTION EXP10(10) END-DISPLAY

Outputs:

10.000000000000000000
15.848931924611132871
10000000000.000000000000000000

29.2.23 4.2.23 FUNCTION FACTORIAL

Computes the factorial of the integral argument. Valid Range of 0 to 19 with a domain of 1 to 121645100408832000.
OCOBOL*> LR g b b b b g b b b b g b b b g b b b g g b b b g b b b b g b b b b g b b b b g b b b g b b b b g g b b b g g b b b g g g

*> Program to find range and domain of FUNCTION FACTORIAL

identification division.

program-id. fact.

data division.
working-storage section.
01 ind pic 999.

01 result pic 9(18).

KDk ok A
procedure division.
perform varying ind from O by 1 until ind > 20

add to function factorial(ind) giving result

on size error
display "overflow at " ind end-display

end-add

display ind " = " function factorial (ind) end-display
end-perform

goback.
end program fact.

Outputs:

000 = 000000000000000001
001 = 000000000000000001
002 = 000000000000000002
003 = 000000000000000006

29.2. 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs? 231

OpenCOBOL FAQ, Release 1.1

004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019

000000000000000024
000000000000000120
000000000000000720
000000000000005040
000000000000040320
000000000000362880
000000000003628800
000000000039916800
000000000479001600
000000006227020800
000000087178291200
000001307674368000
000020922789888000
000355687428096000
006402373705728000
121645100408832000

overflow at 020

020

432902008176640000

Kind of the same thing, with some zero out formatting.

OCOBOL*> R b e e b b e e b b b b i b e b e b b g b b b b b e b b e i e b i b e b e b b b b b i b

x> Program to find range and domain of FUNCTION FACTORIAL
identification division.
program-id. fact.

data division.
working-storage section.

01 ind pic 99.
01 z-ind pic z9.
01 result pic 9(18).
01 pretty-result pic z(17)9.

K ko kok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok b ok ok ok b ok ok ok b ok ok ok ok b ok ok ok b ok ok ok ok ok ok ok ok ok ok ok A ok
procedure division.
perform varying ind from 0 by 1 until ind > 21
add zero to function factorial (ind) giving result
on size error
display
"overflow at " ind ", result undefined: "
function factorial (ind)
end-display
not on size error
move ind to z-ind
move result to pretty-result
display
"factorial (" z-ind ") = " pretty-result
end-display
end-add
end-perform

goback.
end program fact.
Which outputs:
factorial(0) = 1
factorial(1) = 1
factorial(2) = 2
factorial(3) = 6
factorial(4) = 24
232 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

factorial(5) = 120
factorial(6) = 720
factorial(7) = 5040
factorial(8) = 40320
factorial(9) = 362880
factorial (10) = 3628800
factorial (1ll) = 39916800
factorial (12) = 479001600
factorial (13) = 6227020800
factorial (14) = 87178291200
factorial (15) = 1307674368000
factorial (16) = 20922789888000
factorial(l7) = 355687428096000
factorial (18) = 6402373705728000

factorial (19) = 121645100408832000
overflow at 20, result undefined, 432902008176640000
overflow at 21, result undefined, 197454024290336768

29.2.24 4.2.24 FUNCTION FRACTION-PART

Returns a numeric value that is the fraction part of the argument. Keeping the sign.

DISPLAY FUNCTION FRACTION-PART (FUNCTION E) END-DISPLAY
DISPLAY FUNCTION FRACTION-PART (-1.5) END-DISPLAY
DISPLAY FUNCTION FRACTION-PART (-1.0) END-DISPLAY
DISPLAY FUNCTION FRACTION-PART (1) END-DISPLAY

Outputs:

+.718281828459045235
-.500000000000000000
+.000000000000000000
+.000000000000000000

29.2.25 4.2.25 FUNCTION INTEGER

Returns the greatest integer less than or equal to the numeric argument.

DISPLAY
FUNCTION INTEGER (-3)
FUNCTION INTEGER (-3.141)
END-DISPLAY
DISPLAY
FUNCTION INTEGER (3)
FUNCTION INTEGER (3.141)
END-DISPLAY
DISPLAY
FUNCTION INTEGER (-0.3141)
FUNCTION INTEGER (0.3141)
FUNCTION INTEGER (0)
END-DISPLAY

Outputs:

-000000000000000003 -000000000000000004
+000000000000000003 +000000000000000003
-000000000000000001 +000000000000000000 +000000000000000000

Note the -4, greatest integer less than or equal to the argument.

29.2. 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs?

233

OpenCOBOL FAQ, Release 1.1

29.2.26 4.2.26 FUNCTION INTEGER-OF-DATE

Converts a date in the Gregorian calender to an integer form. Expects a numeric argument in the form YYYYMMDD
based on years greater than or equal to 1601 and less than 10000. Month values range from 1 to 12. Days range from
1 to 31 and should be valud for the specified month and year. Invalid input returns unpredictable results and sets the
exception EC-ARGUMENT-FUNCTION to exist. See FUNCTION DATE-OF-INTEGER for the converse function.

29.2.27 4.2.27 FUNCTION INTEGER-OF-DAY

Converts a Julian date of YYYYDDD to integer date form. See FUNCTION DAY-OF-INTEGER for the converse
intrinsic function. Invalid arguments return an undefined result and set the exception EC-ARGUMENT-FUNCTION

to exist.

29.2.28 4.2.28 FUNCTION INTEGER-PART

Returns the integer part of the numeric argument. Similar to FUNCTION INTEGER but returns different values for
negative arguments.

DISPLAY
FUNCTION
FUNCTION

END-DISPLAY

DISPLAY
FUNCTION
FUNCTION

END-DISPLAY

DISPLAY
FUNCTION
FUNCTION
FUNCTION

END-DISPLAY

Outputs:

INTEGER-PART
INTEGER-PART

INTEGER-PART
INTEGER-PART

INTEGER-PART
INTEGER-PART
INTEGER-PART

(-0.3141)
(0.3141)
(0)

-000000000000000003 -000000000000000003
+000000000000000003 +000000000000000003
+000000000000000000 +000000000000000000 +000000000000000000

29.2.29 4.2.29 FUNCTION LENGTH

Returns an integer that is the length in character positions of the given argument.

working storage.

01 nat pic n(10).

01 cha pic x(10).

01 bin constant as h’/ ff’.
01 num pic s9(8)v9(8).

01 form pic $-z(7)9.9(8).

procedure division.

display

function length (nat)
function length (cha)
function length(bin)

end-display

234

Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

display
function length (num) spac
function length(form)
end-display
Outputs:

20 10 3
16 19

29.2.30 4.2.30 FUNCTION LOCALE-DATE

Returns a culturally appropriate date given an alphanumeric of 8 character positions in the form “YYYYMMDD” and
an optional locale name that has been associted with a locale in the SPECIAL-NAMES paragraph.

See http://en.wikipedia.org/wiki/Locale for a start at the very detail rich computational requirements of LOCALE.

Will set EC-ARGUMENT-FUNCTION to exist for invalid input.
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok A ok ok ok K ok ok ok ok ok Ak

x> Author: Brian Tiffin
*> Date: 20120116
*> Purpose: Demonstrate locale functions

*> Tectonics: cobc —-x locales.cob

F Dk h ok ok ok sk ok ko k ok b ok kA ok b ok ok ok ok ok ok ok A ok A
identification division.

program—-id. locales.

environment division.
configuration section.
repository.

function all intrinsic.

e e e e e e e b e S

procedure division.

x> Display cultural norm date and times as set in environment.
*> Google LC_ALL.

x> 20120622 represents June 22 2012

x> 141516 represents Z2pm (14th hour), 15 minutes, 16 seconds
x> 39600 represents 11 hours in seconds

display locale-date (20120622) end-display
display locale-time(141516) end-display
display locale-time-from-seconds (39600) end-display

goback.
end program locales.

Which produced:

[btiffin@home cobol]l$ cobc —-x locales.cob
[btiffin@home cobol]l$./locales
06/22/2012

02:15:16 PM

11:00:00 AM

I live in Canada, but usually run Fedora with LANG=en_US.utf8

and so

29.2. 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs? 235

http://en.wikipedia.org/wiki/Locale

OpenCOBOL FAQ, Release 1.1

[btiffin@home cobol]$ export LANG='en_CA.utf8’
[btiffin@home cobol]l$./locales

22/06/12

02:15:16 PM

11:00:00 AM

Boo, day month year form. Sad, 2 digit year? What kinda backwater land do I live in? Time to write strongly worded
letters to some committees. :)

I just looked, and it seems Canada is listed as DD/MM/Y'Y; I’'m moving to Germany.

[btiffin@home cobol]$ export LANG=en_DK.utf8
[btiffin@home cobol]l$./locales

2012-06-22

14:15:16

11:00:00

Joy. year month day. Hmm, what about Hong Kong?

[btiffin@home cobol]$ LANG=en_HK.utf8 ./locales
Sunday, June 22, 2012

02:15:16 EST

11:00:00 EST

Nice.

If you want to run your system through its locales, try

S locs=($(locale -a))
S for 1 in ${locs[Q]}; do echo $1; LANG=S1 ./locales; done

and expect some unicode in the output.

Oh, and along with FUNCTION EXCEPTION-STATUS you can detect invalid arguments.
000100 >>SOURCE FORMAT IS FIXED

Q00200 %> # % %k %k kK % 5k 5k sk sk Kk Kk 5 5k 5k sk ok Kk & 5 5k %k sk ok & 5 5k 5k ok ok ok & 5k 5k 5k ok ok ok ok 5k 5k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kA ok ok ok

000300%> Author: Brian Tiffin
000400+> Date: 20120116
000500%> Purpose: Demonstrate locale function invalid arguments

000600%> Tectonics: cobc —-x —-g —debug locales.cob

Q00700 %> # %5k %k ko 5k 5k 5k sk sk ok Kk 5k 5k 5k sk ok ok ok 5k 5k ok ok ok ok ok 5k sk ok ok ok ok ok ok ok ok ok ok ok ok o ok
000800 identification division.

000900 program—id. locales.

001000

001100 environment division.

001200 configuration section.

001300 repository.

001400 function all intrinsic.

001500

001600 %> — %%k %k sk sk sk sk sk— sk sk ok 5k 5k 5k sk ok ok — 5k 5k ok sk ok ok ok 5k sk — sk ok ok ok 5k ok ok ok ok — sk ok ok ok ok ok ok ok ok — ok ok ok ok ok ok ok ok A — ok ok
001700 procedure division.

001800

001900+> Display cultural norm date and times as set in environment.
002000 > Google LC_ALL.

002100%> 20120622 represents June 22 2012

002200+> 141516 represents Z2pm (14th hour), 15 minutes, 16 seconds
002300%> 39600 represents 11 hours in seconds

002400
002500 display locale-date (20120622) end-display
002600 display locale-time (141516) end-display
002700 display locale-time-from-seconds (39600) end-display
002800

002900%> invalid arguments are detected through EXCEPTION-STATUS

236 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

003000 display locale-date (20120699) end-display
003100 DISPLAY "EXCEPTION-STATUS: " EXCEPTION-STATUS

003200 DISPLAY "EXCEPTION-STATEMENT: " EXCEPTION-STATEMENT
003300 DISPLAY "EXCEPTION-LOCATION: " EXCEPTION-LOCATION
003400

003500 display locale-time (941516) end-display
003600 DISPLAY "EXCEPTION-STATUS: " EXCEPTION-STATUS

003700 DISPLAY "EXCEPTION-STATEMENT: " EXCEPTION-STATEMENT
003800 DISPLAY "EXCEPTION-LOCATION: " EXCEPTION-LOCATION
003900

004000 display locale-time-from-seconds (-39600) end-display
004100

004200 goback.

004300 end program locales.

giving:

$./locales

06/22/2012

02:15:16 PM
11:00:00 AM

EXCEPTION-STATUS: EC-ARGUMENT-FUNCTION
EXCEPTION-STATEMENT: DISPLAY
EXCEPTION-LOCATION: locales; MAIN PARAGRAPH OF MAIN SECTION; 30

EXCEPTION-STATUS: EC-ARGUMENT-FUNCTION

EXCEPTION-STATEMENT: DISPLAY

EXCEPTION-LOCATION: locales; MAIN PARAGRAPH OF MAIN SECTION; 35
-11:00:00 AM

29.2.31 4.2.31 FUNCTION LOCALE-TIME

Returns a culturally appropriate date given an alphanumeric of 6 character positions in the form “HHMMSS”
and an optional locale name that has been associted with a locale in the SPECIAL-NAMES paragraph. See
http://en.wikipedia.org/wiki/Locale for a start at the very detail rich computational requirements of LOCALE.

Will set EC-ARGUMENT-FUNCTION to exist for invalid input.
See FUNCTION LOCALE-DATE.

29.2.32 4.2.32 FUNCTION LOCALE-TIME-FROM-SECONDS

Returns a culturally appropriate date given an alphanumeric number of seconds and an optional locale name that has
been associted with a locale in the SPECIAL-NAMES paragraph.

See http://en.wikipedia.org/wiki/Locale for a start at the very detail rich computational requirements of LOCALE.
Will set EC-ARGUMENT-FUNCTION to exist for invalid input.

See FUNCTION LOCALE-DATE.

29.2.33 4.2.33 FUNCTION LOG

Returns an approximation of the natural logarithmic value of the given numeric argument. Uses a base of FUNCTION
E.

29.2. 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs? 237

http://en.wikipedia.org/wiki/Locale
http://en.wikipedia.org/wiki/Locale

OpenCOBOL FAQ, Release 1.1

DISPLAY FUNCTION LOG(100) END-DISPLAY
DISPLAY FUNCTION LOG (FUNCTION E) END-DISPLAY

gives:
4.60517018598809137
000000001

29.2.34 4.2.34 FUNCTION LOG10

Returns an approximation of the base-10 logarithmic value of the given numeric argument.
DISPLAY FUNCTION LOG10(100) END-DISPLAY

gives:
000000002

29.2.35 4.2.35 FUNCTION LOWER-CASE

Convert any uppercase character values (A-Z) in the argument to lowercase (a-z).

29.2.36 4.2.36 FUNCTION MAX

Returns the maximum value from the list of arguments.

DISPLAY FUNCTION MAX ("def"; "abc";) END-DISPLAY
DISPLAY FUNCTION MAX (123.1; 123.11; 123) END-DISPLAY

Outputs:

def
123.11

29.2.37 4.2.37 FUNCTION MEAN

Returns the arithmetic mean (average) of the list of numeric arguments.
DISPLAY FUNCTION MEAN(1; 2; 3; 4; 5; 6; 7; 8; 9) END-DISPLAY

Outputs:
+5.00000000000000000

29.2.38 4.2.38 FUNCTION MEDIAN

Returns the middle value of the arguments formed by arranging the list in sorted order.
DISPLAY FUNCTION MEDIAN(1; 2; 3; 4; 5; 6; 7; 8; 9) END-DISPLAY

Outputs:
5

238 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.2.39 4.2.39 FUNCTION MIDRANGE

Returns the arithmetic mean (average) of the minimum and maximum argument from the list of numeric arguments.
DISPLAY FUNCTION MIDRANGE (1; 2; 3; 4; 5; 6; 7; 8; 9) END-DISPLAY

Outputs:
5.000000000000000000

29.2.40 4.2.40 FUNCTION MIN

Returns the minimum value from the list of arguments.

DISPLAY FUNCTION MIN ("def"; "abc";) END-DISPLAY
DISPLAY FUNCTION MIN (123.1; 123.11; 123) END-DISPLAY

Outputs:

abc
123

29.241 4.2.41 FUNCTION MOD

Returns an integer value of that is the first-argument modulo second-argument.
DISPLAY FUNCTION MOD (123; 23) END-DISPLAY

Outputs:
+000000000000000008

29.242 4.242 FUNCTION NUMVAL

Returns the numeric value represented by the character string argument.
OCOBOL IDENTIFICATION DIVISION.

PROGRAM-ID. pProg.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 X PIC X(12) VALUE " -9876.1234 ".
01 F PIC X (12) VALUE "B-9876.1234 ".
PROCEDURE DIVISION.

DISPLAY FUNCTION NUMVAL
DISPLAY FUNCTION NUMVAL
END-DISPLAY.

STOP RUN.

(X))
(F)
gives:

-09876.1234
000000000

The “B” in field F, breaks the numeric conversion. NUMVAL is actually fairly complicated and forgiving of inputs,
but will return 0 on invalid numeric conversions.

OpenCOBOL 2 will also provide FUNCTION TEST-NUMVAL.

29.2. 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs? 239

OpenCOBOL FAQ, Release 1.1

29.2.43 4.2.43 FUNCTION NUMVAL-C

Returns the numeric value represented by the culturally appropriate currency specification argument.

OCOBOL IDENTIFICATION DIVISION.
PROGRAM-ID. prog.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X PIC X(1l4) VALUE " % -9876.1234 ".
PROCEDURE DIVISION.
DISPLAY FUNCTION NUMVAL-C (X , "%")
END-DISPLAY.
STOP RUN.
gives:
-09876.1234

in a LOCALE that uses the percent sign as a currency symbol.
OpenCOBOL 2 will also provide FUNCTION TEST-NUMVAL-C.

29.2.44 4.2.44 FUNCTION ORD

Returns the integer value that is the ordinal position of the character argument in the program’s collating sequence.
COBOL uses 1 as the lowest ordinal for character sequencing.

DISPLAY FUNCTION ORD ("J") END-DISPLAY

Outputs (on an ASCII system with no ALPHABET clause):
00000075

Note that COBOL uses 1 as the first value for collating. So ASCII 74 is ORD 75 for “J”.

29.245 4.2.45 FUNCTION ORD-MAX

Returns the integer that is the ordinal position of the maximum value of the given argument list.
DISPLAY ORD-MAX(9; 8; 7; 6; 5; 4; 3; 2; 1) END-DISPLAY

DISPLAY ORD-MAX (’abc’; ’‘def’; ’ghi’) END-DISPLAY

Outputs:

00000001
00000003

29.2.46 4.2.46 FUNCTION ORD-MIN

Returns the integer that is the ordinal position of the minimum value from the argument list.
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok A

x> Author: Brian Tiffin
x> Date: 20090531
x> Purpose: Demonstration of FUNCTION ORD-MIN and REPOSITORY

*> Tectonics: cobc —-x ordmin.cob

*> b
identification division.
program-id. ordmin.

environment division.

240 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

configuration section.
repository.
function all intrinsic.

data division.
working—-storage section.
01 posmin pic 9(8).

F D>k h ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kA ok kA kA ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok kA ok ok ok ok ok ok ok ok kA ok kA
procedure division.

move ord-min (9; 8; 7; 6; 5; 4; 3; 2; 1; 2; 3; 4; 5) to posmin
display posmin end-display

move ord-min ("abc"; "def"; "000"; "def"; "abc") to posmin
display posmin end-display

goback.

end program ordmin.

Outputs:

00000009
00000003

Notice how ord-min did not require FUNCTION, as the REPOSITORY entry allows this to be skipped in the source
codes.

29.2.47 4.2.47 FUNCTION PI

Returns an approximation of the ratio of the circumference by the diameter of a circle. It returns an alphanumeric
with 34 digits after the decimal. Please be aware of the limitations of using these types of approximated values in
computations.

OCOBOL >>SOURCE FORMAT IS FIXED

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A

x> Author: Brian Tiffin
x> Date: 20101030
*> Purpose: Demonstrate PI

x> Tectonics: cobc —-x pi-demo.cob

KDk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok o ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok b ok ok A
identification division.

program—id. pi-demo.

data division.

working—-storage section.

01 args pic x(80).

01 diameter pic 999 value 1.

01 show-diameter pic zz9.

01 circumference usage float-long.
01 plural pic =xx.

01 plural-length pic 9 value 1.

01l newline pic x value x’0a’.

D> kA kA ok kA A A Ak Ak Ak kA kbbb Ak bbb Ak bbb A bk b bk A bk b h b Ak b h sk kb h ok kb h ok kb ok A ok ko

procedure division.

accept args from command-line end-accept

if args not equal spaces
move args to diameter

end-if

if diameter not equal 1

29.2. 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs? 241

OpenCOBOL FAQ, Release 1.1

move "s " to plural
move 2 to plural-length

else
move " " to plural
move 1 to plural-length
end-if

move diameter to show-diameter
display "FUNCTION PI is " function pi newline end-display

compute circumference = function pi * diameter end-compute

display
"A wheel, " show-diameter " metre" plural(l:plural-length)
"wide will roll, very close to but only approximately, "
newline circumference " metres in ONE full rotation."
newline

end-display

goback.
end program pi-demo.

Outputs:

$ cobc -x pi-demo.cob && ./pi-demo && ./pi-demo 42
FUNCTION PI is 3.1415926535897932384626433832795029

A wheel, 1 metre wide will roll, very close to but only approximately,
3.14159265358979312 metres in ONE full rotation.

FUNCTION PI is 3.1415926535897932384626433832795029

A wheel, 42 metres wide will roll, very close to but only approximately,
131.946891450771318 metres in ONE full rotation.

29.2.48 4.2.48 FUNCTION PRESENT-VALUE

Returns an approximation of the present value from a discount rate and list of future period end amounts. It attempts
to reflect the future value of $1.00 given time, inflation and interest.

OCOBOL >>SOURCE FORMAT IS FIXED

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A

x> Author: Brian Tiffin
x> Date: 20101030
*> Purpose: Demo of PRESENT-VALUE

x> Tectonics: cobc —-x present-value-demo.cob

F D ko ok ko ok k k ok ok k k ko k ok ok ok ok Kk ok ok ok ok ok b ok kA kA
identification division.

program-id. present-value-demo.

data division.

working-storage section.

01 args pic x(80).

01 newline pic x value x’0a’.

01l rate pic s9v9999 wvalue 0.7000.
01 the-value pic s9(6)v99.

*> ER R b i e b b b b b b b b b b b b b b i b b b b g b b b i b b i e b b b b b b b b b b b b b i b i b i
procedure division.
accept args from command-line end-accept

242 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

if args not equal to
move args
end-if

to rate

compute the-value rounded =
function present-value (rate;
end-compute
display
"A discount rate of

1000, 1010, 1000,

" rate

the-value " given" newline

"end-amounts of 1000, 1010, 1000 and 1100"

end-display

compute the-value rounded =
function present-value (rate;
end-compute
display
"A discount rate of

1000, 1000, 1000,

" rate

the-value " given" newline

"end-amounts of 1000, 1000, 1000 and 1000"

end-display

goback.

end program present-value-demo.
Outputs:
$./present-value—-demo
A discount rate of +0.7000 gives a PRESENT-VALUE of +001272.
end-amounts of 1000, 1010, 1000 and 1100
A discount rate of +0.7000 gives a PRESENT-VALUE of +001257.
end-amounts of 1000, 1000, 1000 and 1000
$./present-value-demo 0.333
A discount rate of +0.3330 gives a PRESENT-VALUE of +002089.
end-amounts of 1000, 1010, 1000 and 1100
A discount rate of +0.3330 gives a PRESENT-VALUE of +002051.
end—-amounts of 1000, 1000, 1000 and 1000
$./present-value-demo 0.935
A discount rate of +0.9350 gives a PRESENT-VALUE of +001003.
end-amounts of 1000, 1010, 1000 and 1100
A discount rate of +0.9350 gives a PRESENT-VALUE of +000993.

end-amounts of 1000, 1000, 1000 and 1000

For details, talk to a professional.

1100)

" gives a PRESENT-VALUE of "

1000)

" gives a PRESENT-VALUE of "

96 given

53 given

18 given

88 given

03 given

23 given

rant Any COBOL programmer using financial functions for use by others HAS to attain some level of domain expertise
in the mathematics at work, as well as a level of technical competence to read through and defend both the COBOL
source code and the generated C code that OpenCOBOL emits before compiling. rant over

29.249 4.249 FUNCTION RANDOM

Returns a pseudo-random number given a numeric seed value as argument.

DISPLAY FUNCTION RANDOM (1) END-DISPLAY
DISPLAY FUNCTION RANDOM (1) END-DISPLAY
DISPLAY FUNCTION RANDOM () END-DISPLAY

Outputs:

29.2. 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs?

243

OpenCOBOL FAQ, Release 1.1

+00000000.1804289383
+00000000.1804289383
+000000000.846930886

29.2.50 4.2.50 FUNCTION RANGE

Returns the value of the minimum argument subtracted from the maximum argument from the list of numeric argu-
ments.

DISPLAY FUNCTION RANGE (1; 2; 3; 4; 5; 6; 7; 8; 9) END-DISPLAY

Outputs:
+000000000000000008

29.2.51 4.2.51 FUNCTION REM

Returns the numeric remainder of the first argument divided by the second.

DISPLAY FUNCTION REM(123; 23) END-DISPLAY
Outputs:

+000000000000000008

29.2.52 4.2.52 FUNCTION REVERSE

Returns the reverse of the given character string.
DISPLAY FUNCTION REVERSE ("abc") END-DISPLAY

Outputs:

cba

29.2.53 4.2.53 FUNCTION SECONDS-FROM-FORMATTED-TIME

This function converts a time that is in a specified format to a numeric value representing the number of seconds after

midnight.
OCOBOL IDENTIFICATION DIVISION.
PROGRAM-ID. pProg.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 X PIC X (6) VALUE "hhmmss".
01 Y PIC 9(8) COMP-5.
01 7z PIC X (6) VALUE "010203".
PROCEDURE DIVISION.
MOVE FUNCTION SECONDS-FROM-FORMATTED-TIME (X, Z) TO Y.
IF Y NOT = 3723
DISPLAY Y
END-DISPLAY
END-IF.
STOP RUN.

This test would fail if 01:02:03 was not returned as 3723 seconds past midnight.

Argumenent 1 takes the form hhmmss and expectes argument 2 to be a matching length numeric item, or O is returned.

244 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.2.54 4.2.54 FUNCTION SECONDS-PAST-MIDNIGHT

Returns the seconds past midnight from the current system time.

29.2.55 4.2.55 FUNCTION SIGN

Returns +1 for positive, 0 for zero and -1 for a negative numeric argument.

29.2.56 4.2.56 FUNCTION SIN

Returns an approximation for the trigonometric sine of the given numeric angle (expressed in radians) argument. See
Can OpenCOBOL be used for plotting? for a sample graph using gnuplot.

29.2.57 4.2.57 FUNCTION SQRT

Returns an approximation of the square root of the given numeric argument.
DISPLAY FUNCTION SQRT (-1) END-DISPLAY

CALL "perror" USING NULL END-CALL
DISPLAY FUNCTION SQRT (2) END-DISPLAY

Outputs:

0.000000000000000000
Numerical argument out of domain
1.414213562373095145

Note: CALL “perror” reveals a bug in OpenCOBOL versions packaged before June 2009 where the stack will evetually
underflow due to improper handling of the void return specification. Versions supporting RETURNING NULL fix this
problem. An actual application that needed to verify the results of square roots or other numerical function would be
better off placing a small C wrapper to set and get the global errno.

29.2.58 4.2.58 FUNCTION STANDARD-DEVIATION

Returns an approximation of the standard deviation from the given list of numeric arguments.
DISPLAY
FUNCTION STANDARD-DEVIATION (
FUNCTION STANDARD-DEVIATION (
END-DISPLAY

2.872281323269014308 28.605069480775604518

123456728910
12345678910

29.2.59 4.2.59 FUNCTION STORED-CHAR-LENGTH

Returns the numeric value of the internal storage length of the given argument in bytes, not counting spaces.

29.2.60 4.2.60 FUNCTION SUBSTITUTE

FUNCTION SUBSTITUTE is an OpenCOBOL extension to the suite of intrinsic functions.

29.2. 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs? 245

OpenCOBOL FAQ, Release 1.1

DISPLAY
FUNCTION SUBSTITUTE ("this is a test",
"this", "that",

"is an, "was",

"test", "very cool!")
END-DISPLAY

Will display:
that was very cool!

having changed this for that, is a for was and test with very cool!

The new intrinsic accepts:
SUBSTITUTE (subject, lit-pat-1, repl-1 [, litl-pat-2, repl-2, ...])

where lit-pat just means the scan is for literals, not that you have to use literal constants. WORKING-STORAGE
identifiers are fine for any of the subject, the search patterns or the replacements.

As with all intrinsics, you receive a new field and the subject is untouched.

Note: The resulting field can be shorter, the same length or longer than the subject string.

This is literal character global find and replace, and there are no wildcards or other pattern expressions. Unlike
INSPECT, this function does not require same length patterns and replacements. Each pattern replacement pair uses
the original subject, not any intermediate in progress result.

As this is an alphanumeric operation, a reference modification is also allowed
MOVE FUNCTION SUBSTITUTE (subject, pat, repl) (2:4) TO xvar4

to result in 4 characters starting at the second position after the substitution.

29.2.61 4.2.61 FUNCTION SUBSTITUTE-CASE

Similar to SUBSTITUTE, but ignores upper and lower case of subject when matching patterns.

29.2.62 4.2.62 FUNCTION SUM

Returns the numeric value that is the sum of the given list of numeric arguments.

29.2.63 4.2.63 FUNCTION TAN

Returns an approximation for the trigonometric tangent of the given numeric angle (expressed in radians) argument.
Returns ZERO if the argument would cause an infinity or other size error.

29.2.64 4.2.64 FUNCTION TEST-DATE-YYYYMMDD

Test for valid date in numeric yyyymmdd form.

29.2.65 4.2.65 FUNCTION TEST-DAY-YYYYDDD

Test for valid date in numeric yyyyddd form.

246 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

29.2.66 4.2.66 FUNCTION TRIM

Returns a character string that is the argument trimmed of spaces. Defaults to trimming both ends, but can be passed
LEADING or TRAILING qualifier arguments.

DISPLAY ’'"’/ FUNCTION TRIM(" abc ") ’"’/ END-DISPLAY

DISPLAY ’'"’ FUNCTION TRIM(" abc " LEADING) ’"’/ END-DISPLAY
DISPLAY ’'"’/ FUNCTION TRIM(" abc " TRAILING) ’'"’ END-DISPLAY
Outputs:

"abcll

"abc "

" abcﬂ

29.2.67 4.2.67 FUNCTION UPPER-CASE

Returns a copy of the alphanumeric argument with any lower case letters replaced by upper case letters.
DISPLAY FUNCTION UPPER-CASE ("# 123 abc DEF #") END-DISPLAY

Outputs:
123 ABC DEF

29.2.68 4.2.68 FUNCTION VARIANCE

Returns the variance of a series of numbers. The variance is defined as the square of the FUNCTION STANDARD-
DEVIATION

DISPLAY FUNCTION VARIANCE(1 2 3 4 5 6 7 8 9 100) END-DISPLAY.

+818.250000000000000

29.2.69 4.2.69 FUNCTION WHEN-COMPILED

Returns a 21 character alphanumeric field of the form YYYYMMDDhhmmsscctzzzz e.g. 2008070505152000-0400
representing when a module or executable is compiled. The WHEN-COMPILED special register reflects when an
object module was compiled

program-id. whenpartl. procedure division.

display "First part :" FUNCTION WHEN-COMPILED end-display.

program-id. whenpart?. procedure division.
display "Second part:" FUNCTION WHEN-COMPILED end-display.

program-id. whenshow. procedure division.

call "whenpartl" end-call.

call "whenpart2" end-call.

display "Main part :" FUNCTION WHEN-COMPILED end-display.

For a test

$ cobc —-c whenpartl.cob && sleep 15 && cobc —c whenpart2.cob &&
> sleep 15 && cobc —-x whenshow.cob whenpartl.o whenpart2.o

&

S ./whenshow

gives:
First part :2008082721391500-0400

Second part:2008082721393000-0400
Main part :2008082721394500-0400

29.2. 4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs? 247

OpenCOBOL FAQ, Release 1.1

29.2.70 4.2.70 FUNCTION YEAR-TO-YYYY

Converts a two digit year to a sliding window four digit year. The optional second argument (default 50) is added to
the date at execution time to determine the ending year of a 100 year interval.

29.3 4.3 Can you clarify the use of FUNCTION in OpenCOBOL?

Yes. This information is from [Roger], posted to the opencobol forums.

Just to clarify the use of FUNCTION.
(Applies to 0.33)
FUNCTION (generally speaking, there are exceptions) can
be used anywhere where a source item is valid.
It always results in a new temporary field.
This will have the desired characteristics dependant
on the parameters.
eg. FUNCTION MIN (x, y, z)
with x PIC 99
y PIC 9(8) COMP
z PIC 9(6)V99
will result in returning a field that has
at least 8 positions before the (implied) decimal
point and 2 after.

It does NOT ever change the contents of parameters
to the function.

FUNCTION’s are nestable.
eg.
DISPLAY FUNCTION REVERSE (FUNCTION UPPER-CASE (myfield)).

One clarification to the above quote was pointed out by Roger. The line:

be used anywhere where a source item is valid.

should be:

be used anywhere where a sending field is wvalid.

29.4 4.4 What is the difference between the LENGTH verb and FUNC-
TION LENGTH?

From [Roger]:

The standard only defines FUNCTION LENGTH.
The LENGTH OF phrase is an extension (from MF)

29.5 4.5 What STOCK CALL LIBRARY does OpenCOBOL offer?

OpenCOBOL 1.0 ships with quite a few callable features. See CALL. Looking through the source code, you’ll find
the current list of service calls in:

libcob/system.def

With the 1.1 pre-release of July 2008, that list included

248 Chapter 29. 4 Reserved Words

http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

/% COB_SYSTEM GEN (external name, number of parameters, internal name) */

COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN

("SYSTEM", 1, SYSTEM)
("CBL_ERROR_PROC", 2, CBL_ERROR_PROC)
("CBL_EXIT_PROC", 2, CBL_EXIT_PROC)
("CBL_OPEN_FILE", 5, CBL_OPEN_FILE)
("CBL_CREATE_FILE", 5, CBL_CREATE_FILE)
("CBL_READ_FILE", 5, CBL_READ_FILE)
("CBL_WRITE_FILE", 5, CBL_WRITE_FILE)
("CBRL_CLOSE_FILE", 1, CBL_CLOSE_FILE)
("CBL_FLUSH_FILE", 1, CBL_FLUSH_FILE)
("CBRL_DELETE_FILE", 1, CBL_DELETE_FILE)
("CBL_COPY_FILE", 2, CBL_COPY_FILE)
("CBL_CHECK_FILE_EXIST", 2, CBL_CHECK_ _FILE_EXIST)
("CBL_RENAME_FILE", 2, CBL_RENAME_FILE)
("CBL_GET_CURRENT_DIR", 3, CBL_GET_CURRENT_DIR)
("CBL_CHANGE_DIR", 1, CBL_CHANGE_DIR)
("CBL_CREATE_DIR"™, 1, CBL_CREATE_DIR)
("CBL_DELETE_DIR", 1, CBL_DELETE_DIR)
("CBL_AND", 3, CBL_AND)

("CBL_OR", 3, CBL_OR)

COB_SYSTEM_GEN ("CBL_NOR", 3, CBL_NOR)

COB_SYSTEM_GEN ("CBL_XOR", 3, CBL_XOR)

COB_SYSTEM_GEN ("CRBL_IMP", 3, CBL_IMP)

COB_SYSTEM_GEN ("CBL_NIMP", 3, CBL_NIMP)

COB_SYSTEM_GEN ("CBL_EQ", 3, CBL_EQ)

COB_SYSTEM_GEN ("CRBL_NOT", 2, CBL_NOT)

COB_SYSTEM_GEN ("CBIL_TOUPPER", 2, CBL_TOUPPER)

COB_SYSTEM_GEN ("CBL_TOLOWER", 2, CBL_TOLOWER)

COB_SYSTEM_GEN ("\364", 2, CBL_XF4)

COB_SYSTEM_GEN ("\365", 2, CBL_XF5)

COB_SYSTEM_GEN ("\221", 2, CBL_X91)

COB_SYSTEM_GEN ("CSNARG", 1, cob_return_args)

COB_SYSTEM_GEN ("CSPARAMSIZE", 1, cob_parameter_size)
COB_SYSTEM_GEN ("CSMAKEDIR", 1, cob_acuw_mkdir)

COB_SYSTEM_GEN ("CSCHDIR", 2, cob_acuw_chdir)

COB_SYSTEM_GEN ("CSSLEEP", 1, cob_acuw_sleep)

COB_SYSTEM_GEN ("C$SCOPY", 3, cob_acuw_copyfile)

COB_SYSTEM_GEN ("CSFILEINFO", 2, cob_acuw_file_info)
COB_SYSTEM_GEN ("CSDELETE", 2, cob_acuw_file_delete)
COB_SYSTEM_GEN ("CSTOUPPER", 2, CBL_TOUPPER)

COB_SYSTEM_GEN ("CS$STOLOWER", 2, CBL_TOLOWER)

COB_SYSTEM_GEN ("CSJUSTIFY", 1, cob_acuw_justify)
COB_SYSTEM_GEN ("CBL_OC_NANOSLEEP", 1, cob_oc_nanosleep)

/xx/

Note the “SYSTEM?”. This CALL sends a command string to the shell. It acts as a wrapper to the standard C library
“system” call. “SYSTEM” removes any trailing spaces from the argument and appends the null terminator required
for the C library “system” call. While shell access opens yet another powerful door for the OpenCOBOL programmer,
diligent delevopers will need to pay heed to cross platform issues when calling the operating system.

29.5.1 4.5.1 A CBL_ERROR_PROC example

OCOBOL >>SOURCE FORMAT IS FIXED
R R R R R I I I I I I I I I I I I I I I I I I R I I I R R I R I I I S I b b
* OpenCOBOL demonstration
* Author: Brian Tiffin

29.5. 4.5 What STOCK CALL LIBRARY does OpenCOBOL offer? 249

OpenCOBOL FAQ, Release 1.1

* Date: 26-Jun-2008

* History:

* 03-Jul-2008

* Updated to compile warning free according to standards

* Purpose:

* CBL_ERROR_PROC and CBL_EXIT PROC call example

* CBL_ERROR_PROC installs or removes run—-time error procedures
* CBI_EXIT PROC installs or removes exit handlers

* Also demonstrates the difference between Run time errors

* and raised exceptions. Divide by zero is raises an

* exception, it does not cause a run time error.

* NB:

* Please be advised that this example uses the functional but
* now obsolete ENTRY verb. Compiling with -Wall will display
* a warning. No warning will occur using —-std=MF

*

Tectonics: cobc —-x errorproc.cob
identification division.
program-id. error_exit_ proc.

data division.

working-storage section.

* entry point handlers are procedure addresses

01 install-address usage is procedure-pointer.
01 install-flag pic 9 comp-x value O.

01 status-code pic s9(9) comp-5.

* exit handler address and priority (prio is IGNORED with OCl.1)
01 install-params.

02 exit-addr usage is procedure-pointer.

02 handler-prio pic 999 comp-x.

* indexing variable for back scannning error message strings
01 ind pic s9(9) comp-5.

* work variable to demonstrate raising exception, not RTE
01 wval pic 9.

* mocked up error procedure reentrancy control, global level
01 once pic 9 wvalue 0.

88 been-here value 1.

* mocked up non—-reentrant value
01 global-value pic 99 value 99.

* LOCAL-STORAGE SECTION comes into play for ERROR_PROCs that

* may themselves cause run—-time errors, handling reentry.
local-storage section.
01 reenter-value pic 99 value 11.

* Linkage section for the error message argument passed to proc
* By definition, error messages are 325 alphanumeric

linkage section.

01 err-msg pic x(325).

* example of OpenCOBOL error and exit procedures
procedure division.

* Demonstrate problem installing procedure
* get address of WRONG handler. NOTE: Invalid address

250 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

set exit-addr to entry "nogo-proc".

* flag: 0 to install, 1 to remove
call "CBL_EXIT_PROC" using install-flag
install-params
returning status-code

end-call.
* status-code 0 on success, 1in this case expect error.
if status-code not = 0
display
"Intentional problem installing EXIT PROC"
", Status: " status-code
end-display
end-if.

* Demonstrate install of an exit handler
* get address of exit handler
set exit-addr to entry "exit-proc".

* flag: 0 to install, 1 to remove
call "CBL_EXIT_PROC" using install-flag
install-params
returning status-code

end-call.
* status-code 0 on success.
if status-code not = 0
display
"Problem installing EXIT PROC"
", Status: " status-code
end-display
stop run
end-if.

* Demonstrate installation of an error procedure
* get the procedure entry address
set install-address to entry "err-proc".

* install error procedure. install-flag 0 installs, 1 removes
call "CBL_ERROR_PROC" wusing install-flag
install-address
returning status-code

end-call.

* status-code is 0 on success.

if status-code not = 0
display "Error installing ERROR PROC" end-display
stop run

end-if.

* example of error that raises exception, not a run-time error
divide 10 by 0 giving val end-divide.
* val will be a junk value, use at own risk

divide 10 by 0 giving val
on size error display "DIVIDE BY ZERO Exception" end-display
end-divide.

* Intentional run-time error
call "erroneous" end-call. *> #++ Intentional error *x*

29.5. 4.5 What STOCK CALL LIBRARY does OpenCOBOL offer? 251

OpenCOBOL FAQ, Release 1.1

* won’t get here. RTS error handler will stop run
display

"procedure division, following run-time error"
end-display.

display
"global-value: " global-value
", reenter-value: " reenter-value

end-display.

exit program.
EE b b b i b b b b b b g b b b g b b b e b b b b b b i b b e b g b b g i b b b b b b b b e b b e S b b b i b b i b b i

ER i b b b b b b b b g i b b b b e b b b b b b b b b b b b b b e b b b b b b b b b b b b b b b b b b i b g b b b g g g
* Programmer controlled Exit Procedure:
entry "exit-proc".

display
"xxCustom EXIT HANDLER (will pause 3 and 0.5 seconds) xx"
end-display.

* sleep for 3 seconds

call "C$SSLEEP" using "3" end-call.

* demonstrate nanosleep; argument in billionth’s of seconds
Note: also demonstrates OpenCOBOL’s compile time

* string catenation using ampersand;

* 500 million being one half second

call "CBL_OC_NANOSLEEP" using "500" & "000000" end-call.

%

exit program.

Kok ok ok ok ok ok ok ok ok ok ok b b ok ok b b ok ok ok b ok ok ok b ok ok ok b ok ok ok b b ok ok b ok ok ok b b ok ok ok b ok ok ok b ok ok ok b ok ok ok b ok ok ok o ok ok
* Programmer controlled Error Procedure:

entry "err-proc" using err-msg.

display "**ENTER error procedurex*" end-display.

* These lines are to demonstrate local and working storage

display
"global-value: " global-value
", reenter-value: " reenter-value

end-display.

* As reenter-value is local-storage

* the 77 will NOT display on rentry, while the global 66 will
move 66 to global-value.

move 77 to reenter-value.

* Process err-msg.
* Determine Length of error message, looking for null terminator
perform varying ind from 1 by 1
until (err-msg(ind:1) = x"00") or (ind = length of err-msqg)
continue
end-perform.
display err-msg(l:ind) end-display.

* demonstrate trapping an error caused 1n error-proc

if not been-here then
set been-here to true
display "Cause error while inside error-proc" end-display
call "very-erroneous" end-call *#> Intentional error

252 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

end-if.

* In OpenCOBOL 1.1, the return-code is local and does
* not influence further error handlers

smove 1 to return-code.

move 0 to return-code.

display "**error procedure EXIT+*" end-display.

exit program.

with tectonics:

$ cobc -x errorproc.cob

$./errorproc

Intentional problem installing EXIT PROC, Status: -000000001
DIVIDE BY ZERO Exception

**ENTER error procedurexx

global-value: 99, reenter-value: 11

Cannot find module ’erroneous’

Cause error while inside error-proc

**ENTER error procedurexx*

global-value: 66, reenter-value: 11

Cannot find module ’very-erroneous’

xerror procedure EXITxx

libcob: Cannot find module ’very-erroneous’

**Custom EXIT HANDLER (will pause 3 and 0.5 seconds) *x*

29.5.2 4.5.2 Some stock library explanations

This small gem of a help file was written up by Vincent Coen, included here for our benefit.

Note: The code below is a work in progress. If you see this attention box; the file is not yet deemed complete.

System Calls v1.1.0 for OC vl.1 Author: Vincent B Coen dated 12/01/2009

COB_SYSTEM_GEN ("CBL_ERROR_PROC", 2, CBL_ERROR_PROC) : Register error proc in Linux??? needs cl
call using install-flag pic x comp-x Indicates operation to be performed
(0 = install error procedure)
(1 = un—-install error procedure)

install-addrs Usage procedure pointer Create by ’'set install-addr to entry entr:
(the address of error procedure to install or un-i:

COB_SYSTEM_GEN ("CBL_EXIT_PROC", 2, CBL_EXIT_PROC) Register closedown proc
call using install-flag pic x comp-x Indicate operation to be performed
(0 = install closedown proc. with default priority
(1 = un=install closedown proc.)
(2 = query priority of installed proc.)
(3 = install closedown proc. with given priority)

install-param group item defined as:
install-addr USAGE PROCEDURE POINTER (addr of closedown proc to install, unins

install-prty pic x comp-x (when install-flag = 3, priority of proc. being i
returning status—-code (See section key).
on exit install-prty (when install-flag = 2, returns priority of select
COB_SYSTEM_GEN ("CBL_OPEN_FILE", 5, CBL_OPEN_FILE) Open byte stream file
call using file—-name pic x(n) space or null terminated
access-mode pic x comp-5 (1 = read only, 2 = write only [deny must = 0]

29.5. 4.5 What STOCK CALL LIBRARY does OpenCOBOL offer? 253

OpenCOBOL FAQ, Release 1.1

3 = read / write)
deny-mode pic x comp-5 (0 = deny both, 1 = deny write, 2 = deny read
3 = deny neither read nor write)
device pic x comp-5 (must be zero)
file-handle pic x(4) (Returns a file handle for a successful open)
returning status-code (See section key)
COB_SYSTEM_GEN ("CBL_CREATE_FILE", 5, CBL_CREATE_FILE) Create byte stream file
call using file—name pic x(n) (space or null terminated)
access-mode pic x comp-x (1 = read only)
(2 = write only (deny must be 0)
(3 = read / write)
deny-mode pic x comp-x (0 = deny both read & write exclusive)
(1 = deny write)
(2 = deny read)
(3 = deny neither read nor write)
device pic x comp-x (must be zero) (reserved for future use)
file—-handle pic x(4) (Returns a file handle for a successful open)
returning status-code (See section key)
COB_SYSTEM_GEN ("CBL_READ_FILE", 5, CBL_READ_FILE) Read byte stream file
call using file-handle pic x(4) (File handke returned when file opened)
file-offset pic x(8) comp-x (offset in the file at which to read) (Max limit X"
byte-count pic x(4) comp-x (number of bytes to read. Poss limit x"OOFFFEF")
flags pic x comp-x (0 = standard read, 128 = current file size returnec
file-offset field)
buffer pic x(n)
returning status-code (See section key)
on exit: file-offset (Current file size on return if flags = 128 on entnr:
buffer pic x(n) (Buffer into which bytes are read. IT IS YOUR RESPOI
TO ENSURE THAT THE BUFFER IS LARGE ENOUGH TO HOLD
READ)
Remarks: See Introduction to Byte Stream Routines as well as example code take:

from old version of CobXref

COB_SYSTEM_GEN ("CBL_WRITE_FILE", 5, CBL_WRITE_FILE) Write byte stream file
call using file-handle pic x(4) (File handke returned when file opened)
file-offset pic x(8) comp-x (offset in the file at which to write) (Max limit X!
byte-count pic x(4) comp-x (number of bytes to write. Poss limit x"OOFFFEF")

Putting a value of zero here causes file to be tranc
to the size specified in file-offset)

flags pic x comp-x (0 = standard write)
buffer pic x(n) (Buffer into which bytes are writen from)
returning status-code (See section key)
Remarks: See Introduction to Byte Stream Routines as well as example code taker

from old version of CobXref

COB_SYSTEM_GEN ("CBL_CLOSE_FILE", 1, CBL_CLOSE_FILE) Close byte stream file
call using file-—handle pic x(4) on entry the file handle returned when file opened
returning status-code (see section key)
COB_SYSTEM_GEN ("CBL_FLUSH_FILE", 1, CBL_FLUSH_FILE) ?222°072227272722727?
call using 22727272727 pic 272722 No Idea
COB_SYSTEM_GEN ("CBL_DELETE_FILE", 1, CBL_DELETE_FILE) Delete File
call using file-name pic x(n) file to delete terminated by space can contain path.

returning status-code

254 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

COB_SYSTEM_GEN ("CBL_COPY_FILE",
call using file-namel
file-name?2

2, CBL_COPY_FILE) Copy file
(pic x(n) File to copy, can contain path terniated by space
(pic x(n) File name of new file,
For both,
returning status-code (see section key)
COB_SYSTEM_GEN
Call using

("CBL_CHECK_FILE_EXIST",
file-name
file-details

returning status-code

2, CBL_CHECK_FILE_EXIST)

file-name pic x(n)

file-details Group item defined as:

file-size pic x(8) comp-x
file-date

day pic x comp-x

month pic x comp-x

year pic xx comp-x

file-time

hours pic x comp-x
minutes pic x comp-x
seconds pic x comp-x
hundredths pic x comp-x

status—-code see section key

On entry: file-name The file to look for. name can cotain path and is terminated by a space
If no path given current directory is assumed.
On Exit: file-size Size if file in bytes

file-date Date the file was created

can contain path termiated by
if no path current directory is assumed.

Check if file exists & return d

file-time

COB_SYSTEM_GEN
call using

returning status-code

("CBL_RENAME_FILE",
old-file—-name
new—file—-name

Time file created

2, CBL_RENAME_FILE) Rename file
pic x(n)
pic x(n)

(see section key)

(file to rename can contain path terminated by spac
(new file name as above path must be same)

COB_SYSTEM_GEN ("CBL_GET_CURRENT_DIR", 3, CBL_GET_CURRENT_DIR) Get details of current directory
call using earard pic x(n) 7277
earard pic x(n) 72?7
returning status-code (see section key)
COB_SYSTEM_GEN ("CBL_CHANGE_DIR", 1, CBL_CHANGE_DIR) Change current directory
Call using path-name pic x(n) (relative or absolute terminated by x"00")
returning status-code (see section key)

COB_SYSTEM_GEN

Call using path-nam

("CBL_CREATE_DIR",

e

1, CBL_CREATE_DIR)
pic x(n)

Create directory
(relative or absolute path-name terminate by x"00")

returning status-code (see section key)
COB_SYSTEM_GEN ("CBL_DELETE_DIR", 1, CBL_DELETE_DIR) Delete directory
Call using path-name pic x(n) (relative or absolute name terminated by space or null [x"(

returning status-code

(see section key)

COB_SYSTEM_GEN ("CBL_AND", 3, CBL_AND) logical AND
Call using source (Any data item)
target (Any data item)
by value length (numeric literal or pic x(4) comp-5
returning status—-code (see section key)

29.5. 4.5 What STOCK CALL LIBRARY does OpenCOBOL offer?

255

OpenCOBOL FAQ, Release 1.1

COB_SYSTEM_GEN ("CBL_OR", 3, CBL_OR) logical OR
call using source (Any data item)
target (Any data item)
by value length (numeric literal or pic x(4) comp-5
returning status-code (see section key)
COB_SYSTEM_GEN ("CBL_NOR", 3, CBL_NOR) Logial Not OR *?
Call using source (Any data item)
target (Any data item)
by value length (numeric literal or pic x(4) comp-5
returning status-code (see section key)
COB_SYSTEM_GEN ("CBL_XOR", 3, CBL_XOR) logical eXclusive OR
Call using source (Any data item)
target (Any data item)
by value length (numeric literal or pic x(4) comp-5
returning status-code (see section key)
COB_SYSTEM_GEN ("CBL_IMP", 3, CBL_IMP) Logical IMPlies
call using source Any data item
target Any data Item
by value length Nuneric literal or pic x(4) comp-5
returning status-code (see section key)
COB_SYSTEM_GEN ("CBL_NIMP", 3, CBL_NIMP) Logical Not IMPlies
call using source Any data item
target Any data Item
by value length Nuneric literal or pic x(4) comp-5
returning status-code (see section key)
COB_SYSTEM_GEN ("CBL_EQ", 3, CBL_EQ) Logical EQUIVALENCE between bits of bot
Call using source (Any data item)
target (Any data item)
by value length (numeric literal or pic x(4) comp-5
returning status-code (see section key)
COB_SYSTEM_GEN ("CBL_NOT", 2, CBL_NOT) Logical NOT
Call using target Any data item
by value length numeric lit or pic x(4) comp-5
COB_SYSTEM_GEN ("CBL_TOUPPER", 2, CBL_TOUPPER) Convert a string to Upper case
Call using string pic x(n) (The string to convert)
by value length pic x(4) comp-5 (Number of bytes to change)
returning status-code (see section key)
COB_SYSTEM_GEN ("CBL_TOLOWER", 2, CBL_TOLOWER) Convert a string to Lower case
Call using string pic x(n) (The string to convert)
by value length pic x(4) comp-5 (Number of bytes to change)
returning status-code (see section key)
COB_SYSTEM_GEN ("\364", 2, CBL_XF4)
COB_SYSTEM_GEN ("\365", 2, CBL_XF5)
COB_SYSTEM_GEN ("\221", 2, CBL_X91)

COB_SYSTEM_GEN ("CSPARAMSIZE", 1, cob_parameter_size)
COB_SYSTEM_GEN "CSMAKEDIR", 1, cob_acuw_mkdir)

(
(
(
COB_SYSTEM_GEN ("CS$NARG", 1, cob_return_args)
(
(
COB_SYSTEM_GEN ("CSCHDIR", 2, cob_acuw_chdir)

256 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN
COB_SYSTEM_GEN

("CSSLEEP", 1, cob_acuw_sleep)

("CSCOPY", 3, cob_acuw_copyfile)

("CSFILEINFO", 2, cob_acuw_file_info)

("CSDELETE", 2, cob_acuw_file_delete)

COB_SYSTEM_GEN ("CSTOUPPER", 2, CBL_TOUPPER) Convert string to upper case
see cbl_toupper 7?77

COB_SYSTEM_GEN ("CSTOLOWER", 2, CBL_TOLOWER) Convert string to lower case
see cbl_tolower 2?72

COB_SYSTEM_GEN ("CS$JUSTIFY", 1, cob_acuw_justify)

COB_SYSTEM_GEN ("CBL_OC_NANOSLEEP", 1, CBL_OC_NANOSLEEP)

Key:
Option Returning clause will allow all routine to return a value showing result of the operation.
Zero = success and nonzero failure. If this field is omitted the value should be returned in the
special register RETURN-CODE. . Note that status-code must be capable of holding posative

values from 0 to 65535 ie, pic xx comp-5.

And a sample program too

Introduction to Byte Streaming Routines.

The byte stream file routines enable you to read, write data files without the need to adhere to
Cobol record definitions.

For all of these routines, if the routine is successful the RETURN-CODE register is set to zero. If

it fails, the RETURN-CODE register contains a file status value which indicates the failure. This

file status 1is always the standard ASNI ’74 file status value. If no ANSI ’'74 file status is definec

for the error, an extended error status is returned (9/nnn) where nnn is the runtime error number).
MAYBE need to speak to Roger. <<<<<<LL<LLLLLLLLLL

An extract of a example of working Cobol code that shows usage of byte stream file handling

000100 Identification division.
000200 program—id. cobxref.

104000 01 File-Handle-Tables.

104100 03 filler occurs 0 to 99

104200 depending on Fht-Table-Size.
104300 05 Fht-File-Handle pic x(4).

104400 05 Fht-File-Offset pic x(8) comp-x value
104500 05 Fht-File-Size pic x(8) comp—-x value
104600 05 Fht-Block-0OffSet pic x(8) comp-x value
104700 05 Fht-Byte—-Count pic x(4) comp-x value
104800 05 Fht-CopyRefNo2 pic 9(6) value
104900 05 Fht-Pointer pic s9(5) comp value
105000 05 Fht-Copy-Line-End pic s9(5) comp value z
105100 05 Fht-Copy-Words pic s9(5) comp value
105200 05 Fht-sw-Eof pic 9 value
105300 88 Fht-Eof value 1.
105400 05 Fht-Current-Rec pic x(160) value sp
105500 05 Fht-File—-Name pic x(256).

105600 05 Fht-Buffer pic x(4097).

105700 05 filler pic x value x"FF".
105800 01 Fht-Table-Size pic s9(5) comp value zero.
105900+

106000 01 Cbl-File-Fields.

106100 03 Cbl-File-name pic x(256).

29.5. 4.5 What STOCK CALL LIBRARY does OpenCOBOL offer? 257

OpenCOBOL FAQ, Release 1.1

106200 03 Cbl-Access-Mode pic x comp—-x value 1.
106300 03 Cbl-Deny-Mode pic x comp-x value 3.
106400 03 Cbl-Device pic x comp-x value zero.
106500 03 Cbl-Flags pic x comp—-x value zero.
106600 03 Cbl-File-Handle pic x(4) value zero.
106700 03 Cbl-File-Offset pic x(8) comp-x value zero.
106800 %

106900 01 Cbl-File-Details.

107000 03 Cbl-File-Size pic x(8) comp-x value zero.
107100 03 Cbl-File-Date.

107200 05 Cbl-File-Day pic x comp—-x value zero.
107300 05 Cbl-File-Mth pic x comp-x value zero.
107400 05 Cbl-File-Year pic x comp—-x value zero.
107500 03 Cbl-File-time.

107600 05 Cbl-File-Hour pic x comp-x value zero.
107700 05 Cbl-File-Min pic x comp—-x value zero.
107800 05 Cbl-File-Sec pic x comp—-x value zero.
107900 05 Cbl-File-Hund pic x comp-x value zero.

ER R i b b b e b b b b b b b b b b b b b b b b b g b

*

* 22300, zz400, zz500 & zz600 all relate to copy files/libraries

* via the COPY verb

* As it 1is hoped to only use the filename.i via Open-Cobol

then this lot can be killed off as well as all the other related

code.

NOTE that the COPY verb is implemented in a very basic way despite
* the fact that this code allows for 99 levels of COPY, eg, there is
* NO replacing so hopefully I can remove it all after primary testing
* When it is built into cobc
*

356400 zz300-Open-File.

356500 # % % % 5 % 5 Ak kk ok k k&

356600+ Open a Copy file using CBL-OPEN-File

356700+ filename is using Cbl-File-name

%

%

X%

356800 *

356900 move zero to Return-Code.

357000 if Fht-Table-Size > 99

357100 move 24 to Return-Code

357200 display Msgll

357300 go to zz300-Exit.

357400 *

357500+ set up New entry in File Table

357600 *

357700 add 1 to Fht-Table-Size.

357800 move Fht-Table-Size to e.

357900 move zeroes to Fht-File-0OffSet (e) Fht-File-Size (e)
358000 Fht-File-Handle (e) Fht-Block-0ffSet (e)
358100 Fht-CopyRefNo2 (e) Fht-sw-Eof (e)
358200 Fht-Copy-Line-End (e) Fht-Copy-Words (e).
358300 move 4096 to Fht-Byte—-Count (e).

358400 move spaces to Fht-Current-Rec (e).

358500 move 1 to Fht-pointer (e).

358600 *

358700 perform zz400-Check-File-Exists thru zz400-Exit.

358800 if Return-Code not = zero

358900 subtract 1 from Fht-Table-Size

359000 go to zz300-Exit.

258 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

359100~

359200 move Fht-Table-Size to e.

359300 move Cbl-File-Size to Fht-File-Size (e).
359400 move Cbl-File—-name to Fht-File—-Name (e).
359500 move 1 to Cbl-Access—-Mode

359600 Cbl-Deny—-Mode.

359700 move zero to Cbl-Device

359800 Cbl-File—-Handle.

359900 move zero to Return-Code.

360000 call "CBL_OPEN_FILE" using

360100 Cbl-File—-name

360200 Cbl-Access—-Mode

360300 Cbl-Deny-Mode

360400 Cbl-Device

360500 Cbl-File-Handle.

360600 if Return-Code not = zero

360700 display Msgl2 cbl-File-name

360800 display " This should not happen here"
360900 subtract 1 from Fht-Table-Size
361000 go to zz300-exit.

361100 %

361200 move Cbl-File-Handle to Fht-File-Handle (e).
361300 add 1 to Copy-Depth.

361400 move 1 to sw-Copy.

361500 move zero to Fht-CopyRefNo2 (e)

361600 Return-Code.

362000 zz300-Exit.

362100 exit.

362200/

362300 zz400-Check-File-Exists.

362400 *

362500+ check for correct filename and extention taken from COPY verb
362600~
362700+ input : wsFoundNewWordZ2

362800+ Output : Return-Code = 0 : Cbl-File-Details & Cbhl-File—-name
362900 * Return—-Code = 25 : failed fn in wsFoundNewWord2
363000~

363100 move zero to e.

363200 inspect wsFoundNewWord2 tallying e for all ".".

363300 if e not zero

363400 go to zz400-Tryl.

363500 perform varying a from 1 by 1 until Return-Code = zero
363600 move 1l to e

363700 move spaces to Cbl-File—-name

363800 string wsFoundNewWord? delimited by space

363900 into Cbl-File-name pointer e
364000 string File-Ext (a) delimited by size

364100 into Cbl-File-name pointer e
364200 move zero to Return-Code

364300 call "CBL_CHECK_FILE_EXIST" using

364400 Cbl-File-name

364500 Cbl-File-Details

364600 end-call

364700 if Return-Code not = zero

364800 and a = 7

364900 exit perform

365000 end-if

365100 end-perform

365200 if Return-Code not = zero

29.5. 4.5 What STOCK CALL LIBRARY does OpenCOBOL offer? 259

OpenCOBOL FAQ, Release 1.1

365300 display "zz400A Check File exist err=" Return-Code
365400 display Msgl3 wsFoundNewWord2
365500 move 25 to Return-Code

365600 go to zz400-Exit.

365700+ ok file now found

365900 go to zz400-Exit.

366000 *

366100 zz400-Tryl.

366200 move wsFoundNewWord2 to Cbl-File—-name.
366300 move zero to Return-Code.

366400 call "CBL_CHECK_FILE_EXIST" using
366500 Cbl-File—-name

366600 Cbl-File-Details.

366700 if Return-Code not = zero

366800 move function lower-case (wsFoundNewWord2) to
366900 Cbl-File—-name

367000 go to zz400-Try2.

367100+ ok file now found

367200 go to zz400-exit.

367300+

367400 zz400-Try2.

367500 move zero to Return-Code.

367600 call "CBL_CHECK_FILE_EXIST" using
367700 Cbl-File—-name

367800 Cbl-File-Details.

367900 if Return-Code not = zero

368000 display "zz400C Check File exist err=" Return-Code
368100 display Msgl3 wsFoundNewWord2 " or " Cbl-File-name
368200 move 25 to Return-Code

368300 go to zz400-Exit.

368400+

368500+ ok file now found

368600 *

368700 zz400-Exit.

368800 exit.

368900/

369000 zz500-Close-File.

369100 call "CBL_CLOSE_FILE" using

369200 Fht-File-Handle (Fht-Table-Size).
369300 if Return-Code not = zero

369400 display Msgl4

369500 Cbl-File—-name.

369800 subtract 1 from Fht-Table-Size.

369900 *

370000 if Fht-Table-Size = zero

370100 move zero to sw-Copy.

370200 subtract 1 from Copy-Depth.

370300 move zero to Return-Code.

370400 go to zz500-Exit.

370500

370600 zz500-Exit.

370700 exit.

370800/

370900 zz600-Read-File.

371000 * * # 5 ok 5 5 ok 5k ok A 4k ok ok A+

371100+ called using file—handle

371200+ returning CopySourceRecinl size 160 chars
371300+ If buffer enpty read a block

371400~ and regardless, move record terminated by x"0a"

260 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

371500+ to Fht-Current—-Rec (Fht-Table-Size)

371600+

371700 if Fht-Eof (Fht-Table-Size)

371800 perform zz500-Close-File

371900 go to zz600-Exit.

372000 %

372100 if Fht-File-0OffSet (Fht-Table-Size) = zero
372200 and Fht-Block-0OffSet (Fht-Table-Size) = zero
372300 perform zz600-Read-A-Block

372400 go to zz600-Get-A-Record.

372500+

372600 zz600-Get—-A-Record.

372700 % % % % 5 % 5 5 # sk ok ok ok 5k 5k % & *

372800+ Now to extract a record from buffer and if needed read a block
372900 % then extract

373000 *

373100 move spaces to Fht-Current-Rec (Fht-Table-Size).
373200 add 1 to Fht-Block-0ffSet (Fht-Table-Size) giving g.
373300~

373400+ note size is buffer size + 2

373500 #

373600 unstring Fht-Buffer (Fht-Table-Size) (1:4097)

373700 delimited by x"0A" or x"FE"

373800 into Fht-Current—-Rec (Fht-Table-Size)
373900 delimiter Word-Delimit3

374000 pointer g.

374100 *

374200+ Get next Block of data ?

374300+

374400 if Word-Delimit3 = x"FF"

374500 and g not < 4097

374600 add Fht-Block-0ffSet (Fht-Table-Size)

374700 to Fht-File-0ffSet (Fht-Table-Size)
374800 perform zz600-Read-A-Block

374900 go to zz600-Get-A-Record.

375000+ EOF?

375100 move 1 to Fht-Pointer (Fht-Table-Size).

375200 if Word-Delimit3 = x"FF"

375300 move 1 to Fht-sw—-Eof (Fht-Table-Size)

375400 go to zz600-Exit.

375500+ Now so tidy up

375600 subtract 1 from g giving Fht-Block-OffSet (Fht-Table-Size).
375700 go to zz600-exit.

375800

375900 zz600-Read-A-Block.

R i i b i b b i b

376000 move all x"FF" to Fht-Buffer (Fht-Table-Size).

376100+ if Fht-File-Size (Fht-Table-Size) < 4096 and not = zero
376200%* move Fht-File-Size (Fht-Table-Size)

376300+ to Fht-Byte-Count (Fht-Table-Size).
376400 call "CBL_READ_FILE" using

376500 Fht-File-Handle (Fht-Table-Size)

376600 Fht-File-0OffSet (Fht-Table-Size)

376700 Fht-Byte-Count (Fht-Table-Size)

376800 Cbl-Flags

376900 Fht-Buffer (Fht-Table-Size).

377000 if Return-Code not = zero

377100 display Msgl5 Return-Code

377200 go to zz600-Exit.

29.5. 4.5 What STOCK CALL LIBRARY does OpenCOBOL offer?

261

OpenCOBOL FAQ, Release 1.1

377300+ just in case all ff does not work

377400 move x"FF" to Fht-Buffer (Fht-Table-Size) (4097:1).
377500 move to Fht-Block-0Of (Fht-Table-Size) .

377600 subtract Fht-Byte-Count (Fht-Table-Size)

377700 from Fht-File-Size (Fht-Table-Size).
377800 zz600-Exit.

377900 exit.

29.6 4.6 What are the XF4, XF5, and X91 routines?

From opencobol.org

The CALL’s X"F4", X"F5", X"91" are from MF.
You can find them in the online MF doc under
Library Routines.

F4/F5 are for packing/unpacking bits from/to bytes.
91 is a multi-use call. Implemented are the subfunctions
get/set cobol switches (11, 12) and get number of call params (16).

Roger

Use

CALL X"F4" USING
BYTE-VAR
ARRAY-VA

RETURNING STA’
to pack the last bit of each byte in the 8 byte ARRAY-VAR into corresponding bits of the 1 byte BYTE-VAR.
The X”’F5” routine takes the eight bits of byte and moves them to the corresponding occurrence within array.

X”’91” is a multi-function routine.
CALL X"91" USING

RESULT
FUNCTION-)
PARAMETER-V

RETURNING STATUS-VAR
As mentioned by Roger, OpenCOBOL supports FUNCTION-NUM of 11, 12 and 16.

11 and 12 get and set the on off status of the 8 (eight) run-time OpenCOBOL switches definable in the SPECIAL-
NAMES paragraph. 16 returns the number of call parameters given to the current module.

29.7 4.7 What is CBL_OC_NANOSLEEP OpenCOBOL library routine?

CBL_OC_NANOSLEEP allows (upto) nanosecond sleep timing. It accepts a 64 bit integer value which may be in
character or numeric data forms.
CALL "CBL_OC_NANOSLEEP" USING 500000000
RETURNING STATUS
END-CALL

Would wait one-half second. It may be easier to grok if the source code uses string catenation; “500” & “000000”
for example.

262 Chapter 29. 4 Reserved Words

http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

29.8 4.8 How do you use C$JUSTIFY?

The C$JUSTIFY sub program can centre, or justify strings left or right.

OCOBOL >>
*>
*>
x>
*>
*>
x>
*>
*>

SOURCE FORMAT IS FIXED

Kk ko ko ok kb ok ok ok ok ok ok ok ok b ok ok ok b ok ok ok b ok ok ok ok b ok ok ok b ok ok b b ok ok ok ok ok ok ok ok ok ok ok b ok ok ok b ok ok ok ok ok ko A

Author: Brian Tiffin

Date: 01-Jul-2008

Purpose: Demonstrate the usage of OpenCOBOL call library
CSJUSTIFY, CSTOUPPER, CSTOLOWER

Tectonics: Using OCl.1 post 02-Jul-2008, cobc -x —-Wall

History: 02-Jul-2008, updated to remove warnings

L b i i b i i i b i b b i b b b b b i b i b i b b

identification division.
program-id. justify.

environment division.

configuration section.
source—computer. IBMPC.
object-computer. IBMPC.

data division.
WORKING-STORAGE section.

01

01
01
01

source-str pic x(80)

value " this is a test of the internal voice communication
system".

just-str pic x(80).

justification pic x.

result pic s9(9) comp-5.

procedure division.
move source-str to just-str.

*>

Left justification

move "L" to Jjustification.
perform demonstrate-justification.

*>

case change to upper, demonstrate LENGTH verb

call "C$TOUPPER" using just-str

by value function length(just-str)
returning result

end-call.

*>

Centre

move "C" to justification.
perform demonstrate-justification.

*>

case change to lower

call "CSTOLOWER" using just-str

by value 80
returning result

end-call.

*>

Right, default if no second argument

call "CSJUSTIFY" using just-str

returning result

end-call.
move "R" to justification.
perform show-justification.

29.8. 4.8

How do you use C$JUSTIFY?

263

OpenCOBOL FAQ, Release 1.1

exit program.
stop run.

D kA kA hAh Ak kA kA hkh kb bk bk h bk bk h bk kb h ok b ok ok ok ok b ok ok ok ok b ok ok ok ok ok ok ok kb kA ok ko
demonstrate—-justification.
call "CSJUSTIFY" using just-str
justification
returning result

end-call

if result not equal 0 then
display "Problem: " result end-display
stop run

end-if

perform show-Jjustification

KDk o ok ok b ok ok ok ok ok ok ok ok ok ok A

show—justification.
evaluate justification
when "L" display "Left justify" end-display
when "C" display "Centred (in UPPERCASE)" end-display

when other display "Right justify" end-display
end-evaluate

display "Source: |" source-str "|" end-display
display "Justified: [" Jjust-str "|" end-display
display end-display

Producing:

$./justify

Left justify

Source: | this is a test of the internal voice communication system |
Justified: |this is a test of the internal voice communication system

Centred (in UPPERCASE)
Source: | this is a test of the internal voice communication system \
Justified: | THIS IS A TEST OF THE INTERNAL VOICE COMMUNICATION SYSTEM

Right justify
Source: | this is a test of the internal voice communication system |
Justified: | this is a test of the internal voice communication system|

29.9 4.9 What preprocessor directives are supported by OpenCOBOL?

OpenCOBOL 1.1 supports a limited number of directives.
* >>D for conditional debug line compilation
* >>SOURCE for changing fixed and free format preprocessing modes
¢ *> for inline comments, column 1+ in free form, column 7+ in fixed

OpenCOBOL 2.0 supports a much wider subset of standard directives and existent extensions. Some are only recog-
nized and will be ignored with a warning until implemented.

e >>D
« >>SOURCE

264 Chapter 29. 4 Reserved Words

OpenCOBOL FAQ, Release 1.1

* >>DEFINE

* >>DISPLAY

* >>[F

* >>FLSE

e >>ELIF

e >>E[SE-IF

* >>END-IF

* >>SET

* >>LEAP-SECOND
* >>TURN

299.1 49.1 >>D

Debug line control. OpenCOBOL only compiles these lines if the -fdebugging-line command line is used.

29.9.2 4.9.2 >>SOURCE

OpenCOBOL fully supports FREE and FIXED format source. The compiler defaults FIXED form sources, so this
directive is usually placed at column 8 or beyond. The command line arguments -free and -fixed controls the default
for the first line of source.

See What source formats are accepted by OpenCOBOL? for more details.

29.9.3 4.9.3 >>DEFINE

Define a compile time symbol.
* >>DEFINE identifier AS literal
* >>DEFINE identifier AS literal OVERRIDE
* >>DEFINE identifier OFF
* >>DEFINE identifier PARAMETER
* >>DEFINE identifier CONSTANT
* >>DEFINE identifier working-variable

The -D command line option can be used to define symbols.

2994 494 >>IF

Conditional compile directive. Will include source lines upto >>END-IF, an >>ELSE-IF or >>ELSE clause if condi-
tion is true.

¢ >>JF identifier DEFINED

* >>JF conditional-expression

29.9. 4.9 What preprocessor directives are supported by OpenCOBOL? 265

OpenCOBOL FAQ, Release 1.1

299.5 4.9.5 >>ELSE-IF

Allows for multiple conditions in a conditional compile sequence.

29.9.6 4.9.6 >>ELIF

Alias for >>ELSE-IF.

29.9.7 4.9.7 >>ELSE

Compiles in source lines upto an >>END-IF if the previous >>IF or >>ELSE-IF conditions test false.

29.9.8 4.9.8 >>END-IF

Terminates a conditional compile block.

2999 4.9.9 >>SET

Allows modification of compiler source text handling behaviour.
* >>SET CONSTANT

>>SET SOURCEFORMAT

* >>SET FOLDCOPYNAME | FOLD-COPY-NAME

* >>SET NOFOLDCOPYNAME | NOFOLD-COPY-NAME

* >>SET AS

¢ >>SET literal
 >>SET {SET_PAREN_LIT}

* >>SET working-store-var

29.9.10 4.9.10 >>LEAP-SECOND

Ignored.

29.9.11 4.9.11 >>TURN

Will allow modification of exception code handling, when implemented.

266 Chapter 29. 4 Reserved Words

CHAPTER
THIRTY

5 FEATURES AND EXTENSIONS

267

OpenCOBOL FAQ, Release 1.1

OpenCOBOL Features

5.1

5.2

53

54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

5.19

5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29

5.30
5.31
5.32

How do I use OpenCOBOL for CGI?
5.1.1 AJAX
What is ocdoc?
5.2.1 ocdoc generated ocdoc documentation
What is CBL_OC_DUMP?
5.3.1 Update to OC_CBL_DUMP
Does OpenCOBOL support any SQL databases?
5.4.1 OCESQL
5.4.2 Firebird gpre
5.4.3 Oracle
5.4.4 Other SQL engines
5.4.5 Oracle procob and binary data sizes
5.4.6 Direct PostgreSQL Sample
Does OpenCOBOL support ISAM?
5.5.1 FILE STATUS
Does OpenCOBOL support modules?
What is COB_PRE_LOAD?
What is the OpenCOBOL LINKAGE SECTION for?
What does the -fstatic-linkage OpenCOBOL compiler option do?
Does OpenCOBOL support Message Queues?
Can OpenCOBOL interface with Lua?
Can OpenCOBOL use ECMAScript?
Can OpenCOBOL use JavaScript?
Can OpenCOBOL interface with Scheme?
Can OpenCOBOL interface with Tcl/Tk?
Can OpenCOBOL interface with Falcon PL?
Can OpenCOBOL interface with Ada?
Can OpenCOBOL interface with Vala?
5.18.1 Call OpenCOBOL programs from Vala
5.18.2 Call OpenCOBOL from a Vala GTK gui application
5.18.3 Call Genie program from OpenCOBOL
5.18.4 Pass data to and from Genie
Can OpenCOBOL interface with S-Lang?
5.19.1 Setup
5.19.2 Keyboard control
5.19.3 Scripting
Can the GNAT Programming Studio be used with OpenCOBOL?
Does OpenCOBOL support SCREEN SECTION?
5.21.1 Environment variables in source code
What are the OpenCOBOL SCREEN SECTION colour values?
Does OpenCOBOL support CRT STATUS?
What is CobCurses?
What is CobXRef?
Does OpenCOBOL implement Report Writer?
Does OpenCOBOL implement LINAGE?
Can I use ctags with OpenCOBOL?
What about debugging OpenCOBOL programs?
5.29.1 Some debugging tricks
5.29.2 Animator
5.29.3 Unit testing
Is there a C interface to OpenCOBOL?
What are some idioms for dealing with C char * data from OpenCOBOL?
Does OpenCOBOL support COPY includes?

5.33
5.34
5.35
5.36

ey

Does OpenCOBOL support WHEN-COMPILED? Chapter 30. 5 Features and extensio
What is PI in OpenCOBOL?

Does OpenCOBOL support the Object features of the 2002 standard?

Does OpenCOBOL implement PICTURE 78?

o~ T~ o~ w . e~ T~ A T

OpenCOBOL FAQ, Release 1.1

OpenCOBOL Features

30.1 5.1 How do I use OpenCOBOL for CGI?

OpenCOBOL is more than capable of being a web server backend tool.

* One of the tricks is assigning an input stream to KEYBOARD when you need to get at POST data.

* Another is using the ACCEPT var FROM ENVIRONMENT feature.
OCOBOL >>SOURCE FORMAT IS FIXED

R R b b b b I b b b I b b b b b b b b 2 b b b 2 2 b b b 2 b b b S 2 2 b b S 2 b b b 2 2 b b b i b b b b 2 b b b S 2 b b Sh b 2 3

* Author: Brian Tiffin, Francois Hiniger
* Date: 30-Aug-2008
* Purpose: Display the CGI environment space

* Tectonics: cobc —-x cgienv.cob

Move cgienv to the cgi-bin directory as cgienv.cgi
browse http://localhost/cgi-bin/cgienv.cgi or cgienvform.html

AAAAAAAAAAA A AL A A A A A A A AL A AL A A A A A A A AR A

identification division.

program-id. cgienv.

environment division.
input-output section.
file-control.

select webinput assign to KEYBOARD.

data division.
file section.

fd webinput.

01 postchunk pic x(1024).

working-storage section.

78
01
01
01
01

name—-count value 34.

newline pic x value x’0a’.
name-index pic 99 usage comp-5.
value-string pic x(256).

environment-names.
02 name-strings.

03 filler pic x(20) value 'AUTH_TYPE’.

03 filler pic x(20) value ’'CONTENT_LENGTH’.

03 filler pic x(20) value ’'CONTENT_TYPE’.

03 filler pic x(20) value ’'DOCUMENT_ROOT’ .

03 filler pic x(20) value ’'GATEWAY_ INTERFACE’.

03 filler pic x(20) value 'HTTP_ACCEPT’.

03 filler pic x(20) value ’'HTTP_ACCEPT_CHARSET’.
03 filler pic x(20) value 'HTTP_ACCEPT_ENCODING' .
03 filler pic x(20) value ’'HTTP_ACCEPT_LANGUAGE’ .
03 filler pic x(20) value ’'HTTP_COOKIE'.

03 filler pic x(20) value 'HTTP_CONNECTION’ .

03 filler pic x(20) value 'HTTP_HOST’.

03 filler pic x(20) value ’'HTTP_REFERER’.

03 filler pic x(20) value ’'HTTP_USER_AGENT’.

03 filler pic x(20) value ’'LIB_PATH'.

03 filler pic x(20) value ’'PATH'.

03 filler pic x(20) value 'PATH_INFO’.

03 filler pic x(20) value ’'PATH_TRANSLATED’.

03 filler pic x(20) value ’'QUERY_STRING’.

30.1. 5.1 How do | use OpenCOBOL for CGI?

269

OpenCOBOL FAQ, Release 1.1

03
03
03
03
03
03
03
03
03
03
03
03
03
03
03

filler pic x(20) value ’'REMOTE_ADDR’.
filler pic x(20) value ’'REMOTE_HOST'.
filler pic x(20) value ’'REMOTE_IDENT’.
filler pic x(20) value ’'REMOTE_PORT’.
filler pic x(20) value ’'REQUEST_METHOD’ .
filler pic x(20) value ’'REQUEST_URI'.
filler pic x(20) value ’'SCRIPT_FILENAME’ .
filler pic x(20) value ’'SCRIPT_NAME'.
filler pic x(20) value ’'SERVER_ADDR’.
filler pic x(20) value ’'SERVER_ADMIN’ .
filler pic x(20) value ’'SERVER_NAME'.
filler pic x(20) value ’'SERVER_PORT’.
filler pic x(20) wvalue ’'SERVER_PROTOCOL’ .
filler pic x(20) value ’'SERVER_SIGNATURE’ .
filler pic x(20) value ’'SERVER_SOFTWARE’ .

02 filler redefines name-strings.

03

name-string pic x(20) occurs name-count times.

procedure division.

* Always

display
"Con
newl

send out the Content-type before any other IO

tent-type: text/html"
ine

end-display.

display
"<ht

ml><body>"

end-display.

display
"<h3

>CGI environment with OpenCOBOL</h3>"

end-display.

display
4 <a
n <p>

href="/cgienvform.html">To cgienvform.html’
<table>"

end-display.

* Accept
perform
unti

and display some of the known CGI environment values

varying name-index from 1 by 1

1 name-index > name-count

accept value-string from environment
name-string(name—index)

end—-accept

display
"<tr><td>"
name-string(name—-index)
"o </td><td>"
function trim (value-string trailing)
"</td></tr>"
end-display
if (name-string(name-index) = "REQUEST_METHOD")
and (value-string = "POST")

open input webinput
read webinput
at end move spaces to postchunk
end-read
close webinput
display
'<tr><td align="right">’
"First chunk of POST:</td><td>"

270

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

postchunk (1:72)
"</td></tr>"
end-display
end-if
end-perform.
display "</table></p></body></html>" end-display.
COOL goback.

Once compiled and placed in an appropriate cgi-bin directory of your web server, a simple form can be used to try the
example.

cgienvform.html

<html><head><title>OpenCOBOL sample CGI form</title></head>

<body>

<h3>0penCOBOL sample CGI form</h3>

<form action="http://localhost/cgi-bin/cgienv.cgi" method="post">
<p>
Text: <input type="text" name="text">

Password: <input type="password" name="password">

Checkbox: <input type="checkbox" name="checkbox">

<input type="radio" name="radio" value="ONE"> One

<input type="radio" name="radio" value="TWO"> Two

<input type="submit" value="Send"> <input type="reset">
</p>

</form>

</body>

</html>

30.1.1 S5.1.1 AJAX

From a post on opencobol.org by DamonH:

As promised, here is the html for AJAX to use the cgenv.cgi example from the FAQ.
You need not change anything with the cobol code.

ajax.html

<html>
<head>
<title>Simple Ajax Example</title>
<script language="Javascript">
function xmlhttpPost (strURL) {
var xmlHttpReqg = false;
var self = this;
// Mozilla/Safari
if (window.XMLHttpRequest) {
self.xmlHttpReq = new XMLHttpRequest ();
}
// IE
else if (window.ActiveXObiject) {
self.xmlHttpReq = new ActiveXObject ("Microsoft .XMLHTTP");
}
self.xmlHttpReqg.open (' POST’, strURL, true);
self.xmlHttpReq.setRequestHeader (' Content-Type’, ’application/x-www-form-urlencoded’);
self.xmlHttpReqg.onreadystatechange = function() {
if (self.xmlHttpReqg.readyState == 4) {
updatepage (self.xmlHttpReq.responseText) ;

}
self.xmlHttpReq.send (getquerystring());

30.1. 5.1 How do | use OpenCOBOL for CGI? 271

OpenCOBOL FAQ, Release 1.1

function getquerystring() {
var form = document.forms[’fl’];
var word = form.word.value;
gstr = 'w=’ + escape(word); // NOTE: no ’?’ before querystring

return gstr;

function updatepage (str) {
document .getElementById("result") .innerHTML = str;

}
</script>
</head>
<body>
<form name="f1">

<p>word: <input name="word" type="text">

<input value="Go" type="button" onclick=’javascript:xmlhttpPost ("/cgi-bin/cgienv.cgi")’></p>
<div id="result"></div>

</form>

</body>

</html>

A quick screenshot from the Vala WebKit called from OpenCOBOL sample. To be clear, this is a screenshot of an
OpenCOBOL application that includes an embedded brower, displaying AJAX invoked OpenCOBOL CGI binaries
(installed on the host without superuser access). Take this one step further, and the browser application could utilize
libSOUP and be its own webserver.

Sometimes, just wow. Ok, feel the need for marketing speak. “Moving beyond COBOL? Why? Move COBOL
beyond.”

272 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

[http:Hlocalhost,.r‘aja:env.html]

word: |<hl>testing</h1> || Go|

CGI environment with OpenCOBOL

To cgienvform.html

AUTH_TYPE :

CONTENT LENGTH : 26

CONTENT _TYPE : application/x-www-form-urlencoded; charset=UTF-8
DOCUMENT ROOT : Mvarfwww/html

GATEWAY INTERFACE : CGl/1.1

HTTP_ACCEPT : **

HTTP_ACCEPT_CHARSET :
HTTP_ACCEPT ENCODING: gzip
HTTP_ACCEPT_LANGUAGE:

HTTP_COOKIE :
HTTP_CONNECTION :
HTTP_HOST : localhost
HTTP_REFERER : http://localhost/ajaxenv.html
Mozilla/5.0 (X11; U; Linux x86 64; en-us) AppleWebKit/531.2+
HTTP_USER_AGENT : (KHTML, like Gecko) Safari/531.2+ PP
LIB_PATH :
PATH : /shin:/usrf{shin:/bin:/usr/bin
PATH_INFO :

PATH TRANSLATED :

QUERY_STRING :

REMOTE_ADDR : 127.0.0.1

REMOTE_HOST :

REMOTE_IDENT :

REMOTE_PORT : 53058

REQUEST METHOD : POST
First chunk of POST: w=%3Ch1%3Etesting%3C/h1%3E —

Welcome

For those developers looking to serve OpenCOBOL applications on hosted systems and no super user privileges, see
How do I'use LD_RUN_PATH with OpenCOBOL? for some pointers on local library linkage.

30.2 5.2 Whatis ocdoc?

ocdoc is a small utility used to annotate sample programs and to support generation of Usage Documentation using
COBOL sourced ReStructuredText extract lines.

ocdoc.cob

OCOBOL >>SOURCE FORMAT IS FIXED

Kk ok K ok A ok ok ok ok ok ok ok ok ok ok Ak

30.2. 5.2 What is ocdoc? 273

OpenCOBOL FAQ, Release 1.1

*><
><
*A><
*>< A
><
*A><
*>< A
><
*A><F
*>< A
*><
*A>< K
*>< A
*>< &
*A><

ocdoc.cob usage guide

sidebar:: Table of Contents
contents:: :local:
:Author: Brian Tiffin
:Date: 30-Sep-2008
:Rights: Copyright (c) 2008, Brian Tiffin.
GNU FDL License.
:Purpose: Extract usage document lines from COBOL sources.

Using OpenCOBOL 1.lpr. OpenCOBOL is tasty.
:Tectonics: cobc —-x ocdoc.cob
:Docgen: S ./ocdoc ocdoc.cob ocdoc.rst ocdoc.html skin.css

K>k ok

*><
*A>< A
*>< A
*>< Ak
*A>< A
*>< A
*>< *
*A>< A
*><+
*>< *
*A>< A
*><+
*><+
*><+
*>< A
*>< &
*><
*>< A
*><+
*><
*><
*>< &
*><
*><
*>< &
*><+
*>< *
*>< &
*><
*>< Ak
*><+
*><
*>< k
*><
*><
*>< *
*><+
*><
*>< *
*><+
*><+
*><+
*><+

rocdoc* runs 1in two forms.

Without arguments, »ocdoc* will act as a pipe filter.
Reading from standard in and writing the extract to standard
out.

The x*ocdoc+ command also takes an input file, an extract
filename, an optional result file (with optional
stylesheet) and a verbosity option *-v* or a
special #-fixed+ flag (to force skipping sequence numbers) .

If a result file is given, ocdoc will automatically

run an *rst2htmls command using the SYSTEM service.

Due to an overly simplistic argument handler, you can only
turn on verbosity or —-fixed when using all four filenames.

Examples::
S cat ocdoc.cob | ocdoc >ocdoc.rst
S ./ocdoc ocdoc.cob ocdoc.rst
S ./ocdoc ocdoc.cob ocdoc.rst

ocdoc.html skin.css —fixed

Input : ocdoc.cob

Output : ocdoc.rst
Command: rst2html --stylesheet=skin.css

ocdoc.rst ocdoc.html

- Lines that begin with *><\x xignoring spacesx, are
extracted.

- Lines that begin with \+><+ are appended to the
previous output line. As lines are trimmed of trailing
spaces, and xocdoc* removes the space following the
extract triggers, you may need two spaces after an
ocdoc append.

274

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

*>< &
*><
*><+
*><
>
*><+
*><+
*F><
*A><
*><
*><
*A>< K
*><+
*><
*><+
*><
*>< |
*>< !
*>< !
*F><
*A>< A
*><
>
*A>< A
*><
*F><
*>< [

- Lines that begin with \x><[begin a here document
with lines that follow extracted as 1is.

- Lines that begin with \x><] close a here document.
Here document start and end lines are excluded from the
extract.

‘Download ocdoc.cob

<http://opencobol.addltocobol.com/ocdoc.cob>"_
‘See ocdocseq.cob
<http://opencobol.addltocobol.com/ocdocseq.html>"_
This is not extracted. Reminder of how to include source
include:: ocdoc.cob
:literal:

identification division.
program—-id. OCDOC.

environment division.
input-output section.
file-control.

*>< [

select standard-input assign to KEYBOARD.
select standard-output assign to DISPLAY.

select source-input

assign to source-name
organization is line sequential
select doc-output

assign to doc-—name
organization is line sequential

data division.
file section.

fd

fd

standard-input.

01 stdin-record pic x(256).
standard-output.
01 stdout-record pic x(256).

30.2. 5.2 What is ocdoc?

275

OpenCOBOL FAQ, Release 1.1

fd source-input.

01 source-record
fd doc-output.

01 doc-record

working-storage section.
01 arguments

01 source—name

01
01
01
01

doc—name
result—-name
style—name
verbosity

88 verbose

88 skipsegnum
usagehelp

88 helping
filter—-flag
88 filtering

01

01

01
01

line-count
line-display

*><]
*><
*><
*>< *
*><
*><
*>< [

pic x(256).

pic x(256).

pic
pic
pic
pic

x(256) .
x(256) .
x(256) .
x(256) .
pic x(256).
pic x(9).

values "-v
values "-fix"
pic x(6).

values "-h"
pic x value
value high-value.

non

"—-—verbose".
"——fixed".

——v" "-verbose"
"7fixed" "77fj_X"

n

77h" "7help"
low-value.

"-—help".

usage binary-long.
pic z(8)9.

Note the conditional test for end of here doc

01 trimmed pic x(256).
88 herestart value "x><[".
88 hereend value "x><]".
01 hereflag pic x value low-value.
88 heredoc value high-value.
88 herenone value low-value.
*><]
*><
*><x Note the here-record adds an ocdoc extract to lines that
*><+ follow.
*A><
>
*F>< K
*>< [
01 here-record.
02 filler pic x(5) value "x><x ".
02 here-data pic x(251).

01 seg-record.
02 filler

02 seg-data

01
01
01

doc-buffer
buffer-offset
buffer-flag

88 buffer—-empty

88 buffered-output

n

pic
pic

x(7) value
x(249) .

pic x(256).

pic 999 usage comp-5 value 1.
pic x value low-value.

value low-value.

value high-value.

276

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

01 counter pic 999 usage comp-5.
01 len-of-comment pic 999 usage comp-5.
01 first-part pic x(8).
88 special values "x><#" "a><4",
88 autodoc value "x><x",
88 autoappend value "x><+",
01 rst-command pic x(256).
01 result usage binary-long.
*><]
*><
ASCh mmmm e

*><% procedure division

A< ——mm e — — —

*><

*>< K

*>< A

*>< [

KDk o ok ok b ok ok ok ok ok ok ok ok ok ok A

procedure division.

*><]

*><

*><x Accept command line arguments. See 1f help requested.
*A>< A

*><

*><

*>< [

accept arguments from command-line end-accept

move arguments to usagehelp
if helping
display
"$./ocdoc source markover [output [skin [-—-fixed]]]"
end-display
display "$./ocdoc" end-display
display
" without arguments extracts stdin to stdout"
end-display

goback
end-if
*><]
*><
*><+ Either run as filter or open given files. Two filenames
x><+ will generate an extract. Three will run the extract

*><+ through #*rstZhtml* using an optional fourth filename
*><+ as a stylesheet.
*><
*><
*><
*>< [
x> Determine 1if this is running as a filter
if arguments not equal spaces
unstring arguments delimited by all spaces
into source-name doc-name
result—-name style—name

30.2. 5.2 What is ocdoc? 277

OpenCOBOL FAQ, Release 1.1

verbosity
end-unstring

open input source-input

open output doc-output
else

set filtering to true

open input standard-input
open output standard-output
end-if

*><]

*><

*><x Initialize the output buffer, and line count.
*><

*><

*>< *

*>< [

set buffer-empty to true
move 1 to buffer-offset
move spaces to doc-record
move 0 to line-count

*><]
*><
*><# The read is either from file or stdin. Start with the
*><+ first record.
*F><
*A>< A
*F><
*>< [
*> filtering requires different reader loop
if filtering
read standard-input
at end move high-values to stdin-record
end-read
move stdin-record to source-record
else
read source-input
at end move high-values to source-record
end-read
end-if

*><]
*><
*><+ The main loop starts here, having done a pre-read to start
#><+ things off.
*><
*><
*><
*>< [
perform until source-record = high-values
add 1 to line-count

*><]

*><

*><+ Small wrinkle 1f processing fixed form with sequence numbers,
*><+ as the heredoc end marker needs to be recognized

278

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

*><+ but we still want the sequence numbers in the heredoc.

*><
*><x So files processed ——-fixed play some data shuffling games.
*><
>
*A><
*>< [
if skipsegnum
if heredoc
move source-record(7 : 248) to trimmed
move source-record to seg-data
move seqg-record to source-record
else
move source-record(7 : 248) to source-record
move source-record to trimmed
end-if
else
move function trim(source-record leading) to trimmed
end-if
*><]
*><

*><x First to check for here doc start and end, setting flag
*><+ 1f trimmed conditional the heredoc start or heredoc end
*><+ strings.

>
*F>< K
*>< Ak
*>< [
if herestart
set heredoc to true
end-if
if hereend
set herenone to true
end-if
*><]
*A><

*><+ Inside the loop, we skip over heredoc entries.
*><+ If it is normal, than check for heredoc and include
*><+ source lines that follow, by prepending the extract tag

>
>
*><
*>< [
if (not herestart) and (not hereend)
if heredoc
move source-record to here-data
move here-record to trimmed
end-if
*><]
*><

*><% Unstring the line, looking for special tags in the first
*><+ part.

*><

*><

*F><

30.2. 5.2 What is ocdoc? 279

OpenCOBOL FAQ, Release 1.1

*>< [
unstring trimmed delimited by all spaces
into first-part
count in counter
end—-unstring
*><]
*F><

*><+ If special,
*><
*>< A

we either buffer or append to buffer

*F>< A
*>< [
evaluate true when special
if autoappend and buffer-empty
move spaces to doc-record
move 1 to buffer-offset
end-if

if autodoc and buffered-output
if filtering
move doc-record to stdout-record
write stdout-record end-write
else
write doc-record end-write
end-if
if verbose
display
function trim(doc-record trailing)
end-display
end-if
move spaces to doc-record
set buffer-empty to true
move 1 to buffer-offset
end-if

*><]

*><

*><+ Skip over where the tag was found plus an extra space.
*><+ Adding 2 skips over the assumed space after a special tag
*><

*F>< K
*F><
*>< [
add 2 to counter
compute len-of-comment =
function length (trimmed) - counter
end-compute
if len-of-comment > 0
move trimmed (counter len-of-comment)
to doc-buffer
else
move spaces to doc-buffer
end-if
*><]
*>< A

*><#+ Buffer the line,

either to position 1 or appending to last.

280

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

*>< &
*><
*F><
*>< [
string
function trim(doc-buffer trailing)
delimited by size
into doc-record
with pointer buffer-offset
on overflow
move line-count to line-display
display
"xx% truncation *+*% reading line "
line-display
end-display
end-string
set buffered-output to true
end-evaluate
end-if
*><]
*A><

*><+ Again, we either read the next record from file or stdin.
*>< *

*><
*><
*>< [
if filtering
read standard-input
at end move high-values to stdin-record
end-read
move stdin-record to source-record
else
read source—input
at end move high-values to source-record
end-read
end-if
end-perform

*><]
*><
*><+ We may or may not end up with buffered data
*><
*><
*A>< A
*>< [
if buffered-output
set buffer-empty to true
move 1 to buffer-offset
if filtering
move doc-record to stdout-record
write stdout-record end-write
else
write doc-record end-write
end-if
if verbose
display
function trim(doc-record trailing)
end-display

30.2. 5.2 What is ocdoc? 281

OpenCOBOL FAQ, Release 1.1

end-if
move spaces to doc-record
end-if

*><]
*A><
*><# Close the OpenCOBOL files
*F><
*A><
*><
*>< [
if filtering
close standard-output
close standard-input
else
close doc-output
close source-input
end-if

if verbose

display "Input : " function trim(source-name) end-display
display "Output : " function trim(doc-name) end-display
end-if
*><]
*><

*><+ If we have a result file, use the SYSTEM service to

*><+ generate an HTML file, possibly with stylesheet.
*><

*>< *
*><
*>< [
*> pass the extract through a markover, in this case ReST
move spaces to rst-command
if result-name not equal spaces
if style-name equal spaces
string
"rst2html " delimited by size
doc-name delimited by space
" " delimited by size
result-name delimited by space
into rst-command
end-string
else
string
"rst2html --stylesheet=" delimited by size
style—-name delimited by space
" " delimited by size
doc—name delimited by space
" " delimited by size
result-name delimited by space
into rst-command
end-string
end-if

if verbose
display
"Command: "
function trim(rst-command trailing)

282 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

end-display
end-if

call "SYSTEM"
using rst-command
returning result
end-call

if result not equal zero

display "HTML generate failed: " result end-display
end-if
end-if
*><]
><

*><+ And before you know it, we are done.
*><

*>< *

*><

*>< [

goback.

end program OCDOC.

*><]

*><

*><+ Don’t forget to visit http://opencobol.org
*>< *

*><+ Cheers

*><

*><x *Last edit:x 03-0ct-2008

30.2.1 5.2.1 ocdoc generated ocdoc documentation

See ocdoc.html for the output from processing ocdoc.cob with ocdoc using the tectonics listed in the source. skin.css
ends up embedded in the html.

cobc —-x ocdoc.cob
./ocdoc ocdoc.cob ocdoc.rst ocdoc.html skin.css

Ur

30.3 5.3 Whatis CBL_OC_DUMP?

CBL_OC_DUMP is somewhat of a community challenge application to allow for runtime data dumps. Multiple
postings to opencobol.org has refined the hex display callable to:

OCOBOL >>SOURCE FORMAT IS FIXED

* Authors: Brian Tiffin, Asger Kjelstrup, human

* Date: 27-Jan-2010

* Purpose: Hex Dump display

* Tectonics: cobc —c CBL_OC_DUMP.cob

* Usage: cobc —-x program.cob —o CBIL_OC_DUMP

* export OC_DUMP_EXT=1 for explanatory text on dumps
* (memory address and dump length)

* export OC_DUMP_EXT=Y for extended explanatory text
* (architecture and endian-order)

identification division.

30.3. 5.3 Whatis CBL_OC_DUMP? 283

http://opencobol.add1tocobol.com/ocdoc.html
http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

program-id.
*

ENVIRONMENT

CONFIGURATION

*

CBL_OC_DUMP.

DIVISION.
SECTION.

data division.
working-storage section.

77 addr usage pointer.
77 addr2addr usage pointer.
77 counter pic 999999 usage comp-5.
77 byline pic 999 usage comp-5.
77 offset pic 999999.
01 some pic 999 usage comp-5.
88 some-is-printable-iso88591
values 32 thru 126, 160 thru 255.
88 some-is-printable-ebcdic
values 64, 65, 74 thru 80, 90 thru 97,
106 thru 111, 121 thru 127, 129 thru 137, 143,
145 thru 153, 159, 161 thru 169, 176,
186 thru 188, 192 thru 201, 208 thru 217, 224,
226 thru 233, 240 thru 249.
77 high-var pic 99 usage comp-5.
77 low-var pic 99 usage comp-5.
*
01 char-set pic x(06) .
88 is-ascii value "ASCII'.
88 is-ebdic value 'EBCDIC’.
88 is-unknown value '7?'.
01 architecture pic x(06).
88 is-32-bit value ’'32-bit’.
88 is-64-bit value ’'64-bit’.
01 endian-order pic x(10).
88 is-big-endian-no value 'Little-Big’.
88 is-big-endian-yes wvalue ’'Big-Little’.
*
77 hex-line pic x(48).
77 hex-line-pointer pic 9(02) value 1.
*
77 show pic x(16).
77 dots pic x value ’.’.
77 dump-dots pic x.
*
77 hex-digit pic x(16) value '0123456789%abcdef’ .
01 extended-infos pic x.
88 show-extended-infos values '1’, 727, 'Y, ’'y’.
88 show-very-extended-infos wvalues '2’, ’'Y’, 'y’.
*
77 len pic 999999 usage comp-5.
77 len-display pic 999999.
*
linkage section.
01 buffer pic x any length.
77 byte pic x.

procedure division using buffer.

*
MAIN SECTION.
00.

perform starting-address

284 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

perform varying counter from 0 by 16
until counter >= len
move counter to offset
move spaces to hex-line, show
move -/ to hex-1line (24:01)
move 1 to hex-line-pointer
perform varying byline from 1 by 1
until byline > 16
if (counter + byline) > len
if byline < 9
move space to hex-line (24:01)
end-if
inspect show (byline:) replacing all spaces by dots
exit perform
else
move buffer (counter + byline : 1) to byte
perform calc-hex-value
if ((some-is-printable-i1is088591 and is-ascii) or
(some-is-printable-ebcdic and is-ebdic))
move byte to show (byline:l)
else
move dots to show (byline:l)
end-if
end-if
end-perform
display offset ’ / hex-line ’ ' show
end-display
end-perform
display ’ '/
end-display

continue.
ex. exit program.

CALC-HEX-VALUE SECTION.

00.
subtract 1 from function ord(byte) giving some
end-subtract
divide some by 16 giving high-var remainder low-var
end-divide
string hex-digit (high-var + 1:1)
hex-digit (low-var + 1:1)
space
delimited by size
into hex-line
with pointer hex-line-pointer
end-string
*
continue.
ex. exit.

STARTING-ADDRESS SECTION.
00.
* Get the length of the transmitted buffer
CALL ’'CSPARAMSIZE’ USING 1
GIVING len
END-CALL
*» If wanted, change the dots to something different than points

30.3. 5.3 What is CBL_OC_DUMP? 285

OpenCOBOL FAQ, Release 1.1

accept dump-dots from environment ’OC_DUMP_DOTS’

not on exception
move dump-dots to dots
end-accept

perform TEST-ASCII

perform TEST-ENDIAN

set addr to address of buffer
set addr?2addr to address of addr

if len > O

* To show hex—address, reverse if Big-Little Endian

if is-big-endian-yes

set addrZaddr up by LENGTH OF addr

set addr2addr down by 1
end-if
move 1 to hex-line-pointer

perform varying byline from 1 by 1
until byline > LENGTH OF addr
set address of byte to addr2addr

perform calc-hex-value
if is-big-endian-yes
set addrZaddr down by 1
else
set addr2addr up by 1
end-if
end-perform
end-if

*

* Get and display characteristics and headline
accept extended-infos from environment ’OC_DUMP_EXT’

end-accept
if show-extended-infos
display ’ '/
end-display
if len > O
end-display

display 'Dump of memory beginning at Hex-address:

’

hex—-1line (1 : 3 % (byline - 1))

end-display
end-if
move len to len-display

display ’'Length of memory dump is:

end-display

if show-very-extended-infos
perform TEST-64bit
display ’'Program runs in '/

architecture ’ architecture.

"Char-set is '/

function trim (char-set)

end-display

len-display

’

’

display ’'Byte order is ’ endian-order

" endian.’
end-display
end-if
end-if
*
* Do we have anything to dump?
if len > O

286

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

* Ensure that the passed size is not too big
if len > 999998
move 999998 to len, len-display
display 'Warning, only the first '/

len-display ' Bytes are shown!’
end-display
end-if
display ’ '/

end-display
display ’'Offset '

"HEX-—- -—— —— -5 —— —— —— —— 10 '
r_ . 15 N ’
4 4
" CHARS———-1--—--5-'
end-display
else
display ’ '/

end-display
display ’'Nothing to dump.’
end-display

end-if

continue.
ex. exit.

TEST-ASCII SECTION.
*Function: Discover 1f running Ascii or Ebcdic
00.
evaluate space
when x’ 20’

set is-ascii to true
when x’40’
set is-ebdic to true

when other
set is-unknown to true
end-evaluate

continue.
ex. exit.

TEST-64BIT SECTION.
*Function: Discover if running 32/64 bit
00.
* Longer pointers in 64-bit architecture
if function length (addr) <= 4
set 1s-32-bit to true
else
set 1is-64-bit to true
end-if

continue.
ex. exit.

TEST-ENDIAN SECTION.

00.

* Number-bytes are shuffled in Big-Little endian
move 128 to byline
set address of byte to address of byline
if function ord(byte) > 0

30.3.

5.3 What is CBL_OC_DUMP?

287

OpenCOBOL FAQ, Release 1.1

set is-big-endian-yes to true
else

set is-big-endian-no to true
end-if

continue.
ex. exit.

end program CBIL_OC_DUMP.

Example displays:
Alpha literal Dump

Offs HEX-- -- -= 5- —— —= —= —— 10 —= —= —— —— 15 -— CHARS———-1----5-
0000 61 62 63 64 65 66 67 68 69 6a 6b 6¢c 6d 6f 70 71 abcdefghijklmopg
0016 72 P

Integer Dump: +0000000123

Offs HEX-—- -- -— 5- —— —— —— —— 10 —= —= —— —— 15 -— CHARS————-1----5-
0000 7b 00 00 00 e

Or with OC_DUMP_EXT enviroment variable set to Y:

Numeric Literal Dump: O

Dump of memory beginning at Hex-address: bf 80 fc e4
Program runs in 32-bit architecture. Char-set is ASCII
Byte order is Big-Little endian.

Offs HEX-- —— —-— 5- —— —— —— —— 10 —— —— —— —— 15 —— CHARS-——-1--—-5-
0000 00 e e

30.3.1 5.3.1 Update to OC_CBL_DUMP
human posted a new version that displays the dump upon SYSERR. Goes to show the activity that can spring forth
from a keen and engaged community.

Edit 19-Oct-2010: Put all dump-outputs to syserr. Removed unused paragraphs and minor beauty changes.
OCOBOL >>SOURCE FORMAT IS FIXED

* Authors: Brian Tiffin, Asger Kjelstrup, Simon Sobisch

* Date: 19-0ct-2010

* Purpose: Hex Dump display

* Tectonics: cobc —c CBL_OC_DUMP.cob

* Usage: export OC_DUMP_EXT=1 for explanatory text on dumps
* (memory address and dump length)

* export OC_DUMP_EXT=Y for extended explanatory text
* (architecture and endian-order)

IDENTIFICATION DIVISION.

PROGRAM-ID. CBIL_OC_DUMP.

*

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

*

DATA DIVISION.

WORKING-STORAGE SECTION.

77 addr usage pointer.

288 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

77 addr2addr usage pointer.
77 counter pic 999999 usage comp-5.
77 byline pic 999 usage comp-5.
77 offset pic 999999.
01 some pic 999 usage comp-5.
88 some—-is—-printable-iso088591
values 32 thru 126, 160 thru 255.
88 some-is-printable-ebcdic
values 64, 65, 74 thru 80, 90 thru 97,
106 thru 111, 121 thru 127, 129 thru 137, 143,
145 thru 153, 159, 161 thru 169, 176,
186 thru 188, 192 thru 201, 208 thru 217, 224,
226 thru 233, 240 thru 249.
77 high-var pic 99 usage comp-5.
77 low-var pic 99 usage comp-5.
*
01 char-set pic x(06).
88 is-ascii value 'ASCII’.
88 is-ebdic value 'EBCDIC’.
88 is—-unknown value '7?’.
01 architecture pic x(06) .
88 is-32-bit value ’'32-bit’.
88 is-64-bit value ’'64-bit’.
01 endian-order pic x(10).
88 is-big-endian-no value ’'Little-Big’.
88 is-big-endian-yes wvalue ’'Big-Little’.
*
77 hex-line pic x(48).
77 hex-line-pointer pic 9(02) value 1.
*
77 show pic x(16).
77 dots pic x value ' .’
77 dump-dots pic x.
*
77 hex-digit pic x(16) value ’'0123456789abcdef’.
01 extended-infos pic x.
88 show-extended-infos values 17, 2", 'Y", 'y’'.
88 show-very-extended-infos wvalues ’'2’, 'Y’", ’'y’.
*
77 len pic 999999 usage comp-5.
77 len-display pic 999999.
*
LINKAGE SECTION.
01 buffer pic x any length.
77 byte pic x

PROCEDURE DIVISION USING buffer.
*
*MAIN SECTION.
*x00.
perform starting-address

perform varying counter from 0 by 16
until counter >= len
move counter to offset
move spaces to hex-line, show
move -’/ to hex-1line (24:01)
move 1 to hex-line-pointer

perform varying byline from 1 by 1

30.3. 5.3 What is CBL_OC_DUMP? 289

OpenCOBOL FAQ, Release 1.1

until byline > 16
if (counter + byline) > len
if byline < 9
move space to hex-line (24:01)
end-if
inspect show (byline:) replacing all spaces by dots
exit perform
else
move buffer (counter + byline : 1) to byte
perform calc-hex-value
if ((some-is-printable-1s088591 and is—-ascii) or
(some—-is-printable—-ebcdic and is—-ebdic))
move byte to show (byline:l)
else
move dots to show (byline:l)
end-if
end-if
end-perform
display offset ’ / hex-line ’ ' show
upon SYSERR
end-display
end-perform
display ' '/
upon SYSERR
end-display

exit program.

CALC-HEX-VALUE SECTION.
*00.
subtract 1 from function ord(byte) giving some
end-subtract
divide some by 16 giving high-var remainder low-var
end-divide
string hex-digit (high-var + 1:1)
hex-digit (low-var + 1:1)
space
delimited by size
into hex-line
with pointer hex-line-pointer
end-string

exit section.

STARTING-ADDRESS SECTION.
*x00.
* Get the length of the transmitted buffer
CALL ’'C$SPARAMSIZE’ USING 1
GIVING len
END-CALL
+* If wanted, change the dots to something different than points
accept dump-dots from environment ’OC_DUMP_DOTS’
not on exception
move dump-dots to dots
end-accept

perform TEST-ASCII
perform TEST-ENDIAN
set addr to address of buffer

290 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

set addr2addr to address of addr

if len > 0
* To show hex-address, reverse if Big-Little Endian

if is-big-endian-yes
set addrZaddr up by LENGTH OF addr
set addr2addr down by 1

end-if

move 1 to hex—line-pointer

perform varying byline from 1 by 1

until byline > LENGTH OF addr
set address of byte to addr2addr
perform calc-hex-value
if is-big-endian-yes
set addrZaddr down by 1

else
set addrZaddr up
end-if
end-perform
end-if

*

by 1

* Get and display characteristics and headline
accept extended-infos from environment ’'OC_DUMP_EXT’

end-accept
if show-extended-infos
display ' '/
upon SYSERR
end-display
if len > 0

display ’'Dump of memory beginning at Hex-address:
hex-1line (1
upon SYSERR

end-display
end-if

move len to len-display

14

3 x (byline - 1))

display ’'Length of memory dump is: ’ len-display

upon SYSERR
end-display

if show-very-extended-infos

perform TEST-64bit

display ’'Program runs in '/

architecture
"Char-set is

" architecture. ’

14

function trim (char-set) 7.’

upon SYSERR
end-display

display ’'Byte order is ' endian-order

’ endian.’
upon SYSERR
end-display
end-if
end-if
*
* Do we have anything to dump?
if len > O

* Ensure that the passed size is not too big

if len > 999998
move 999998 to len,

len-display

display 'Warning, only the first '’

30.3. 5.3 What is CBL_OC_DUMP?

291

OpenCOBOL FAQ, Release 1.1

len-display ' Bytes are shown!’
upon SYSERR
end-display
end-if
display ' '/
upon SYSERR
end-display
display ’'Offset ’
"HEX-- —— —— =5 ——= —— —— —— 10 '
r _ . 15 PR 4
' CHARS———--1--—-5-"'
upon SYSERR
end-display
else
display ’ '/
upon SYSERR
end-display
display ’'Nothing to dump.’
upon SYSERR
end-display
end-if

exit section.

TEST-ASCII SECTION.
*Function: Discover 1f running Ascii or Ebcdic
*00.
evaluate space
when x’ 20’

set is-ascii to true
when x’40’
set is-ebdic to true

when other
set is-unknown to true
end-evaluate

exit section.

TEST-64BIT SECTION.
+Function: Discover 1if running 32/64 bit
*x00.
* Longer pointers in 64-bit architecture
if function length (addr) <= 4
set 1s-32-bit to true
else
set 1s-64-bit to true
end-if

exit section.

TEST-ENDIAN SECTION.
*x00.
* Number-bytes are shuffled in Big-Little endian
move 128 to byline
set address of byte to address of byline
if function ord(byte) > 0
set is-big-endian-yes to true
else

292

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

set is-big-endian-no to true
end-if

exit section.

30.4 5.4 Does OpenCOBOL support any SQL databases?

Yes. There are embedded SQL engines for OpenCOBOL and PostgreSQL, Oracle, and Firebird.

30.4.1 5.4.1 OCESQL

Brought to us by the developers behind the Open Source COBOL Consortium in Japan. It may require a pass through
Google Translate, but see

http://www.osscons.jp/osscobol/download/

and look to DB interface tool (Open COBOL ESQL) v1.0.0

Coded for . /configure; make; make check && sudo make install
Will require PostgreSQL as well as the development headers.

While you on the site, you may want to look at the UTF-8 and SJIS character set versions of the OpenCOBOL compiler.

30.4.2 5.4.2 Firebird gpre

The good folk at IBPheonix have modified the Firebird gpre COBOL preprocessor slightly and it now integrates well
with OpenCOBOL. The Firebird database has been in use in production (orginally as InterBase) since 1981. Firebird
started with a fork of the open source InterBase 6.0. Instructions on getting the COBOL gpre command to link with
embedded Firebird is documented at http://www.ibphoenix.com/resources/documents/how_to/doc_382

30.4.3 5.4.3 Oracle

Oracle’s procob preprocessor generates code that can be compiled with OpenCOBOL

* as reported on opencobol.org the procob 10.2 Oracle preprocessor produces code that compiles and executes
just fine with OpenCOBOL 1.1 See note about data sizes and the binary-size: configuration below.

30.44 5.4.4 Other SQL engines

Along with the OpenCOBOL specific ocesql pre processor, procob and gpre, there are are at least two usable
CALL extensions. There are currently (February 2013) quite a few active developments for easing SQL engine access.

» There are workable prototypes for SQLite at ocshell.c
— with a sample usage program at sqlscreen.cob
— and supporting documentation at sqlscreen.html

¢ The SQLite extension comes in two flavours; a shell mode discussed above and a direct API interface housed at
ocsqlite.c

30.4. 5.4 Does OpenCOBOL support any SQL databases? 293

http://www.osscons.jp/osscobol/download/
http://www.ibphoenix.com/resources/documents/how_to/doc_382
http://opencobol.org/
http://opencobol.add1tocobol.com/ocshell.c
http://opencobol.add1tocobol.com/sqlscreen.cob
http://opencobol.add1tocobol.com/sqlscreen.html
http://oldsite.add1tocobol.com/tiki-list_file_gallery.php?galleryId=12

OpenCOBOL FAQ, Release 1.1

A libdbi (generic database access) extension is also available. See cobdbi for full details.
* Efforts toward providing a preprocessor for EXEC are underway.
 Jim Currey’s team has kindly posted an ease-of-use MySQL preprocessing layer.
— http://svn.wp0.org/add1/libraries/mysql4 Windows4OpenCobol/
* Rumours of a potential Postgres layer have also been heard.
— Not a rumour anymore. Work on a nicely complete PostgreSQL binding was posted by gchudyk to
— http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=868&forum=1&post_id=4142

* AND as a thing to watch for, one of the good people of the OpenCOBOL communinity has written a layer that
converts READ and WRITE verbage to SQL calls at run time. More on this as it progresses.

30.4.5 5.4.5 Oracle procob and binary data sizes

Details of the configuration setting for proper Oracle procob processing.

From Angus on opencobol.org
Hi

I had some trouble with Oracle procob 10.2 and OpenCobol 1.1 with std=mf.
For PIC S9(2) COMP, procob seems to use 2 bytes, and OpenCobol only one.

It doesn’t work well. It comes from the parameter binary-size in the
mf.conf, which seems to tell to opencobol the larger of comp type

I modify to binary-size: 2-4-8 and it works (same as the mvs.conf)

Our application works with Microfocus / Oracle, and microfocus use 2 bytes,
like Oracle. Perhaps because we have the mvs toggle

Except for this thing, opencobol and oracle work like a charm,
on a debian 32bit.

Regards,
Angus

30.4.6 5.4.6 Direct PostgreSQL Sample

Nowhere near as complete as the binding that Gerald later posted to opencobol.org, the example below was a starting
point.

See http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=868 &forum=1#forumpost4 142
Note that the PostgreSQL runtime library is libpq, ending in g not g.

OCOBOL*> AA A AL A AL A AL AL A A A A A A A A A A A A A A A A A d Ak h Ak

x> Author: Brian Tiffin
x> Date: 20091129
*> Purpose: PostgreSQL connection test

*> Tectonics: cobc -x —lpg pgcob.cob

D kA kA kA A A A Ak A h A h b Ak A b b Ak A bbbk bbb Ak bbbk bk b kb bk b h sk kb h bk kb h ok kb ok Ak ko
identification division.

program-id. pgcob.

data division.

working-storage section.
01 pgconn usage pointer.
0l pgres usage pointer.

294 Chapter 30. 5 Features and extensions

http://oldsite.add1tocobol.com/tiki-read_article.php?articleId=1
http://svn.wp0.org/add1/libraries/mysql4Windows4OpenCobol/
http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=868&forum=1&post_id=4142
http://opencobol.org/
http://opencobol.org/
http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=868&forum=1#forumpost4142

OpenCOBOL FAQ, Release 1.1

0l resptr usage pointer.

01 resstr pic x(80) based.
01 result usage binary-long.
01 answer pic x(80).

D> kA kA ok ok Ak Ak kA k ok kA h kb h ok kb kb sk ok kb ok ok b ok ok ok ok b ok ok ok ok b ok ok ok ok b ok ok b ok ok ok ok ok ok ok A ok kA
procedure division.
display "Before connect:" pgconn end-display

call "PQconnectdb" using
by reference "dbname = postgres" & x"00"
returning pgconn

end-call

display "After connect: " pgconn end-display

call "PQstatus" using by value pgconn returning result end-call
display "Status: " result end-display

call "PQuser" using by value pgconn returning resptr end-call

set address of resstr to resptr
string resstr delimited by x"00" into answer end-string
display "User: " function trim(answer) end-display

display "call PQexec" end-display

call "PQexec" using
by value pgconn
by reference "select version();" & x"00"
returning pgres

end-call

display pgres end-display

*> Pull out a result. row 0, field 0 <%
call "PQgetvalue" using
by value pgres
by value 0
by value 0
returning resptr
end-call
set address of resstr to resptr
string resstr delimited by x"00" into answer end-string
display "Version: " answer end-display

call "PQfinish" using by value pgconn returning null end-call
display "After finish: " pgconn end-display

call "PQstatus" using by value pgconn returning result end-call
display "Status: " result end-display

x> this will now return garbage <x

call "PQuser" using by value pgconn returning resptr end-call
set address of resstr to resptr

string resstr delimited by x"00" into answer end-string
display "User after: " function trim(answer) end-display

goback.
end program pgcob.

Run from a user account that has default PostgreSQL credentials:

30.4. 5.4 Does OpenCOBOL support any SQL databases? 295

OpenCOBOL FAQ, Release 1.1

$ cobc -x -1lpg pgcob.cob
$./pgcob

Before connect:0x00000000
After connect: 0x086713e8

Status: +0000000000

User: brian

call PQexec

0x08671a28

Version: PostgreSQL 8.3.7 on i486-pc-linux-gnu, compiled by GCC gcc-4.3.real (Debian 4.3.
After finish: 0x086713e8

Status: +0000000001

User after: PostgreSQL 8.3.7 on i486-pc-linux-gnu, compiled by GCC gcc-4.3.real (Debian 4.3.

Note that User after is not the valid answer, shown on purpose. The connection had been closed and the status was
correctly reported as non-zero, being an error, but this example continued through as a demonstration.

30.5 5.5 Does OpenCOBOL support ISAM?

Yes. The official release used Berkeley DB, but there are also experimental configurations of the compiler that use
VBISAM, CISAM, DISAM or other external handlers. See What are the configure options available for building
OpenCOBOL? for more details about these options. The rest of this entry assumes the default Berkeley database.

ISAM is an acronymn for Indexed Sequential Access Method.
OpenCOBOL has fairly full support of all standard specified ISAM compile and runtime semantics.

For example
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok b ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok ok A

*><h ================
>< :Author: Brian Tiffin
*><#+ :Date: 17-Feb-2009
>< :Purpose: Fun with Indexed IO routines

*><# :Tectonics: cobc —-x indexing.cob

D kA kA A A A A A A A A h A b bk hA kA b b Ak A bbbk bbb Ak b kb bk b kb bk b h sk kb h bk kb h ok kb ok Ak ko
identification division.

program-id. indexing.

environment division.
configuration section.

input-output section.
file-control.
select optional indexing
assign to "indexing.dat"
organization is indexed
access mode is dynamic
record key is keyfield of indexing-record
alternate record key is splitkey of indexing-record
with duplicates

x> %% OpenCOBOL does not yet support split keys xx*
x> alternate record key 1s newkey

*> source 1is first-part of indexing-record

*> last-part of indexing-record

296 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

*> with duplicates

data division.

file section.

fd indexing.

01 indexing-record.

03 keyfield pic x(8).
03 splitkey.

05 first-part pic 99.

05 middle-part pic x.

05 last-part pic 99.
03 data-part pic x(54).

working-storage section.
01 display-record.

03 filler pic x(4) value spaces.
03 keyfield pic x(8).
03 filler pic xx value spaces.
03 splitkey.
05 first-part pic z9.
05 filler pic x value space.
05 middle-part pic x.
05 filler pic xx value all "+".
05 last-part pic z9.
03 filler pic x(4) value all "-".
03 data-part pic x(54).

*> control break
01 oldkey pic 99x99.

*> In a real app this should well be two separate flags

01 control-flag pic x.
88 no-more-duplicates value high-value
when set to false is low-value.
88 no-more-records value high-value
when set to false is low-value.

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A

procedure division.

*> Open optional index file for read write
open i-o indexing

x> populate a sample database

move "1234567800a0lsome 12345678 data here" to indexing-record
perform write-indexing-record

move "8765432100a0lsome 87654321 data here" to indexing-record
perform write-indexing-record

move "1234876500a0lsome 12348765 data here" to indexing-record
perform write-indexing-record

move "8765123400a0lsome 87651234 data here" to indexing-record
perform write-indexing-record

move "1234567900b02some 12345679 data here" to indexing-record
perform write-indexing-record
move "9765432100b02some 97654321 data here" to indexing-record
perform write-indexing-record
move "1234976500b02some 12349765 data here" to indexing-record
perform write-indexing-record

30.5. 5.5 Does OpenCOBOL support ISAM? 297

OpenCOBOL FAQ, Release 1.1

move "9765123400b02some 97651234 data here" to indexing-record
perform write-indexing-record

move "1234568900cl13some 12345689 data here" to indexing-record
perform write-indexing-record
move "9865432100cl3some 98654321 data here" to indexing-record
perform write-indexing-record
move "1234986500cl3some 12349865 data here" to indexing-record
perform write-indexing-record
move "9865123400cl13some 98651234 data here" to indexing-record
perform write-indexing-record

*> close it ... not necessary, but for the example
close indexing

*> clear the record space for this example
move spaces to indexing-record

*> open the data file again
open i-o indexing

x> read all the duplicate 00b02 keys

move 00 to first-part of indexing-record
move "b" to middle-part of indexing-record
move 02 to last-part of indexing-record

*> using read key and then next key / last key compare
set no-more-duplicates to false
perform read-indexing-record
perform read-next-record
until no-more-duplicates

x> read by key of reference ... the cool stuff
move 00 to first-part of indexing-record

move "a" to middle-part of indexing-record
move 02 to last-part of indexing-record

*> using start and read next
set no-more-records to false
perform start-at-key
perform read-next-by-key
until no-more-records

x> read by primary key of reference
move "87654321" to keyfield of indexing-record

*>

set no-more-records to false

perform start-prime-key

perform read-previous-by-key
until no-more-records

*> and with that we are done with indexing sample
close indexing

goback.

KDk k ok

*><x Write paragraph

298 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

write-indexing-record.
write indexing-record
invalid key
display
"rewrite key: " keyfield of indexing-record
end-display
rewrite indexing-record
invalid key
display
"really bad key: "
keyfield of indexing-record
end-display
end-rewrite
end-write

*><+ read by alternate key paragraph
read—-indexing-record.
display "Reading: " splitkey of indexing-record end-display
read indexing key is splitkey of indexing-record
invalid key
display
"bad read key: " splitkey of indexing-record
end-display
set no-more-duplicates to true
end-read

*><x read next sequential paragraph

read—-next-record.
move corresponding indexing-record to display-record
display display-record end-display
move splitkey of indexing-record to oldkey

read indexing next record
at end set no-more-duplicates to true
not at end
if oldkey not equal splitkey of indexing-record
set no-more-duplicates to true
end-if
end-read

*><+ start primary key of reference paragraph
start-prime-key.
display "Prime < " keyfield of indexing-record end-display
start indexing
key is less than
keyfield of indexing-record
invalid key
display
"bad start: " keyfield of indexing-record
end-display
set no-more-records to true
not invalid key
read indexing previous record
at end set no-more-records to true
end-read
end-start

30.5. 5.5 Does OpenCOBOL support ISAM? 299

OpenCOBOL FAQ, Release 1.1

*><x read previous by key of reference paragraph
read-previous-by-key.
move corresponding indexing-record to display-record

display display-record end-display

read indexing previous record

at end set no-more-records to

end-re

ad

true

*><x start alternate key of reference paragraph

start-at-k

display "Seeking >= "

ey.

start indexing

key is greater than or equal to
splitkey of indexing-record

invalid key
display
"bad start: " splitkey of indexing-record
end-display

not

end-st

*><x read next by key of reference paragraph

set no-more-records to true

invalid key
read indexing next record
at end set no-more-records to true
end-read

art

read-next-by-key.
move corresponding indexing-record to display-record

display display-record end-display

read indexing next record
at end set no-more-records to true

end-re

ad

end program indexing.

*><

*><x Last Update:

which outputs:

Reading: 00b02
12345679 0
97654321 0
12349765 0
97651234 0
12345679 0
97654321 0
12349765 0
97651234 0
12345679 0
97654321 0
12349765 0
97651234 0

Seeking >= 00a02
12345679 0
97654321 0

b++
b++
b++
b++
b++
b++
b++
b++
b++
b++
b++
b++

b++
b++

20090220
2—-———-some 12345679
2-———-some 97654321
2—-———some 12349765
2—-———some 97651234
2—-———some 12345679
2—-———some 97654321
2—-———some 12349765
2-———-some 97651234
2—-———some 12345679
2—-———-some 97654321
2—-———some 12349765
2—-———some 97651234
2—-———some 12345679
2—-———some 97654321

data
data
data
data
data
data
data
data
data
data
data
data

data
data

here
here
here
here
here
here
here
here
here
here
here
here

here
here

splitkey of indexing-record end-display

300

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

12349765
97651234
12345679
97654321
12349765
97651234
12345679
97654321
12349765
97651234
12345689
98654321
12349865
98651234
12345689
98654321
12349865
98651234
12345689
98654321
12349865
98651234

Prime < 8765432

87651234
12349865
12349765
12348765
12345689
12345679
12345678

O O O OO OO OOOCOOOOOOOOOOOOOLOOLOOOOoOOoOOoOOo

b++ 2-——-some
b++ 2-—-—-some
b++ 2-——-some
b++ 2-——-some
b++ 2-—-—-some
b++ 2-———some
b++ 2-——--some
b++ 2-—-—-some
b++ 2—-———some
b++ 2-——-some
ct+13—-———-some
c++13—-———-some
c++13-———-some
ct+13—-———-some
c++13————some
c++13-———-some
ct+13-———-some
c++13————some
ct++13-——-—-some
ct+13-———-some
c++13————some
ct++13-——-—-some
a++ l-—-——-some
ct++13-——-—-some
b++ 2-—-—-some
a++ l-—-——-some
ct+13-——-—some
b++ 2-——-some
a++ l-—-——-some

12349765
97651234
12345679
97654321
12349765
97651234
12345679
97654321
12349765
97651234
12345689
98654321
12349865
98651234
12345689
98654321
12349865
98651234
12345689
98654321
12349865
98651234

87651234
12349865
12349765
12348765
12345689
12345679
12345678

data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data

data
data
data
data
data
data
data

here
here
here
here
here
here
here
here
here
here
here
here
here
here
here
here
here
here
here
here
here
here

here
here
here
here
here
here
here

on any first runs, where indexing.dat does not exist. Subsequent runs have the same output with:

rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite
rewrite

key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:
key:

12345678
87654321
12348765
87651234
12345679
97654321
12349765
97651234
12345689
98654321
12349865
98651234

prepended, as the WRITE INVALID KEY clause triggers a REWRITE to allow overwriting key and data.

30.5.1 5.5.1 FILE STATUS

Historically, the condition of a COBOL I/O operation is set in an identifier specified in a FILE STATUS IS clause.
John Ellis did us the favour of codifying the OpenCOBOL FILE STATUS codes See ISAM for the details.

30.5. 5.5 Does OpenCOBOL support ISAM?

301

OpenCOBOL FAQ, Release 1.1

30.6 5.6 Does OpenCOBOL support modules?

Yes. Quite nicely in fact. Dynamically! COBOL modules, and object files of many other languages are linkable.
As OpenCOBOL uses intermediate C, linkage to other languages is well supported across many platforms. The
OpenCOBOL CALL instruction maps COBOL USAGE to many common C stack frame data representations.

Multipart, complex system development is well integrated in the OpenCOBOL model.
> cobc -b hello.cob goodbye.cob
Combines both source files into a single dynamically loadable module. Example produces hello.so.

Using the -1 link library option, OpenCOBOL has access to most shared libraries supported on its platforms.

S cobc —-x —-lcurl showcurl.cob

Will link the /ust/lib/libcurl.so (from the cURL project) to showcurl. The OpenCOBOL CALL verb will use this linked
library to resolve calls at runtime.

Large scale systems are at the heart of COBOL development and OpenCOBOL is no exception.
For more information, see What is COB_PRE_LOAD?.

30.7 5.7 Whatis COB_PRE_LOAD?

COB_PRE_LOAD is an environment variable that controls what dynamic link modules are included in a run.

For example:

> cobc occurl.c
S cobc occgi.c
S cobc -x myprog.cob
$ export COB_PRE_LOAD=occurl:occgi
. /myprog
That will allow the OpenCOBOL runtime link resolver to find the entry point for CALL “CBL_OC_CURL_INIT”
in the occurl.so module. Note: the modules listed in the COB_PRE_LOAD environment variable DO NOT have
extensions. OpenCOBOL will do the right thing on the various platforms.

If the DSO files are not in the current working directory along with the executable, the COB_LIBRARY_PATH can
be set to find them.

See What is COB_LIBRARY_PATH? for information on setting the module search path.

30.8 5.8 What is the OpenCOBOL LINKAGE SECTION for?

Argument passing in COBOL is normally accomplished through the LINKAGE SECTION. This section does not
allocate or initialize memory as would definitions in the WORKING-STORAGE SECTION.

Care must be taken to inform COBOL of the actual source address of these variables before use. Influences CHAIN-
ING and USING phrases. See CALL for more details.

30.9 5.9 What does the -fstatic-linkage OpenCOBOL compiler option do?

Under normal conditions, the LINKAGE SECTION is unallocated and uninitialized. When a LINKAGE SECTION
variable, that is not part of the USING phrase (not a named calling argument), any memory that has been addressed
becomes unaddressable across calls. -fstatic-linkage creates static addressing to the LINKAGE SECTION.

302 Chapter 30. 5 Features and extensions

http://en.wikipedia.org/wiki/COBOL

OpenCOBOL FAQ, Release 1.1

From [Roger]:

This relates to LINKAGE items that are NOT referred

to in the USING phrase of the PROCEDURE DIVISION.

It also only has relevance when the program is CALL’ed
from another prog.

This means that the addressability of these items must

be programmed (usually with SET ADDRESS) before reference.

Per default, the item loses its addressability on exit
from the program. This option causes the module to retain
the item’s address between CALL invocations of the program.

With some rumours that this may become the default in future releases of OpenCOBOL, and the -fstatic-linkage option
may be deprecated.

30.10 5.10 Does OpenCOBOL support Message Queues?

Yes, but not out of the box. A linkable POSIX message queue layer is available.

/* OpenCOBOL access to POSIX Message Queues */
/% Author: Brian Tiffin */
/* Date: August, 2008 */
/+ Build: gcc —-c ocmg.c */
/% Usage: cobc -x —-lrt program.cob ocmg.o */
#include <fcntl.h> /* For O_x constants x/

#include <sys/stat.h> /% For mode constants */

#include <errno.h> /% Access to error values #*/
#include <mqueue.h> /+ The message queues #*/

#include <signal.h> /+ for notification */

#include <time.h> /+ for the timed versions x/
#include <stdio.h>

#include <string.h> /* For strerror x/

#include <libcob.h> /+ for cob_resolve */

/+ Forward declarations #*/
static void ocmg_handler (int, siginfo_t x, wvoid «);
static void (*MQHANDLER) (int »*mgid);

/#* Return C runtime global errno x/
int ERRORNUMBER () {
return errno;

/#* Load a COBOL field with an error string #*/
int ERRORSTRING (char xerrbuff, int buflen) {
void xtemperr;

temperr = strerror (errno);

memcpy ((void *)errbuff, temperr, buflen);
return strlen (temperr);

/%

/* Open Message Queue #*/

30.10. 5.10 Does OpenCOBOL support Message Queues? 303

OpenCOBOL FAQ, Release 1.1

int MQOPEN (char *mgname, int oflags) {
mgd_t mgres;

errno = 0;
mgres = mg_open (mgname, oflags);
return (int)mgres;

/+ Creating a queue requires two extra arguments, permissions and attributes x/
int MQCREATE (char smgname, int oflags, int perms, char smgattr) {
mgd_t mgres;

errno = 0;
mgres = mqg_open (mgname, oflags, (mode_t)perms, (struct mg_attr »)mgattr);
return (int)mgres;

/+ Get current queue attributes #*/
int MQOGETATTR (int mgid, char smgattr) {
mgd_t mgres;

errno = 0;
mgres = mqg_getattr((mgd t)mgid, (struct mg_attr *)mgattr);
return (int)mgres;

/% Set current queue attributes */
/* only accepts mgflags of 0 or MQO-NONBLOCK once created #*/
int MQSETATTR (int mgid, char smgattr, char xoldattr) {

mgd_t mgres;

errno = 0;
mgres = mqg_setattr((mgd_t)mgid, (struct mg_attr *)mgattr, (struct mg_attr x)oldattr);
return (int)mgres;

/* Send a message to the queue #*/
int MQSEND (int mgid, char smessage, int length, unsigned int mgprio) {
mgd_t mgres;

errno = 0;
mgres = mqg_send((mgd_t)mgid, message, (size_t)length, mgprio);
return (int)mgres;

/% Read the highest priority message #*/
int MQRECEIVE (int mgid, char smsgbuf, int buflen, int *retprio) {
ssize_t retlen;

errno = 0;
retlen = mg_receive ((mgd_t)mgid, msgbuf, buflen, retprio);
return (int)retlen;

/* Timeout send =/
int MQTIMEDSEND (int mgid, char smessage, int length, unsigned int mgprio, int secs, long nanos)

mgd_t mgres;
struct timespec mgtimer;

304 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

struct timeval curtime;

/* Expect seconds and nanos to wait, not absolute. Add the OpenCOBOL values #*/
gettimeofday (&curtime, NULL) ;

mgtimer.tv_sec = curtime.tv_sec + (time_t)secs;

mgtimer.tv_nsec = nanos;

errno = 0;

mgres = mg_timedsend((mgd_t)mgid, message, (size_t)length, mgprio, é&mgtimer);

return (int)mgres;

/% Read the highest priority message #*/

int MQTIMEDRECEIVE (int mgid, char smsgbuf, int buflen, int *retprio, int secs, long nanos) {
ssize t retlen;
struct timespec mgtimer;

struct timeval curtime;

/+ Expect seconds and nanos to wait, not absolute. Add the OpenCOBOL values */
gettimeofday (&curtime, NULL) ;

mgtimer.tv_sec = curtime.tv_sec + (time_t)secs;
mgtimer.tv_nsec = nanos;
errno = 0;

retlen = mg_timedreceive ((mgd_t)mgid, msgbuf, buflen, retprio, &mgtimer);
return (int)retlen;

/+ Notify of new message written to queue */
int MONOTIFY (int mgid, char =xprocedure) {
struct sigevent ocsigevent;
struct sigaction ocsigaction;

/#* Install signal handler for the notify signal — fill in a
* sigaction structure and pass it to sigaction(). Because the
* handler needs the siginfo structure as an argument, the
* SA_SIGINFO flag is set in sa_flags.
*/
ocsigaction.sa_sigaction = ocmg_handler;
ocsigaction.sa_flags = SA_SIGINFO;
sigemptyset (&ocsigaction.sa_mask);

if (sigaction(SIGUSR1l, &ocsigaction, NULL) == -1) {
fprintf (stderr, "%s\n", "Error posting sigaction");
return -1;

/+ Set up notification: fill in a sigevent structure and pass it
* to mgq_notify (). The queue ID is passed as an argument to the
* signal handler.

*/

ocsigevent.sigev_signo SIGUSRL;

ocsigevent.sigev_notify = SIGEV_SIGNAL;

ocsigevent.sigev_value.sival_int = (int)mgid;

if (mg_notify((mgd _t)mgid, &ocsigevent) == -1) {
fprintf (stderr, "%s\n", "Error posting notify");

30.10. 5.10 Does OpenCOBOL support Message Queues? 305

OpenCOBOL FAQ, Release 1.1

return -1;

}

return 0O;

/% Close a queue */
int MQCLOSE (int mgid) {
mgd_t mgres;

errno = 0;
mgres = mqg_close((mgd_t)mgid);
return (int)mgres;

/* Unlink a queue #*/
int MQUNLINK (char smgname) {
mgd_t mgres;

errno = 0;
mgres = mg_unlink (mgname) ;
return (int)mgres;

/#* The signal handling section */

/* signal number */

/#* signal information #*/

/+ context unused (required by posix) */

static void ocmg_handler (int sig, siginfo_t *pInfo, wvoid »pSigContext) {
struct sigevent ocnotify;
mgd_t mgid;

/+ Get the ID of the message queue out of the siginfo structure. */
mgid = (mgd_t) pInfo->si_value.sival_int;

/#+ The MQPROCESSOR is a hardcoded OpenCOBOL resolvable module name */
/% It must accept an mgd_t pointer #/
cob_init (0, NULL);
MQHANDLER = cob_resolve ("MOPROCESSOR") ;
if (MQHANDLER == NULL) {
/+ What to do here? x*/
fprintf (stderr, "%s\n", "Error resolving MQPROCESSOR");
return;

/+* Request notification again; it resets each time a notification
* signal goes out.
*/

ocnotify.sigev_signo = pInfo->si_signo;

ocnotify.sigev_value = pInfo->si_value;

ocnotify.sigev_notify = SIGEV_SIGNAL;

if (mg_notify(mgid, &ocnotify) == -1) {
/% What to do here? #*/
fprintf (stderr, "%s\n", "Error posting notify");
return;

/* Call the cobol module with the message queue id */
MQHANDLER (&mqgid) ;

306 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

return;

}
/Hxx/

With a sample of usage. Note the linkage of the rt.so realtime library.
OCOBOL >>SOURCE FORMAT IS FIXED

R R R B I i S I S R I S I I S S S S S e S I S S S b S S I b I b I b b S b S b S b S 2 S

*

*

*

*

*

Author: Brian Tiffin
Date: August 2008
Purpose:

Tectonics: gcc —c ocmg.cC
cobc -Wall -x —-lrt mgsample.cob ocmg.o

R b b i i g b b b i b b b b b b b b b b i b b i b b b b b b i b b i b S i b b i b b b b i b i b i b i

identification division.

program-id. mgsample.

data division.
working-storage section.
* Constants for the Open Flags

Demonstration of OpenCOBOL message queues

01 MQO-RDONLY constant as 0.

01 MQO-WRONLY constant as 1.

01 MQO-RDWR constant as 2.

01 MQO-CREAT constant as 64.

01 MQO-EXCL constant as 128.

01 MQO-NONBLOCK constant as 2048.

* Constants for the protection/permission bits
01 MQS-IREAD constant as 256.

01 MQOS-IWRITE constant as 128.

* Need a better way of displaying newlines
newline pic x value x’0a’.

* Message Queues return an ID,

01

maps to int

01 mgid usage binary-long.
01 mgres usage binary-long.
* Queue names end up in an mqueue virtual filesystem on GNU/Linux
01 mgname.
02 name-display pic x(5) value "/ocmg".
02 filler pic x value x’00’.
01 mgopenflags usage binary-long.
01 mgpermissions usage binary-long.
01 default-message pic x(20) value ’'OpenCOBOL is awesome’ .
01 user-message pic x(80).
01 send-length usage binary-long.
01 urgent-message pic x(20) value ’'Urgent OpenCOBOL msg’ .

* Data members for access to C global errno and error strings

01 errnumber usage binary-long.
01 errstr pic x(256).

* legend to use with the error reporting
01 operation pic x(7).

01 loopy pic 9.

* Debian GNU/Linux defaults to Message Queue entry limit of 8K

01
01

msgbuf pic x(8192).

msglen usage binary-long value 8192.

30.10. 5.10 Does OpenCOBOL support Message Queues?

307

OpenCOBOL FAQ, Release 1.1

* Priorities range from 0 to 31 on many systems, can be more

01 msgprio usage binary-long.
* MO attributes. See /usr/include/bits/mqueue.h
01 mgattr.
03 mgflags usage binary-long.
03 mgmaxmsg usage binary-long.
03 mamsgsize usage binary-long.
03 mgcurmsgs usage binary-long.
03 filler usage binary-long occurs 4 times.
01 oldattr.
03 mgflags usage binary-long.
03 mgmaxmsg usage binary-long.
03 magmsgsize usage binary-long.
03 mgcurmsgs usage binary-long.
03 filler usage binary-long occurs 4 times.

procedure division.
* The ocmg API support MQCREATE and MQOPEN.
* This example uses non blocking, non exclusive create
* read/write by owner and default attributes
compute

mgopenflags = MQO-RDWR + MQO-CREAT + MQO-NONBLOCK
end-compute.
compute

mgpermissions = MQS—-IREAD + MQS—-IWRITE
end-compute.

* Sample shows the two types of open, but only evaluates create

if zero = zero
call "MQCREATE" using mgname
by value mgopenflags
by wvalue mgpermissions
by value 0
returning mgid
end-call
else
call "MQOPEN" using mgname
by value mgopenflags
returning mgid
end-call
end-if.
move "create" to operation.
perform show-error.

+ Show the attributes after initial create
perform show-attributes.

* Register notification
call "MONOTIFY" using by wvalue mgid
mgname
returning mgres
end-call.
move "notify" to operation.
perform show-error.

* Create a temporary queue, will be removed on close
call "MQUNLINK" using mgname
* returning mqgres

*

end-call.

%

308 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

* move "unlink" to operation.
* perform show—-error.

* Use the command line arguments or a default message
accept user-message from command-line end-accept.
if user-message equal spaces
move default-message to user-message
end-if.
move function length
(function trim(user-message trailing))
to send-length.

* Queue up an urgent message (priority 31)

call "MQSEND" using by value mgid
by reference urgent-message
by value 20
by value 31

end-call.

move "send-31" to operation.

perform show-error.

* Queue up a low priority message (1)
call "MQSEND" using by value mgid
by reference user-message
by value send-length
by value 1
returning mgres
end-call.
move "send-1" to operation.
perform show-error.

* Queue up a middle priority message (16)
inspect urgent-message
replacing leading "Urgent" by "Middle".
call "MQSEND" using by value mgid
by reference urgent-message
by value 20
by value 16
returning mgres
end-call.
move "send-16" to operation.
perform show-error.

* Redisplay the queue attributes
perform show-attributes.

* Pull highest priority message off queue
call "MQRECEIVE" using by value mgid
by reference msgbuf
by value msglen
by reference msgprio
returning mgres
end-call.
display
newline "receive len: " mgres
end-display.
if mgres > 0
display
"priority 31 message: " msgbuf (l:mgres)

" prio: " msgprio

30.10. 5.10 Does OpenCOBOL support Message Queues? 309

OpenCOBOL FAQ, Release 1.1

end-display
end-if.
move "receive" to operation.
perform show-error.

* Pull the middling priority message off queue

call "MQRECEIVE" using by value mgid
by reference msgbuf
by value msglen
by reference msgprio
returning mgres
end-call.
display
newline
end-display.
if mgres > 0
display
"priority 16 message:
end-display
end-if.
move "receive" to operation.
perform show-error.

"receive len: " mgres " prio:

msgprio

" msgbuf (1l:mgres)

* %% INTENTIONAL ERROR msglen param too small x*x*

* Pull message off queue
call "MQRECEIVE" using by value mgid
by reference nmsgbuf
by value 1024
by reference msgprio
returning mgres
end-call.
display
newline
end-display.
if mgres > 0
display
"no message:
end-display
end-if.
move "receive" to operation.
perform show-error.

"receive len: " mgres " prio:

" msgbuf (1:mgres)

* Pull the low priority message off queue,
move MQO-NONBLOCK to mgflags of mgattr.
call "MQSETATTR" using by value mgid
by reference mgattr
by reference oldattr
returning mgres
end-call
move "setattr" to operation.
perform show-error.
perform show-attributes.

call "MQRECEIVE" using by value mgid
by reference msgbuf
by value msglen
by reference msgprio
returning mgres
end-call.

" msgprio

in blocking mode

310

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

display
newline "receive len: " mgres " prio: " msgprio
end-display.
if mgres > 0
display
"priority 1 message: " msgbuf (l:mgres)
end-display
end-if.
move "receive" to operation.
perform show-error.

perform varying loopy from 1 by 1
until loopy > 5
display "Sleeper call " loopy end-display
call "CBL_OC_NANOSLEEP" wusing 50000000000
returning mgres
end-call
end-perform.

* Close the queue. As it 1is set unlinked, it will be removed
call "MQCLOSE" using by value mgid
returning mgres
end-call.
move "close" to operation.
perform show-error.

* Create a temporary queue, will be removed on close
call "MQUNLINK" using mgname
returning mgres
end-call.
move "unlink" to operation.
perform show-error.

goback.

B i b b b b g b b b e b b b b b b i b i b b i
* Information display of the Message Queue attributes.
show—-attributes.
call "MQGETATTR" using by value mgid
by reference mgattr

returning mgres
end-call
move "getattr" to operation.
perform show-error.

+ Display the message queue attributes

display
name—-display " attributes:" newline
"flags: " mgflags of mgattr newline
"max msg: " mgmaxmsg of mgattr newline
"mgs size: " mgmsgsize of mgattr newline
"cur msgs: " mgcurmsgs of mgattr

end-display

* The C global errno error display paragraph
show—-error.
call "ERRORNUMBER" returning mgres end-call
if mgres > 0

30.10. 5.10 Does OpenCOBOL support Message Queues? 311

OpenCOBOL FAQ, Release 1.1

display
operation " errno: " mgres
end-display
call "ERRORSTRING" using errstr
by value length errstr
returning mgres end-call
if mgres > 0

display
" strerror: " errstr(l:mgres)
end-display
end-if

end-if
end program mgsample.

Kk Kk kb ok b ok b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok b ok ok ok ok

* Author: Brian Tiffin
* Date: August 2008
* Purpose: Demonstration of OpenCOBOL message queue notification

* Tectonics: gcc —-c ocmg.c

* cobc -Wall -x —-lrt mgsample.cob ocmg.o

Rk i b b b b g b b b i b b b b b g b b b b b b b b g b b b b g b b b b g b b b g g b b b g b b b b g b b b g g b b b b g g b b
identification division.

program-id. MQOSIGNAL.

data division.

working-storage section.

01 msgbuf pic x(8192).

01l msglen usage binary-long value 8192.
01 msgprio usage binary-long.

0l mgres wusage binary-long.

linkage section.
01l mgid usage binary-long.

procedure division using mgid.

display "in MQSIGNAL".
display "In the COBOL procedure with " mgid end-display.
perform

with test after

until mgres <= 0

call "MQRECEIVE" using by value mgid
by reference msgbuf
by wvalue msglen
by reference msgprio
returning mgres
end-call
display
"receive len: " mgres " prio: " msgprio
end-display
if mgres > 0
display
"priority 31 message: " msgbuf (l:mgres)
end-display
end-if
end-perform.

312 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

goback.

end program MOSIGNAL.

30.11 S5.11 Can OpenCOBOL interface with Lua?

Yes. Lua can be embedded in OpenCOBOL applications.
OCOBOL >>SOURCE FORMAT IS FIXED

*>< A ==========

*><+ OpenCOBOL Lua Interface

*>< ok =======================
*F>< K

*><% .. sidebar:: Contents
*><

*>< ok .. contents::

*>< :local:

*>< % :depth: 2

*>< %k :backlinks: entry
*>< A

*><# :Author:
>< :Date:

*><+ :Purpose:
>< :Rights:
*><

*>< A

*><+ :Tectonics:
*><

*>< A

*><+ :Requires:
*><# :Link:

*><+ :Thanks to:
*F><

*><

>< :Sources:
*F>< K

*><

*>< A

*F>< K

*><

Brian Tiffin
28-0ct-2008
interface to Lua scripting

/
/
/
/
/

/

Copyright 2008 Brian Tiffin

Licensed under the GNU General Public License

No warranty expressed or implied

cobc -c¢ -I/usr/include/lua5.1/ oclua.c

cobc -x —1luab.l1 luacaller.cob oclua.o

./ocdoc luacaller.cob oclua.rst oclua.html ocfaq.css

luab.1, 1libluab5.1, 1libluab.l-dev
http://www.lua.org

The Lua team, Pontifical Catholic University
of Rio de Janeiro in Brazil.
http://www.lua.org/authors.html

/

/
/
/
/

http://opencobol.addltocobol.com/luacaller.cob
http://opencobol.addltocobol.com/oclua.c
http://opencobol.addltocobol.com/oclua.lua
http://opencobol.addltocobol.com/oclua.rst
http://opencobol.addltocobol.com/ocfaq.rss

KDk o ok A

identification division.

program-id. luacaller.

data division.

working-storage section.

01 luastate
01 luascript
01 luacommand
01 luaresult
01 lualength

01 items

01 luastack.
03 luaitem

01 depth

usage pointer.

pic x(10) value 'oclua.lua’ & x"00".
pic x(64).

pic x(32).

usage binary-long.

pic 9 usage computational-5.

pic x(32) occurs 5 times.
usage binary-long.

Kk ok A ok ok ok ok ok ok ok ok ok ok A ok

30.11. 5.11 Can OpenCOBOL interface with Lua?

313

OpenCOBOL FAQ, Release 1.1

procedure division.

call "OCLUA_OPEN" returning luastate end-call

move ’'return "OpenCOBOL " .. 1.0 + 0.1" & x"00" to luacommand
call "OCLUA_DOSTRING"
using

by value luastate
by reference luacommand
by reference luaresult
by wvalue function length (luaresult)
returning depth
end-call
display
"OpenCOBOL displays: " depth " |" luaresult "|"
end-display

call "OCLUA_DOFILE"
using
by value luastate
by reference luascript
by reference luaresult
by value 32
returning depth
end-call
display
"OpenCOBOL displays: " depth " |" luaresult "|"
end-display

call "OCLUA_DOFILE"
using
by value luastate
by reference luascript
by reference luaresult
by value 32
returning depth
end-call
display
"OpenCOBOL displays: " depth " |" luaresult "|"
end-display

call "OCLUA_DEPTH"
using
by value luastate
returning depth
end-call
display "Lua depth: " depth end-display

perform varying items from 1 by 1
until items > depth
call "OCLUA_GET"
using
by value luastate
by value items
by reference luaresult
by value 32
returning lualength
end-call
move luaresult to luaitem(items)

314 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

end-perform

perform varying items from 1 by 1
until items > depth
display
"Item " items ": " luaitem(items)
end-display
end-perform

call "OCLUA_POP"
using
by value luastate
by value depth
returning depth
end-call

call "OCLUA_DEPTH"
using
by value luastate
returning depth
end-call

display "Lua depth: " depth end-display
call "OCLUA_CLOSE" using by value luastate end-call

goback.

end program luacaller.

KDk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk o ok ok ok ok ok ok ok ok ok ok ok ok ok A
*A><k FFFF+F+F

*><x Overview

* >k F+++++++

*><+ The OpenCOBOL Lua interface is defined at a very high level.
*>< A

*><+ The objective 1is to provide easy access to Lua through

*><x script files or strings to be evaluated.

*>< A

*><+ Command strings and script file names passed to Lua MUST be
*><+ terminated with a null byte, as per C Language conventions.
*><

*><+ A Lua engine 1s started with a call to OCLUA_OPEN, which
*><x returns an OpenCOBOL POINTER that is used to reference

*><+ the Lua state for all further calls.

*>< *

*><x A Lua engine 1is run down with a call to OCLUA_CLOSE.

*><

*><+ .. Attention::

*>< A Calls to Lua without a valid state will cause
*>< Ak undefined behaviour and crash the application.
*F><

*><+ Lua uses a stack and results of the Lua RETURN reserved
*><+ word are placed on this stack. Multiple values can be
*><+ returned from Lua.

*><

*><+ The developer 1s responsible for stack overflow conditions
>< and the size of the stack (default 20 elements) 1is

*><# controlled with OCLUA_STACK using an integer that

*><x determines the numbers of slots to reserve.

*><

30.11.

5.11 Can OpenCOBOL interface with Lua?

315

OpenCOBOL FAQ, Release 1.1

*><
*><
*F><
*>< A
*>< *
*A><
*>< A
><
*A><F
*>< A
*><
*A>< K
*>< A
><
*A>< A
*><
><
*A>< A
*><
*><
*A>< A
*><
*><
*A>< A
*>< A
*><
*A>< A
*>< K
*>< &
*A>< A
*>< K
*>< &
*><
*><
*>< &
*><
*><
*>< *
*><
*><
*>< &
*><
*><
*><
*><
*>< A
*F><
*><
*>< ok
*F><
*><
*>< *
*><
*><
*>< *
*F><
*><
*>< *
*F><

Requires package installs of:

* luab.1
* libluab.1
* libluab.l-dev

FH++++HF
OpenCOBOL Lua API
FH++++F+F A F

Initialize the Lua engine.

01 luastate USAGE POINTER.

CALL "OCLUA_OPEN" RETURNING luastate END-CALL

Check and possibly resize the Lua data stack. Returns 0 if
Lua cannot expand the stack to the requested size.

01 elements USAGE BINARY-LONG VALUE 32.
01 result USAGE BINARY-LONG.

CALL "OCLUA_STACK"
USING

BY VALUE luastate
BY VALUE elements

RETURNING result
END—-CALL

Evaluate a null terminated alphanumeric field as a Lua program
producing any top of stack entry and returning the depth of

stack after evaluation.

Takes a luastate, a null terminated command string,
a result field and length and returns an integer depth.

Attention::

The Lua stack is NOT popped while returning the top of stack entry.

01 luacommand pic x(64).
01 luaresult pic x(32).

01 depth usage binary-long.

move ’‘return "OpenCOBOL
call "OCLUA_DOSTRING"

"

1.0 + 0.17 & x"00" to luacommand

316

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

*>< * using

*>< % by value luastate

*><H by reference luacommand

*><H by reference luaresult

*>< by value function length (luaresult)
*>< % returning depth

*>< * end-call
*>< % display

*><H "OpenCOBOL displays: " depth " |" luaresult "|"
*>< % end-display

*>< &

*><x Qutputs::

*> <k

*>< ok OpenCOBOL displays: +0000000001 |OpenCOBOL 1.1

*>< *

AS<H ——m e —————

*><+ OCLUA_DOFILE

AS<h —mmm

*><+ Evaluate a script using a null terminated alphanumeric field
*><+ naming a Lua program source file, retrieving any top of

*><+ stack entry and returning the depth of stack after evaluation.
*>< ok

*><# Takes a luastate, a null terminated filename,

*><+ a result field and length and returns an integer depth.

*>< ok

*><% .. Attention::

x> < The Lua stack is NOT popped while returning the top of

*>< Ak stack entry.

*>< %

*>< *

*>< %

*>< ok 01 luascript pic x(10) value ’‘oclua.lua’” & x"00".
x> <A 01 luaresult pic x(32).

*><

*>< ok call "OCLUA_DOFILE"

*>< % using

*>< ok by value luastate

*>< ok by reference luascript

*><H by reference luaresult

*>< ok by value function length (luaresult)
*><H returning depth

*>< end-call
*>< % display

*>< % "OpenCOBOL displays: " depth " |" luaresult "|"
*>< % end-display
*><

*><+ Given oclua.lua::

*><

*>< -— Start

x> <k —-— Script: oclua.lua

*>< print ("Lua prints hello")

*>< *

*>< % hello = "Hello OpenCOBOL from Lua"
x> <k return math.pi, hello

*>< ok -— End

*>< K

*><+ Qutputs::
*>< *
*>< % Lua prints hello

30.11.

5.11 Can OpenCOBOL interface with Lua?

317

OpenCOBOL FAQ, Release 1.1

*><
><
*F><
*>< A
*><
*A><
*><
><
*A><
*>< A
*><
*A>< A
*>< A
><
*A>< A
*>< K
><
*A>< A
*>< A
*>< *
*A>< A
*>< A
*><
*A>< A
*>< A
*>< *
*A>< A
*>< A
*>< *
*><
*>< A
*>< &
*><
*>< A
*>< *
*><
*><
><
*><
*><
*>< &
*><
*><
*>< &
*><
*>< *
*F><
*><
*>< ok
*F><
*><
*>< k
*F><
*><
*>< *
*><
*><
*>< Ak
*F><

OpenCOBOL displays: +0000000002 |Hello OpenCOBOL from Lua

and on return from Lua, there is #*math.pi* and the
Hello string remaining on the Lua state stack.

Returns the current number of elements on the Lua stack.

call "OCLUA_DEPTH"
using
by value luastate
returning depth
end-call
display "Lua depth: " depth end-display

Retrieves values from the Lua stack, returning the length
of the retrieved item.

An example that populates and displays an OpenCOBOL table::

01 items pic 9 usage computational-5.
01 luastack.
03 luaitem pic x(32) occurs 5 times.

perform varying items from 1 by 1
until items > depth
call "OCLUA_GET"
using
by value luastate
by value items
by reference luaresult
by value function length (luaresult)
returning lualength
end-call
move luaresult to luaitem(items)
end-perform

perform varying items from 1 by 1
until items > depth
display
"Ttem " items ": " luaitem(items)
end-display
end-perform

Lua numbers the indexes of stacked items from 1, first
item to n, last item (current top of stack). Negative
indexes may also be used as documented by Lua, -1 being
top of stack.

Sample output::

Item 1: OpenCOBOL 1.1

318

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

*>< Item 2: 3.1415926535898

*>< Item 3: Hello OpenCOBOL from Lua
*>< Item 4: 3.1415926535898

*>< A Item 5: Hello OpenCOBOL from Lua
*><

*A>< A —————————

*><+ OCLUA_POP

*A><HA ——m—m——————

*><+ Pops the given number of elements off of the Lua stack
*><+ returning the depth of the stack after the pop.

*>< *

*><+ Example that empties the Lua stack::

*><

*>< ok call "OCLUA_POP"

*>< % using

*>< % by value luastate
*>< % by value depth
*>< % returning depth
*><H end-call

*><

A><A ———————————

*><+ OCLUA_CLOSE

A><A ——mmm

*><+ Close and free the Lua engine.

*><

*><# .. Danger::

*>< % Further calls to Lua are unpredictable and may well
*><H lead to a SIGSEGV crash.

*><

*>< *

*><

*>< % call "OCLUA_CLOSE" using by value luastate end-call
*>< *

With usage document at oclua.html

The above code uses a wrapper layer of C code

/% OpenCOBOL Lua interface */
/% tectonics: cobc —-c¢ —-I/usr/include/luab5.1 oclua.c */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/% Include the Lua API header files. #*/
#include <lua.h>

#include <lauxlib.h>

#include <lualib.h>

/+ Open the Lua engine and load all the default libraries #*/
lua_State »OCLUA_OPEN () {

lua_State *oclua_state;

oclua_state = lua_open();

lual_openlibs (oclua_state);

return oclua_state;

int OCLUA_DO (lua_State *L, int which, const char *string, unsigned char *cobol, int coblen) {
int result;

30.11. 5.11 Can OpenCOBOL interface with Lua? 319

http://opencobol.add1tocobol.com/oclua.html

OpenCOBOL FAQ, Release 1.1

int stacked;
const char xretstr;
int retlen;

memset (cobol, ’, coblen);
result = ((which == 0) ? lual_dostring(L, string)
if (result == 1) {

*/

/* error condition
return -1;

} else {
stacked = lua_gettop(L);
if (stacked > 0) {

/* populate cobol field with top of stack
lua_tolstring (L, stacked, é&retlen);
retstr, (coblen > retlen)

retstr
memcpy (cobol,

}

/+ return number of items on the stack %/
return stacked;

}

/% by filename */
int OCLUA_DOFILE (lua_State +L,
return OCLUA_DO(L, 1, filename,

const char xfilename,
cobol, coblen);

/+* by string x*/
int OCLUA_DOSTRING (lua_State +L,
return OCLUA_DO(L, 0O, string,

const char xstring,
cobol, coblen);

/+ retrieve stack item as string =/

int OCLUA_GET (lua_State *L, int element,
const char x*retstr;
int retlen;

/* populate cobol field with top of stack =/

memset (cobol, ' ’, coblen);

retstr = lua_tolstring(L, element, &retlen);

if (retstr == NULL) {

return -1;

} else {

memcpy (cobol, retstr, (coblen > retlen) ? retlen

return retlen;

}

returns false

{

/* check the stack, resize 1f needed,
int OCLUA_STACK (lua_State L, int extra)
return lua_checkstack (L, extra);

/% depth of Lua stack =/
int OCLUA_DEPTH (lua_State =xL)
return lua_gettop(L);

{

/+ pop elements off stack */

int OCLUA_POP (lua_State «*L, {

int elements)

? retlen

unsigned char xcobol,

lual_dofile (L, string));

*/

coblen);

unsigned char xcobol, int coblen)

int coblen)

unsigned char xcobol,

{

int coblen)

coblen);

if stack can’t grow #*/

320

Chapter 30. 5 Features and extensions

{

{

OpenCOBOL FAQ, Release 1.1

lua_pop (L, elements);
return lua_gettop(L);

/% close the engine x/
void OCLUA_CLOSE (lua_State *L) {
lua_close (L) ;

/xx/

and this sample Lua script oclua.lua

-— Start
—-— Script: oclua.lua
print ("Lua prints hello")

hello = "Hello OpenCOBOL from Lua"
return math.pi, hello
-— End

30.12 5.12 Can OpenCOBOL use ECMAScript?

Yes. Using the SpiderMonkey engine. See Can OpenCOBOL use JavaScript?

30.13 5.13 Can OpenCOBOL use JavaScript?

Yes. A wrapper for the SpiderMonkey engine allows OpenCOBOL access to core JavaScript.
/+* OpenCOBOL with embedded spidermonkey javascript x/

/* cobc -c -I/usr/include/smjs ocjs.c
* cobc -x —lsmjs jscaller.cob
* some people found mozjs before smjs
*/

#include <stdio.h>
#include <string.h>

/+ javascript api requires an environment type #*/
#define XP_UNIX

#if (defined (XP_WIN) || defined(XP_UNIX) || defined(XP_BEOS) || defined(XP_0S2))
#include "jsapi.h"

#else

#error "Must define one of XP_BEOS, XP_0S2, XP_WIN or XP_UNIX"

#endif

/% Error codes */

#define OCJS_ERROR_RUNTIME -1
#define OCJS_ERROR_CONTEXT -2
#define OCJS_ERROR _GLOBAL -3
#define OCJS_ERROR_STANDARD -4
#define OCJS_ERROR_EVALUATE -5

/% OpenCOBOL main CALL interface x*/
/* javascript layer requires
* a runtime per process,

30.12. 5.12 Can OpenCOBOL use ECMAScript? 321

http://www.mozilla.org/js/spidermonkey/
http://www.mozilla.org/js/spidermonkey/

OpenCOBOL FAQ, Release 1.1

* a context per thread,
* a global object per context
* and will initialize
* standard classes.
*/
static JSRuntime «*rt;
static JSContext +*cx;
static JSObject xglobal;
static JSClass global_class = {
"global", 0,
JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_PropertyStub,
JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub
}i

/+ Initialize the engine resources */
int ocjsInitialize(int rtsize, int cxsize) {
JSBool ok;

/* on zero sizes, pick reasonable values */
if (rtsize == 0) { rtsize = 0x100000; }
0x1000; 1}

if (cxsize == 0) { cxsize

/#+ Initialize a runtime space */

rt = JS_NewRuntime (rtsize);

if (rt == NULL) { return OCJS_ERROR_RUNTIME; }
/* Attach a context =/

cx = JS_NewContext (rt, cxsize);

if (cx == NULL) { return OCJS_ERROR_CONTEXT; }

/+ And a default global #*/

global = JS_NewObiject (cx, &global_class, NULL, NULL);
if (global == NULL) { return OCJS_ERROR_GLOBAL; }

/* Load standard classes */

ok = JS_InitStandardClasses(cx, global);

/* Return success or standard class load error #*/
return (ok == JS_TRUE) ? 0 : OCJS_ERROR_STANDARD;

/% Evaluate script #*/

int ocjsEvaluate (char xscript, char xresult, int length) {
jsval rval;
JSString =*str;
int reslen = OCJS_ERROR_EVALUATE;

JSBool ok;

/+ filename and line number, not reported */
char ~filename = NULL;
int lineno = 0;

/* clear the result field #*/
memset (result, ’ ', length);

/* Evaluate javascript =/
ok = JS_EvaluateScript (cx, global, script, strlen(script), filename, lineno, &rval);

/#* Convert js result to JSString form */
if (ok == JS_TRUE) {
str = JS_ValueToString(cx, rval);

322 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

reslen = strlen(JS_GetStringBytes (str));
if (length < reslen) { reslen = length; }
/* convert down to char and move to OpenCOBOl result field =/
memcpy (result, JS_GetStringBytes(str), reslen);
}

return reslen;

/+ Evaluate script from file #*/
int ocjsFromFile (char xfilename, char xresult, int length) ({
FILE «fin;
int bufsize = 10240;
char inbuf[bufsize];
int reslen;

fin = fopen(filename, "r");
if (fin == NULL) { return OCJS_ERROR_EVALUATE; }
//while (fread(inbuf, sizeof (char), bufsize, fin) > 0) {
if (fread(inbuf, 1, bufsize, fin) > 0) {

reslen = ocjsEvaluate (inbuf, result, length);
}

return reslen;

/+ release js engine x/

int ocjsRunDown () {
if (cx != NULL) { JS_DestroyContext (cx); }
if (rt != NULL) { JS_DestroyRuntime(rt); }

JS_ShutDown () ;
return 0O;

/% Quick call; start engine, evaluate, release engine */
int ocjsString(char *script, char xresult, int length) {
int reslen;

reslen = ocjsInitialize (0, 0);
if (reslen < 0) { return reslen; }
reslen = ocjsEvaluate (script, result, length);
ocjsRunDown () ;
return reslen;
}
/xx/

A sample OpenCOBOL application:
OCOBOL >>SOURCE FORMAT IS FIXED

kD ok A

*>Author: Brian Tiffin

*>Date: 11-Sep-2008

*>Purpose: Embed some javascript

*>Tectonics: cobc —-c -I/usr/include/smjs ocjs.c
*> cobc -x —-1/smjs jscaller.cob ocjs.o

kD ko h k ok b ok ok b ok ok ok ok b ok ok ok ok ok ok ok A ok ok
identification division.
program—-id. Jjscaller.

data division.

working-storage section.

30.13. 5.13 Can OpenCOBOL use JavaScript?

323

OpenCOBOL FAQ, Release 1.1

78 ocis—error-runtime wvalue -1.
78 ocis—error-context wvalue -2.
78 ocjs—-error—-global value -3.
78 ocis—error-standard value -4.
78 ocjs-error-evaluate value -5.

78 newline value x"0a".
01 source-data pic x(40)
value "-——+-—-1-——-4+-556.78 90-——-3-————+-———-4",
01 result pic s9(9).
01 result-field pic x(81).
01 javascript pic x(1024).
01 safety-null pic x value x"00".

H Dok Kk ok sk k ok Kk ok ok k ok ok ok ok ok ok ok ok ok sk ok ok ok b ok ok ok b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok A o
*><x Evaluate spidermonkey code, return the length of js result
procedure division.

display "js> " with no advancing end-display
accept javascript end—accept
call "ocjsString"
using Jjavascript
result-field
by value function length (result-field)
returning result

end-call
display "OpenCOBOL result-field: " result-field end-display
display "OpenCOBOL received : " result newline end-display

*><+ Initialize the javascript engine
call "ocjsInitialize"

using by value 65536

by value 1024

returning result
end-call
if result less 0

stop run returning result
end-if

*><x find (zero offest) dollar amount, space, number
move spaces to javascript

string
"pat = /\$\d+\.\d+\s\d+/; "
"a = "’ delimited by size

source-data delimited by size
""; 7 delimited by size
"a.search(pat); " delimited by size
x"00" delimited by size
into javascript

end-string

display
"Script: " function trim(javascript, trailing)
end-display

call "ocjsEvaluate"
using Jjavascript
result-field

324

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

by value function length (result-field)
returning result

end-call
display "OpenCOBOL result-field: " result-field end-display
display "OpenCOBOL received : " result newline end-display

*><+ values held in js engine across calls
move spaces to javascript
string
"a;’ delimited by size
2"00" delimited by size
into javascript
end-string

display
"Script: " function trim(javascript, trailing)
end-display

call "ocjsEvaluate"
using Jjavascript
result-field
by value function length (result-field)
returning result

end-call
display "OpenCOBOL result-field: " result-field end-display
display "OpenCOBOL received : " result newline end-display

*><+ erroneous script

move spaces to javascript

string
"an error of some kind;’ delimited by size
2"00" delimited by size
into javascript

end-string

display
"Script: " function trim(javascript, trailing)
end-display

call "ocjsEvaluate"
using Jjavascript
result-field
by value function length (result-field)
returning result
end-call
if result equal ocjs-error—-evaluate
display " *xx script problem xx*" end-display
end-if
display "OpenCOBOL result-field: " result-field end-display
display "OpenCOBOL received : " result newline end-display

*><+ script from file

move spaces to javascript

string
"ocjsscript.js’ delimited by size
x"00" delimited by size
into javascript

end-string

30.13. 5.13 Can OpenCOBOL use JavaScript?

325

OpenCOBOL FAQ, Release 1.1

display
"Script: " function trim(javascript, trailing)
end-display

call "ocjsFromFile"
using javascript
result-field
by wvalue function length (result-field)
returning result
end-call
if result equal ocjs-error-evaluate
display " *x* script problem xxx" end-display

end-if
display "OpenCOBOL result-field: " result-field end-display
display "OpenCOBOL received : " result newline end-display

*><+ Rundown the js engine
call "ocjsRunDown" returning result

*><+ take first name last name, return last "," first
move spaces to javascript

string
"re = /(\w+)\s(\w+)/; " delimited by size
"str = "John Smith"; ’ delimited by size
"newstr = str.replace(re, "$2, $1"); ’ delimited by size

"newstr;" delimited by size
x"00" delimited by size
into javascript

end-string

display
"Script: " function trim(javascript, trailing)
end-display

call "ocjsString"
using Jjavascript
result-field
by wvalue function length (result-field)
returning result

end-call
display "OpenCOBOL result-field: " result-field end-display
display "OpenCOBOL received : " result newline end-display

*><+ split a string using numbers return array (as js string form)
move spaces to javascript

string
"myString = "Hello 1 word. Sentence number 2."; '/
delimited by size
"splits = myString.split (/(\d)/); ' delimited by size
"splits;’ delimited by size

x"00" delimited by size
into javascript
end-string

display
"Script: " function trim(javascript, trailing)

end-display

call "ocjsString"

326 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

using Jjavascript

result-field

by value function length(result-field)
returning result

end-call
display "OpenCOBOL result-field: " result-field end-display
display "OpenCOBOL received : " result newline end-display

*><+ Get javascript date

move "new Date ()" & x"00" to javascript
display
"Script: " function trim(javascript, trailing)

end-display

call "ocjsString"
using Jjavascript
result-field
by value function length (result-field)
returning result

end-call

display "OpenCOBOL result-field: " result-field end-display
display "OpenCOBOL received : " result end-display
goback.

end program jscaller.

And with a sample script:

ocjsscript.js
var x = 2
var y = 39
var z = "42"

// boths line evaluate to 42
eval("x + y + 1")
eval (z)

Sample output:

js> 123 % 456 + 789
OpenCOBOL result-field: 56877

OpenCOBOL received : +000000005

Script: pat = /\$\d+\.\d+\s\d+/; a = "-——+-——-——-1-———-4-$56.78 90-——-3-———+-——--4"; a.search(pat);
OpenCOBOL result-field: 16

OpenCOBOL received : +000000002

Script: a;

OpenCOBOL result-field: -——-+----1--—-+-$56.78 90-——-3-————+-——-4

OpenCOBOL received : +000000040

Script: an error of some kind;
*%x%x script problem xxx
OpenCOBOL result-field:

OpenCOBOL received : —000000005

Script: re = /(\w+)\s(\w+)/; str = "John Smith"; newstr = str.replace(re, "$2, $1"); newstr;
OpenCOBOL result-field: Smith, John

OpenCOBOL received : +000000011

30.13. 5.13 Can OpenCOBOL use JavaScript? 327

OpenCOBOL FAQ, Release 1.1

Script: myString = "Hello 1 word. Sentence number 2."; splits = myString.split(/(\d)/);

OpenCOBOL result-field: Hello ,1, word. Sentence number ,2,.
OpenCOBOL received : +000000036

Script: new Date()
OpenCOBOL result-field: Mon Sep 15 2008 04:16:06 GMT-0400 (EDT)
OpenCOBOL received : +000000039

30.14 5.14 Can OpenCOBOL interface with Scheme?

Yes, directly embedded with Guile and libguile.

callguile.cob
OCOBOL >>SOURCE FORMAT IS FIXED

L e o

x> Author: Brian Tiffin
*> Date: 20090215
*> Purpose: Demonstrate libguile Scheme interactions

x> Tectonics: cobc -x —-lguile callguile.cob

D> kA kA kA A A A A A A h A h bk Ak bbb Ak bbb Ak bbb Ak bbbk bbbk b h kA bk b h bk sk kb h ok kb ok Aok ko
identification division.

program-id. callguile.

data division.
working-storage section.

01 tax—scm usage pointer.

01 shipping-scm usage pointer.

01 scm-string usage pointer.

01 radix-scm usage pointer.

01 subtotal pic 999v99 value 80.00.
01 subtotal-display pic z(8)9.99.

01 weight pic 99v99 wvalue 10.00.
01 weight-display pic 29.99.

01 breadth pic 99v99 wvalue 20.00.
01 breadth-display pic Z9.99.

01 answer pic x(80).

01 len usage binary-long.

01 tax pic 9(9)v9(2).

01 tax-display pic z(8)9.9(2).

01 shipping pic 9(9)v9(2).

01 shipping-display pic z(8)9.9(2).

01 invoice-total pic 9(9)v9(2).

01 invoice-display pic $(8)9.9(2).

KDk ok ok ok ok ok ok A ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok A ok ok ok K ok ok ok ok ok ok Ak

procedure division.

display "OC: initialize libguile" end-display
call "scm_init_guile" end-call

display "OC: load scheme code" end-display
call "scm _c_primitive_load" using "script.scm" & x"00" end-call
display "OC:" end-display

328 Chapter 30. 5 Features and extensions

splits;

http://www.gnu.org/software/guile/guile.html

OpenCOBOL FAQ, Release 1.1

display "OC: evaluate one of the defined functions" end-display
call "scm _c_eval_string"” using " (do-hello)" & x"00" end-call
display "OC:" end-display

display "OC: perform tax calculation" end-display
move subtotal to subtotal-display
move weight to weight-display
move breadth to breadth-display
call "scm_c_eval_string"
using
function concatenate (
" (compute-tax "; subtotal-display; ")"; x"00"
)
returning tax-scm
end-call

display "OC: perform shipping calculation" end-display

display "OC: " function concatenate (
" (compute-shipping "; weight-display; " ";
breadth-display; ")"; x"00"

end-display
call "scm_c_eval_string"

using
function concatenate (
" (compute-shipping "; weight-display; " ";
breadth-display; ")"; x"00"

)
returning shipping-scm
end-call

display "OC: have guile build a scheme integer 10" end-display
call "scm_ from_int32"

using by value size is 4 10 returning radix-scm
end-call

display "OC: have guile convert number, base 10" end-display
call "scm_number_to_string"
using
by value tax-scm by value radix-scm
returning scm-string
end-call

display "OC: get numeric string to COBOL" end-display
call "scm_to_locale_stringbuf"
using
by value scm-string
by reference answer
by value 80
returning len
end-call
display "OC: tax as string: " answer end-display
move answer to tax

call "scm_number_to_string"
using
by value shipping-scm by value radix-scm
returning scm-string
end-call

30.14. 5.14 Can OpenCOBOL interface with Scheme? 329

OpenCOBOL FAQ, Release 1.1

call "scm_to_locale_stringbuf"
using
by value scm-string
by reference answer
by value 80
returning len
end-call
display "OC: shipping as string: " answer end-display
move answer to shipping

compute invoice-total = subtotal + tax + shipping end-compute

move subtotal to subtotal-display
move tax to tax-display

move shipping to shipping-display
move invoice-total to invoice-display
display "OC:" end-display

display "OC: subtotal " subtotal-display end-display
display "OC: tax " tax-display end-display
display "OC: shipping " shipping-display end-display
display "OC: total: " invoice-display end-display
goback.
end program callguile.
script.scm
(define (do-hello)
(begin
(display "Welcome to Guile™)
(newline)))

(define (compute-tax subtotal)
(» subtotal 0.0875))

(define (compute-shipping weight length)

;; For small, 1light packages, charge the minimum
(if (and (< weight 20) (< length 5))
0.95

;; Otherwise for long packages, charge a lot
(if (> length 100)
(+ 0.95 (% weight 0.1))

;; Otherwise, charge the usual
(+ 0.95 (» weight 0.05)))))

(display "Loaded script.scm") (newline)

Outputs:

OC: initialize libguile

OC: load scheme code

Loaded script.scm

OoC:

OC: evaluate one of the defined functions
Welcome to Guile

OoC:

OC: perform tax calculation

330 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

OC: perform shipping calculation

OC: (compute-shipping 10.00 20.00)

OC: have guile build a scheme integer 10
OC: have guile convert number, base 10
OC: get numeric string to COBOL

OC: tax as string: 7.0

OC: shipping as string: 1.45

OC:

OC: subtotal 80.00
OC: tax 7.00
OC: shipping 1.45
OC: total: $88.45

Of course using Scheme for financial calculations in an OpenCOBOL application would not be a smart usage. This is
just a working sample.

30.15 5.15 Can OpenCOBOL interface with Tcl/Tk?

Yes. OpenCOBOL supports the Tcl/Tk embedding engine developed by Rildo Pragana as part of the TinyCOBOL
project. We have been given permission by Rildo to embed his engine in OpenCOBOL.

See http://ww1.pragana.net/cobol.html for sources.

A working sample

OCOBOL IDENTIFICATION DIVISION.
PROGRAM-ID. tclgui.
AUTHOR. Rildo Pragana.
*> REMARKS.

*> Example tcl/tk GUI program for Cobol.
*>

ENVIRONMENT DIVISION.

DATA DIVISION.

*>

WORKING-STORAGE SECTION.

01 DATA-BLOCK.

05 NAME PIC X(40).

05 W-ADDRESS PIC X(50).

05 PHONE PIC X(15).

05 END-PGM PIC X.

05 QUICK-RET PIC X.

01 SITE-INFO.

05 TITLE PIC X(20).

05 URL PIC X (50).
77 GUI-01 PIC X(64) VALUE "formA.tcl".
77 GUI-02 PIC X(64) VALUE "formB.tcl".
77 END-OF-STRING pic X value
77 T—SCRIPT PIC X(128).
77 T-RESULT PIC X(80).
01 dummy pic X value X"0O0".

PROCEDURE DIVISION.
CALL "initTcl"
*> test for stcleval function

string "expr 12 x 34" END-OF-STRING into T-SCRIPT
call "stcleval" using T-SCRIPT T-RESULT

30.15. 5.15 Can OpenCOBOL interface with Tcl/Tk? 331

http://ww1.pragana.net/cobol.html

OpenCOBOL FAQ, Release 1.1

display "eval by tcl: |" T-SCRIPT "
MOVE "Your name here" to NAME

MOVE "Your address" TO W-ADDRESS
MOVE "Phone number" to PHONE

returned " T-RESULT

x> this variable tells Cobol that the user required an exit

MOVE "0" to END-PGM
MOVE "1" to QUICK-RET
MOVE "Afonso Pena" to NAME

*> now we may have the script name as a variable,
"./formA.tcl "

terminated by a space

CALL "tcleval" USING DATA-BLOCK

MOVE "Deodoro da Fonseca" to NAME

CALL "tcleval" USING DATA-BLOCK GUI-01
MOVE "Rui Barbosa" to NAME

CALL "tcleval" USING DATA-BLOCK GUI-01
MOVE "Frei Caneca" to NAME

CALL "tcleval" USING DATA-BLOCK GUI-01
MOVE "0" to QUICK-RET

MOVE "Your name here" to NAME.

100-restart.
x> call C wrapper,

passing data block and size of data

CALL "tcleval" USING DATA-BLOCK GUI-01
DISPLAY "Returned data:"

DISPLAY "NAME [" NAME "]1"

DISPLAY "ADDRESS [" W-ADDRESS "]"
DISPLAY "PHONE [" PHONE "]"

x> 1f not end of program required,
if END-PGM = 0
go to 100-restart.

*> to start a new GUI (graphical interface),
call "newGui"

MOVE "Title of the site" to TITLE

MOVE "URL (http://..., ftp://..., etc)"

loop

call this first

to URL

*> now we may draw other main window...

CALL "tcleval"
DISPLAY "Returned data:"

DISPLAY "TITLE [" TITLE
DISPLAY "URL [™ URL "]"

"J n

STOP RUN.

Which uses two Tcl/Tk scripts

#!/bin/sh
the next line restarts using wish\
exec Wish ll$0" ll$@"

if {![info exists vTcl (sourcing)]} {

package require Tk
switch $tcl_platform(platform) {
windows {
option add *Button.pad¥Y 0
}
default {
option add *Scrollbar.width 10

USING SITE-INFO GUI-02

option add *Scrollbar.highlightThickness 0
option add *Scrollbar.elementBorderWidth 2

332

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

option add *Scrollbar.borderWidth 2

}

FHAHHH R AR AR A AR AR AR A R R R
Visual Tcl v1.60 Project
#

FHASHH AR F AR AR FH SRS A
VICL LIBRARY PROCEDURES
#

if {![info exists vTcl (sourcing)]} {
HHH A

Library Procedure: Window

proc ::Window {args} {
This procedure may be used free of restrictions.

Exception added by Christian Gavin on 08/08/02.
Other packages and widget toolkits have different licensing requirements.
#4 Please read their license agreements for details.

global vTcl
foreach {cmd name newname} [lrange $args 0 2] {}

set rest [lrange S$args 3 end]

if {$Sname == "" || $cmd == ""} { return }

if {$Snewname == ""} { set newname S$name }

if {$Sname == "."} { wm withdraw S$name; return }

set exists [winfo exists S$newname]
switch Scmd {
show {
if {Sexists} {
wm deiconify $newname
} elseif {[info procs vTclWindow$name] != ""} {
eval "vTclWindow$Sname S$newname Srest"
}
if {[winfo exists S$Snewname] && [wm state $newname] == "normal"} {
vTcl:FireEvent S$newname <<Show>>
}
}
hide {
if {Sexists} {
wm withdraw $newname
vTIcl:FireEvent $newname <<Hide>>
return}
}
iconify { if S$exists {wm iconify $newname; return} }
destroy { if $exists {destroy $newname; return} }
}

}
S i
Library Procedure: vTcl:DefineAlias

proc ::vIcl:DefineAlias {target alias widgetProc top_or_alias cmdalias} {
This procedure may be used free of restrictions.
Exception added by Christian Gavin on 08/08/02.

30.15. 5.15 Can OpenCOBOL interface with Tcl/Tk? 333

OpenCOBOL FAQ, Release 1.1

Other packages and widget toolkits have different licensing requirements.
Please read their license agreements for details.

global widget
set widget ($Salias) S$Starget
set widget (rev, $target) S$alias
if {$Scmdalias} {

interp alias {} $alias {} S$widgetProc S$target
}
if {S$top_or_alias != ""} {

set widget ($top_or_alias, $alias) S$target

if {Scmdalias} {

interp alias {} S$top_or_alias.$alias {} S$SwidgetProc S$target

}
B ik ki
Library Procedure: vTcl:DoCmdOption

proc ::vTcl:DoCmdOption {target cmd} {
This procedure may be used free of restrictions.

Exception added by Christian Gavin on 08/08/02.
Other packages and widget toolkits have different licensing requirements.
#4 Please read their license agreements for details.

menus are considered toplevel windows

set parent S$target

while {[winfo class S$parent] == "Menu"} {
set parent [winfo parent $parent]

regsub -all {\%widget} $cmd S$target cmd
regsub -all {\%top} $cmd [winfo toplevel $parent] cmd

uplevel #0 [list eval $cmd]
}
B i i i
Library Procedure: vTcl:FireEvent

proc ::vTcl:FireEvent {target event {params {}}} {
This procedure may be used free of restrictions.

Exception added by Christian Gavin on 08/08/02.
Other packages and widget toolkits have different licensing requirements.
Please read their license agreements for details.

The window may have disappeared
if {![winfo exists S$target]} return
Process each binding tag, looking for the event
foreach bindtag [bindtags S$Starget] {
set tag_events [bind $bindtag]
set stop_processing 0
foreach tag_event S$tag_events {
if {Stag_event == Sevent} {
set bind_code [bind $bindtag S$tag_event]
foreach rep "\{%W Starget\} Sparams" {
regsub -all [lindex S$Srep 0] $bind_code [lindex $rep 1] bind_code
}
set result [catch {uplevel #0 $bind_code} errortext]
if {Sresult == 3} {

334 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

break exception, stop processing
set stop_processing 1

} elseif {Sresult !'= 0} {
bgerror Serrortext

}
break

}
if {$stop_processing} {break}

}

FHA A A R A R R R R R R R

Library Procedure: vTcl:Toplevel:WidgetProc

proc ::vIcl:Toplevel:WidgetProc {w args} {
This procedure may be used free of restrictions.
Exception added by Christian Gavin on 08/08/02.

Other packages and widget toolkits have different licensing requirements.

#4 Please read their license agreements for details.

if {[llength S$args] == 0} {
If no arguments, returns the path the alias points to
return Sw
}
set command [lindex S$args 0]
set args [lrange $args 1 end]
switch -- [string tolower S$command] {
"setvar" {
foreach {varname value} $args {}

if {Svalue == ""} {
return [set ::${w}::${varname}]
} else {
return [set ::${w}::${varname} S$value]
}
}
"hide" - "show" {

Window [string tolower S$command] $w
}
"showmodal" {
modal dialog ends when window is destroyed
Window show $w; raise $w
grab $w; tkwait window $w; grab release $w
}
"startmodal" {
ends when endmodal called
Window show S$w; raise $w
set ::${w}::_modal 1
grab $w; tkwait variable ::${w}::_modal; grab release S$w
}

"endmodal" {

ends modal dialog started with startmodal, argument is var name

set ::${w}::_modal O
Window hide $w

}

default {
uplevel $w $command S$args

30.15. 5.15 Can OpenCOBOL interface with Tcl/Tk?

335

OpenCOBOL FAQ, Release 1.1

B i
Library Procedure: vTcl:WidgetProc

proc ::vIcl:WidgetProc {w args} {
This procedure may be used free of restrictions.
Exception added by Christian Gavin on 08/08/02.
Other packages and widget toolkits have different licensing requirements.
Please read their license agreements for details.

if {[llength $args] == 0} {
If no arguments, returns the path the alias points to
return S$Sw

set command [lindex $args 0]
set args [lrange $args 1 end]
uplevel $w Scommand S$args

}
PR AR A R R R R R R R R R

Library Procedure: vTcl:toplevel

proc ::vTcl:toplevel {args} {
This procedure may be used free of restrictions.

Exception added by Christian Gavin on 08/08/02.
Other packages and widget toolkits have different licensing requirements.
Please read their license agreements for details.

uplevel #0 eval toplevel $args
set target [lindex $args 0]
namespace eval ::S$target {set _modal 0}

if {[info exists vTcl (sourcing)]} {

proc vTcl:project:info {} {

set base .top43
namespace eval ::widgets::S$base {

set set,origin 1

set set,size 1

set runvisible 1
}
namespace eval ::widgets::S$base.labd4 ({

array set save {-disabledforeground 1 -font 1 -text 1}
}
namespace eval ::widgets::S$base.cpd4d5 {

array set save {-disabledforeground 1 -font 1 -text 1}
}
namespace eval ::widgets::S$base.cpd46 {

array set save {-disabledforeground 1 -font 1 -text 1}
}
namespace eval ::widgets::$base.ched7 {

array set save {-disabledforeground 1 -font 1 -text 1 -variable 1}
}
namespace eval ::widgets::S$base.but4d8 ({

array set save {-command 1 -disabledforeground 1 -font 1 -text 1}
}

namespace eval ::widgets::S$base.ent49 ({

336 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

array set save {-background 1 -insertbackground 1 -textvariable 1}
}
namespace eval ::widgets::$base.cpd50 {
array set save {-background 1 -insertbackground 1 -textvariable 1}
}
namespace eval ::widgets::S$base.cpd51 {
array set save {-background 1 -insertbackground 1 -textvariable 1}
}
namespace eval ::widgets::$base.1lis43 {
array set save {-background 1 -listvariable 1}
}
namespace eval ::widgets::$base.lab45 {
array set save {-disabledforeground 1 -font 1 -text 1}
}
namespace eval ::widgets::$base.butd7 {
array set save {-command 1 -disabledforeground 1 -text 1}
}
namespace eval ::widgets::$base.but51 {
array set save {-command 1 -disabledforeground 1 -text 1}
}
set base .top4d7
namespace eval ::widgets::S$base {
set set,origin 1
set set,size 1
set runvisible 1
}
namespace eval ::widgets::$base.ent48 {
array set save {-background 1 -disabledforeground 1 -insertbackground 1 -textvariable 1}
}
namespace eval ::widgets::$base.but49 {
array set save {-command 1 -disabledforeground 1 -text 1}
}
namespace eval ::widgets::$base.but50 {
array set save {-command 1 -disabledforeground 1 -text 1}
}
namespace eval ::widgets_bindings {
set tagslist _TopLevel
}
namespace eval ::vTcl::modules::main {
set procs {
init
main
cobol_update

set compounds {

set projectType single

FHHFH A

USER DEFINED PROCEDURES

#

FHH A R S S
Procedure: main

proc ::main {argc argv} {
global cobol_fields widget

30.15. 5.15 Can OpenCOBOL interface with Tcl/Tk? 337

OpenCOBOL FAQ, Release 1.1

set cobol_fields {

name 40
address 50
phone 15
endpgm 1
quickret 1

}

global nomes_anteriores
if {![info exists nomes_anteriores]} {
set nomes_anteriores {}

}

#bind all <Return> do_exit

}

proc ::cobol_preprocess {args} {

global quickret

if {Squickret} {

do_exit

}
}
FHA A A A R S
Procedure: cobol_update

proc ::cobol_update {} {
global widget
global nomes_anteriores name

#puts "tcl-TC LOG: lappend nomes_anteriores S$name"
lappend nomes_anteriores $name
focus $widget (nome_entry)

}

FHH A A S
Initialization Procedure: init

proc ::init {argc argv} {
}
init $argc Sargv

idssssasssaagisisanaisianatisssii
VICL GENERATED GUI PROCEDURES
#

proc vIclWindow. {base} {
if {Sbase == ""} {
set base .
}
iiiddgdtddaatddndtidi
CREATING WIDGETS
iiddd s Ea AR LA EAELS
wm focusmodel S$top passive
wm geometry S$top 1x1+0+0; update
wm maxsize Stop 1265 994

338 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

wm minsize $top 1 1

wm overrideredirect S$top O

wm resizable S$top 1 1

wm withdraw $top

wm title S$top "vtcl.tcl"

bindtags $top "S$top Vtcl.tcl all"

vTcl:FireEvent $top <<Create>>

wm protocol $top WM_DELETE_WINDOW "vTcl:FireEvent S$top <<DeleteWindow>>"

FHEFF RS E AR
SETTING GEOMETRY
s sissaatiissi

vTcl:FireEvent S$base <<Ready>>

proc vIclWindow.top43 {base} {
if {$base == ""} {
set base .top43
}
if {[winfo exists $base]} {
wm deiconify $base; return
}
set top $base
FHEH A E A
CREATING WIDGETS
FHEHFH A AR HEHE
vTcl:toplevel S$top -class Toplevel \
—highlightcolor black
wm focusmodel S$top passive
wm geometry S$top 570x523+318+169; update
wm maxsize S$top 1265 994
wm minsize $top 1 1
wm overrideredirect $top O
wm resizable $top 1 1
wm deiconify S$top
wm title $top "New Toplevel 1"
vTcl:DefineAlias "Stop" "Toplevell" vTcl:Toplevel:WidgetProc "" 1
bindtags $top "S$top Toplevel all _TopLevel"
vIcl:FireEvent $top <<Create>>
wm protocol $top WM_DELETE_WINDOW "vTcl:FireEvent S$top <<DeleteWindow>>"

label S$top.lab4d4 \

—disabledforeground #alad4al -font {helvetica 18 bold} -text Nome:
vTcl:DefineAlias "S$top.lab44" "Labell" vTcl:WidgetProc "Toplevell" 1
label S$top.cpd45 \

—disabledforeground #alad4al -font {helvetica 18 bold} -text Enderecgo:
vTcl:DefineAlias "S$top.cpd45" "Label2" vTcl:WidgetProc "Toplevell" 1
label S$top.cpdd6 \

—disabledforeground #alad4al —-font {helvetica 18 bold} -text Telefone:
vTcl:DefineAlias "S$top.cpd46" "Label3" vTcl:WidgetProc "Toplevell" 1
checkbutton $top.ched7 \

—-disabledforeground #alad4al —-font {helvetica 10} -text concluido \

-variable endpgm
vTcl:DefineAlias "S$top.ched7" "Checkbuttonl" vTcl:WidgetProc "Toplevell" 1
button $top.butd8 \

—command do_exit —-disabledforeground #aladal \

—font {helvetica 10 bold} —-text entra
vTcl:DefineAlias "Stop.but48" "Buttonl" vTcl:WidgetProc "Toplevell" 1

30.15. 5.15 Can OpenCOBOL interface with Tcl/Tk? 339

OpenCOBOL FAQ, Release 1.1

entry S$top.entd9 \

-background white —-insertbackground black -textvariable name
vTcl:DefineAlias "Stop.entd4d9" "nome_entry" vTcl:WidgetProc "Toplevell" 1
entry S$top.cpd50 \

-background white -insertbackground black -textvariable address
vTcl:DefineAlias "Stop.cpd50" "Entry2" vTcl:WidgetProc "Toplevell" 1
entry S$top.cpd51 \

-background white -insertbackground black -textvariable phone
vTcl:DefineAlias "S$top.cpd51" "Entry3" vTcl:WidgetProc "Toplevell" 1
listbox S$top.lis43 \

-background white -listvariable nomes_anteriores
vTcl:DefineAlias "S$top.l1is43" "Listbox1l" vTcl:WidgetProc "Toplevell" 1
label S$top.lab4d5 \

—disabledforeground #aladal —-font {verdana -11} \

—-text {nomes

anteriores}
vTcl:DefineAlias "Stop.lab45" "Labeld4d" vTcl:WidgetProc "Toplevell" 1
button S$top.butd7 \

—command {source /usr/bin/tkcon} -disabledforeground #aladal \

—-text tkcon
vTcl:DefineAlias "Stop.butd7" "Button2" vTcl:WidgetProc "Toplevell" 1
button S$top.but51 \

—command {MinhaJdanela show} —-disabledforeground #aladal \

—-text {nome (aux)}
vTcl:DefineAlias "Stop.but51" "Button3" vTcl:WidgetProc "Toplevell" 1
FHeH A
SETTING GEOMETRY
FHEHAHE A
place Stop.labd4d \

-x 25 -y 35 -anchor nw -bordermode ignore
place Stop.cpd45 \

-x 25 -y 100 —-anchor nw
place S$top.cpdd6 \

-x 25 -y 170 -anchor nw
place $top.ched7 \

-x 30 -y 440 -anchor nw -bordermode ignore
place Stop.butd8 \

-x 205 -y 430 -anchor nw -bordermode ignore
place S$top.entd9 \

-x 140 -y 40 -width 403 -height 27 -anchor nw -bordermode ignore
place S$top.cpd50 \

-x 175 -y 100 -width 368 -height 27 -—anchor nw
place Stop.cpd51 \

-x 175 -y 175 -width 273 -height 27 -anchor nw
place S$top.1lis43 \

-x 155 -y 245 -width 383 -height 156 —-anchor nw -bordermode ignore
place Stop.lab45 \

-x 35 -y 250 -anchor nw -bordermode ignore
place Stop.but4d7 \

-x 470 -y 430 -anchor nw -bordermode ignore
place S$top.but51 \

-x 320 -y 430 -anchor nw -bordermode ignore

vIcl:FireEvent $base <<Ready>>
proc vIclWindow.top47 {base} {

if {Sbase == ""} {
set base .top4d7

340 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

}
if {[winfo exists S$base]} {
wm deiconify $base; return
}
set top S$base
FHEHHHE AR
CREATING WIDGETS
FHAHHHE A
vTcl:toplevel S$top —-class Toplevel \
~highlightcolor black
wm withdraw $top
wm focusmodel S$top passive
wm geometry S$top 433x150+169+728; update
wm maxsize S$top 1265 994
wm minsize $top 1 1
wm overrideredirect $top O
wm resizable $top 1 1
wm title $top "New Toplevel 2"
vTcl:DefineAlias "S$top" "MinhaJanela" vTcl:Toplevel:WidgetProc "" 1
bindtags S$top "S$top Toplevel all _TopLevel"
vIcl:FireEvent $top <<Create>>
wm protocol $top WM_DELETE_WINDOW "vTcl:FireEvent S$top <<DeleteWindow>>"

entry S$top.entd8 \

-background white —-disabledforeground #ala4al —-insertbackground black \

—textvariable namel
vTcl:DefineAlias "S$top.ent48" "Entryl" vTcl:WidgetProc "MinhaJanela" 1
button Stop.but49 \

—command {global name namel

set name $namel
MinhaJanela hide} \

—-disabledforeground #aladal -text ok
vTcl:DefineAlias "Stop.butd49" "Buttonl" vTcl:WidgetProc "MinhaJanela" 1
button $top.but50 \

—command {MinhaJanela hide} -disabledforeground #alad4al -text fechar
vTcl:DefineAlias "S$top.but50" "Button2" vTcl:WidgetProc "MinhadJanela" 1
FHAHHHE AR AR
SETTING GEOMETRY
didszdtssaatadadtsi
place Stop.ent48 \

-x 50 -y 30 -width 353 -height 27 -anchor nw -bordermode ignore
place S$top.butd9 \

-x 145 -y 90 -anchor nw -bordermode ignore
place S$top.but50 \

-x 240 -y 90 -anchor nw -bordermode ignore

vTcl:FireEvent S$base <<Ready>>

AR R R
Binding tag: _TopLevel

bind "_TopLevel" <<Create>> {
if {![info exists _topcount]} {set _topcount 0}; incr _topcount
}
bind "_TopLevel" <<DeleteWindow>> ({
if {[set ::%W::_modal]} {
vTcl:Toplevel:WidgetProc %W endmodal
} else {

30.15. 5.15 Can OpenCOBOL interface with Tcl/Tk? 341

OpenCOBOL FAQ, Release 1.1

destroy %W; 1f {S$_topcount == 0} {exit}

}
bind "_TopLevel" <Destroy> {
if {[winfo toplevel %$W] == "S$W"} {incr _topcount -1}

Window show
Window show .top43
Window show .top47

main $argc S$Sargv

xx #4

and

#!/bin/sh

the next line restarts using wish\
exec wish "$O0" "S@"

this script receives "data_block" with the (group) value
of the cobol variable and returns "result"

visual tcl leaves the main window iconified, so let’s show it
wm deiconify

put in this list varname, size pairs
set cobol_fields {

title 20
url 50

grid [label .msg -text \
"Use <Tab> to navigate, <Return> (or click button) \n\

to return to main program."] -columnspan 2
grid \

[label .labl -text "Title:"] \

[entry .el -width 20 -textvariable title] -padx 5 -pady 5 -sticky nsw
grid \

[label .lab2 -text "URL:"] \
[entry .e2 -width 50 -textvariable url] -padx 5 -pady 5 -sticky nsw

grid [button .ready -text Enter —-command do_exit] \
—columnspan 2 -pady 20 -sticky ns

bind all <Return> do_exit
focus .el

#trace add variable ::ready write show_variables

proc show_variables {args} {
uplevel #0 {
set exclude {"::(env|auto_index|tcl_.*|widget|tk_.*|auto_.x*)$}
puts "variables: - - "

foreach v [info vars ::%] {
if {[regexp S$exclude S$v]} {
continue

342 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

if {[array exists $v]} {

puts "$v: [array get Sv]"
} else {

puts "S$v: [set S$v]"
t

30.16 5.16 Can OpenCOBOL interface with Falcon PL?

Not yet, but work with Giancarlo to allow embedding of Falcon scripts is in progress. Update on December 31st,
2010

Yes, yes it can.
This is from the linked post ... but the Falcon programming language embeds in OpenCOBOL just fine.

falconscript.fal

> "Falcon list comprehension called from OpenCOBOL"
sums = [].mfcomp({x,y=> x+y}, .[1 2 3], .[4 5 6])
return sums.describe ()

it goes

$./callfalcon

argv([l]: falconscript.fal

Falcon list comprehension called from OpenCOBOL
VM Output: [5, 6, 7, 6, 7, 8, 7, 8, 9]
Intermediate: [5, 6, 7, 6, 7, 8, 7, 8, 9]
Falcon says: [5, 6, 7, 6, 7, 8, 7, 8, 9]

A Falcon list comprehension with mfcomp applies the reduction x+y on 1 and 4, 1 and 5, 1 and 6, then 2 and 4, 2 and
5 etc.

See http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=1221&forum=1&post_id=6113#forumpost6113
for details.
FalconPL has some nice features.
saying = List ("Have", "a", "nice", "day")
for elem in saying
>> elem
formiddle: >> " "
forlast: > "!"
end
giving:
Have a nice day!

Source files can be found in http://fossile.plpwebs.com/ocsamples.cgi/dir?ci=tip

30.17 5.17 Can OpenCOBOL interface with Ada?

Yes. The freely available gnat system can be used and will create object files that can be included in an OpenCOBOL
project.

30.16. 5.16 Can OpenCOBOL interface with Falcon PL? 343

http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=1221&forum=1&post_id=6113#forumpost6113
http://fossile.plpwebs.com/ocsamples.cgi/dir?ci=tip

OpenCOBOL FAQ, Release 1.1

This example compiles an gnat package that includes hello and ingress PROCEDURE and a echo FUNCTION. These
will be called from an OpenCOBOL adacaller.cob program.

The gnat specification file

with Interfaces.C;
use Interfaces.C;
package HelloAda is

procedure hello;

procedure ingress(value : in INTEGER);

function echo(message : in char array) return integer;
pragma export(C, hello);

pragma export(C, ingress);

pragma export (C, echo);

end HelloAda;

The gnat implementation body

with Ada.Text_TIO, Ada.Integer_Text_IO, Interfaces.C;
use Ada.Text I0, Ada.Integer_Text_IO, Interfaces.C;
package body HelloAda is

procedure hello is

begin
Put_Line("Hello from Ada and OpenCOBOL");
New_Line;

end hello;

procedure ingress(value : in integer) is
begin
Put_Line("Passing integer to Ada from OpenCOBOL") ;
Put ("OpenCOBOL passed: ");
Put (value) ;
New_Line;
New_Line;
end ingress;

function echo(message : in char_array) return integer is
begin

Put (To_Ada (message, true));

return To_Ada (message, true)’ length;
end echo;

end HelloAda;

The adacaller.cob source file

OCOBOL******************* adacaller,cob kA kA b ok ok b ok ok b ok ok ok ok ok b ok ok b ok ok bk ok ok kA

>>SOURCE FORMAT IS FIXED

KK AR KR A AR A AR AR A AR A A AR A A A AR A AR A KRR A A A A AR AR A AR A I AR A A AR A AR A AR A A AR XA A XK

* Author: Brian Tiffin

* Date: 08-Sep-2008

* Purpose: Demonstrate using Ada sub-programs

* Tectonics: gnatgcc —-c helloada.adb

* gnatbind -n helloada

* gnatgcc —-c b~helloada.abd

* cobc -x —lgnat caller.cob helloada.o b~helloada.o

PR i b b b b b b b b e b b b b b b b b b b b b b b b b b b b e b e b b b b
identification division.
program-id. caller.

344 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

data division.

working—-storage section.

01 ada-message pic x(10) value "Ada echo" & x'0a’ & x'00’.
01 result pic s9(9) value

ER b i b b b b e b b b b b b b b b i b i b b b b b b b b b b b e b i g b i
procedure division.

begin.

call "adainit" end-call

call "hello" end-call
call "ingress" using by value 42 end-call

call "echo" using
by reference ada-message
returning result
end-call
display "Ada return: " result end-display

call "adafinal" end-call
goback

end program caller.

And the tectonics; Debian GNU/Linux build.sh

gnatgcc —-c helloada.adb

gnatbind -n helloada

gnatgcc —-c b~helloada.adb

cobc -x —-lgnat adacaller.cob helloada.o b~helloada.o

An important step is the creation of the object file from the gnatbind output with -n that is used in the final Open-
COBOL executable.

Sample run using ./adacaller:

Hello from Ada and OpenCOBOL

Passing integer to Ada from OpenCOBOL
OpenCOBOL passed: 42

Ada echo
Ada return: +000000009

See Can the GNAT Programming Studio be used with OpenCOBOL? for more.

30.18 5.18 Can OpenCOBOL interface with Vala?

Yes. Very easily. The Vala design philosophy of producing C application binary interface code means that Vala is
directly usable with OpenCOBOL’s CALL statement.

See http://live.gnome.org/Vala for some details on this emerging programming enviroment.

This interface will be seeing more and more use as it really does open the door to some very powerful extensions.
* WebKit embedding
* PDF Viewers

30.18. 5.18 Can OpenCOBOL interface with Vala? 345

http://live.gnome.org/Vala

OpenCOBOL FAQ, Release 1.1

* GTK
* Media streaming

¢ much more

30.18.1 5.18.1 Call OpenCOBOL programs from Vala

Using a few simple tricks, Vala can easily call OpenCOBOL programs. Vala uses a predictable link module naming
convention. Inside a class, from.vala, the linker will try and find from_vala_name, in this case from_vala_ochello.

/% Call OpenCOBOIL from Vala */

public class from.vala

{

}

/xx/

public static int main(string[] args)

stdout.printf ("Result: %d\n", ochello());
return 0O;

[import ()]
public extern static int ochello();

So the PROGRAM-ID here is from_vala_ochello.
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok A

*> Author: Brian Tiffin

*> Date: 20101017

*> Purpose: Call ochello from Vala in a from.vala Class
*> Tectonics:

*> cobc -fimplicit-init —-C ochello.cob

*> valac callcobol.vala ochello.c -X —1cob

*> Kok ok b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok b ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok b ok ok ok ok b ok ok ok ok b ok ok ok ok A
identification division.
program-id. from vala_ ochello.

*> b g b
procedure division.

display "Hello OpenCOBOL’s World!" end-display

move 42 to return-code

goback.

end program from_vala ochello.

The tectonics might seem a little bit mysterious. cobc is used to produce C source code, including calls for initialization
of the OpenCOBOL runtime.

valac is then used to compile and link the Vala source, the generated ochello.c and then the gcc compiler is passed the
-lcob to link in libcob.so.

30.18.2 5.18.2 Call OpenCOBOL from a Vala GTK gui application

And another experiment, with a gui button and repeated timer calls.

callhellogui.vala

346

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

// Call OpenCOBOL program from Vala and show the return code on a button
using Gtk;

public class from.vala {
public static int cobolcode;
public static char|[] valarray = new char[80];

public static int main (string[] args) {

Gtk.init (ref args);
var time = new TimeoutSource (50);

var window = new Window (WindowType.TOPLEVEL);
window.title = "Invoke OpenCOBOL program";
window.set_default_size (300, 50);
window.position = WindowPosition.CENTER;
window.destroy.connect (Gtk.main_quit);

cobolcode = ochello();

var button = new Button.with_label (cobolcode.to_string());
button.clicked.connect (() => {
button.label = "Thanks for all the fish!";
stdout.printf ("%d\n", fishy());
1) i

time.set_callback (() => {
var t = Time.local (time_t());
string fromvala = "From vala string type + time to_string: " + t.to_string();
string fromcobol = "xxxx/xx/xxbxx/xx/xxxxxxx/xx";
stdout.printf ("Vala fromcobol string was : %s\n", fromcobol);

datey (fromvala, fromcobol);

stdout.printf ("Vala fromcobol string set to: %$s\n", fromcobol);
return true;

1) i
time.attach (null);

window.add (button);
window.show_all ();

Gtk.main ();
return 0;

[import ()]

public extern static int ochello();

public extern static int fishy();

public extern static int datey(string argl, string arg2);

}
ochellogui.cob

And here we define from_vala_ochello, from_vala_fishy, from_vala_datey.
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok A ok

30.18. 5.18 Can OpenCOBOL interface with Vala? 347

OpenCOBOL FAQ, Release 1.1

x> Author: Brian Tiffin
*> Date: 20101017
*> Purpose: Call ochello from Vala in a from.vala Class

*> Tectonics:

*> cobc —-fimplicit-init -C ochellogui.cob

*> valac —-—-pkg gtk+-2.0 callcobolgui.vala ochellogui.c —-X —lcob
K>k ok ok ok ok ok ok ok ok ok ok ok ok ok A ok ok ok Sk ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok A ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok Ak
identification division.

program-id. from vala ochello.

procedure division.

display "Hello OpenCOBOL’s Wonderful World!" end-display

move 42 to return-code

goback.

end program from vala ochello.

KDk ok Ak

KDk ok A

program-id. from vala_ fishy.

procedure division.

display "We really do mean, thanks for all the fish!" end-display
goback.

end program from_vala_fishy.

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A ok

KDk ok A

program-id. from vala_ datey.

data division.

working-storage section.

01 editted-date pic xxxx/xx/xxbxx/xxX/XXXXXXX/XX.

linkage section.
01 datafromvala pic x(60).
01 datafromcobol pic x(27).

procedure division using datafromvala datafromcobol.

move function current-date to editted-date

inspect editted-date replacing all "/" by ":" after initial space
display editted-date end-display

display datafromvala end-display
move editted-date to datafromcobol

goback.
end program from vala datey.

Tectonics similar to the first sample. With this one, a timer fires every 50 milliseconds passing data back and forth
between Vala and OpenCOBOL unsafely, mind you. If you push button “42”, a message is printed to standard out.

'm' Invoke OperCOBOL prograi [=)|[E[%

42

Along with the GUI button, produces:

348 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

$./callcobolgui

Vala fromcobol string was I XXXX/XX/XXDRK/ XK/ XRXKXXKKK [XX
2010/10/17 18:19:5598-04:00

From vala string type + time to_string: 2010-10-17 18:19:55
Vala fromcobol string set to: 2010/10/17 18:19:5598-04:00
Vala fromcobol string was P XXXX/ XX/ XXDRK/ KK/ XRXKXXKKK [KX
2010/10/17 18:19:5603-04:00

From vala string type + time to_string: 2010-10-17 18:19:56
Vala fromcobol string set to: 2010/10/17 18:19:5603-04:00

30.18.3 5.18.3 Call Genie program from OpenCOBOL

Here is a sample that calls a small Genie program.

piping.gs, a small program that spawns out some shell commands. One fails on purpose, ech is not a valid executable.
The next echo call has the output captured in ret_stdout. 42 is then passed as the return code to OpenCOBOL.

// Tectonics: valac -c piping.gs

[indent=4]
class wrapper : Object
def static hellogenie() : int
ret_stdout : string
ret_stderr : string
ret_status : int
try
Process.spawn_command_line_sync("ech "ech?’",out ret_stdout,out ret_stderr,out ret_statu:

except ex : Error

print ("in catch™)
print (ex.message)

print ("stdout: %s", ret_stdout)
print ("stderr: %s", ret_stderr)
sd",

print ("status: ret_status)

try

Process.spawn_command_line_sync ("echo -n "hey it works!’",out ret_stdout,out ret_stderr,

except ex : Error
print ("in catch")
print (ex.message)

print ("stdout: %s", ret_stdout)
print ("stderr: %s", ret_stderr)
print ("status: %d", ret_status)

return 42

callgenie.cob
OCOBOL >>SOURCE FORMAT IS FIXED

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A ok

*AD>< A =========

F><H =========

*><+ :Author: Brian Tiffin

*><+ :Date: 29-Sep-2010

*><# :Purpose: Demonstrate getting at Genie code

*><+ :Tectonics:

30.18. 5.18 Can OpenCOBOL interface with Vala? 349

OpenCOBOL FAQ, Release 1.1

*><H valac -c piping.gs
*><

*>< K

identification division.
program-id. callgenie.

data division.
working—-storage section.

0l result usage binary-long.

KDk ok b ok ok ok ok ok ok ok ok ok ok A

procedure division.

cobc -x callgenie.cob piping.vala.o
-1glib-2.0 —-Igobject-2.0

KDk ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok A ok ok ok K ok ok ok ok ok Ak

call "wrapper_hellogenie" returning result end-call

display "Result from Genie:

goback.
end program callgenie.
*><

*><x Last Update:

The Vala/Genie link naming is predictable.
per_hellogenie.

With a sample run producing:

[btiffin@home valal$
in catch
Failed to execute child process

./callgenie

stdout: (null)

stderr: (null)

status: 0

stdout: hey it works!

stderr:

status: 0

Result from Genie: +0000000042

29-Sep-2010

result end-display

Inside a class, wrapper, the Genie generated link name is wrap-

"ach"

(No such file or directory)

30.18.4 5.18.4 Pass data to and from Genie

The Genie

// Tectonics:
[indent=4]

class cbl.oc.genie Object

valac -c genieregex.gs

def static regexing(pattern string, subject string, out value
print " "
print "Pattern: %s", pattern
print "Subject: %s", subject
try
var r = new Regex(pattern)
var s = subject
s = r.replace(s, s.length, 0, "COBOL")
value = s
leng = (int)s.length

except ex Error

print ex.message

value = subject
leng = (int)subject.length
return 1

return 0O

string,

out leng

350

Chapter 30. 5 Features and extensions

int)

int

OpenCOBOL FAQ, Release 1.1

The COBOL
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok A

*A><H ===== =

*><x Call Genie Regex

#><H ================

*><+ :Author: Brian Tiffin

*><#+ :Date: 20101101

*><% :Purpose: Getting at Genie Regex code

*><# :Tectonics: vala -c genieregex.gs

*>< % cobc -x callgenieregex.cob genieregex.vala.o
*>< % -1glib-2.0 —-lgobject-2.0

KDk ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok A ok ok ok ok ok ok A ok ok ok K ok ok ok ok ok Ak
identification division.
program-id. callgenieregex.

data division.
working-storage section.
01 pattern pic x(80) wvalue "Fortran|APL|Python" & x"00".
01 subject pic x(80) value
"OpenCOBOL, Fortran, Vala, Genie, Python, C, APL" & x"00".
01 out-pointer usage pointer.
01 out-length usage binary-long.
01 middleman pic x(80) based.
01 replacement pic x(80).
01 result usage binary-long.

*> ER R i e e e b b b b b b b b i b b b b b b b i b g g i b b i b b b e b b b b b b b b b b b b b b i b b i b i
procedure division.
call "cbl_oc_genie_regexing"
using
by reference pattern
by reference subject
by reference out-pointer
by reference out-length
returning result
end-call
display "Result from Genie: " result end-display

set address of middleman to out-pointer
move middleman (l:out-length) to replacement
display "replacement now: " replacement end-display

move " (red)" & x’00’ to pattern

move "The red car was going too fast" & x’00’ to subject
move 0 to out-length

set out-pointer to null

free middleman

call "cbl_oc_genie_regexing"
using

by reference pattern
by reference subject
by reference out-pointer
by reference out-length
returning result
end-call
display "Result from Genie: " result end-display

30.18. 5.18 Can OpenCOBOL interface with Vala?

351

OpenCOBOL FAQ, Release 1.1

set address of middleman to out-pointer
move middleman (l:out-length) to replacement
display "replacement now: " replacement end-display

move "[:digit:]" & x’00’ to pattern

move "The Regex fails" & x’00’ to subject
move 0 to out-length

set out-pointer to null

free middleman

call "cbl_oc_genie_regexing"
using
by reference pattern
by reference subject
by reference out-pointer
by reference out-length
returning result
end-call
display "Result from Genie: " result end-display

set address of middleman to out-pointer

move middleman (l:out-length) to replacement

display "replacement now: " replacement end-display
goback.

end program callgenieregex.

The Output

S valac -g -v —-c genieregex.gs
cc —g —c¢ ' /home/btiffin/lang/cobol/genieregex.vala.c’ -pthread -I/usr/include/glib-2.0 -I/usr/1ib64/

S cobc -g -debug -v -x callgenieregex.cob genieregex.vala.o —-lgobject-2.0 -1glib-2.0
Preprocessing: callgenieregex.cob to callgenieregex.i

Return status: 0

Parsing: callgenieregex.i

Return status: 0

Translating: callgenieregex.i to callgenieregex.c

Executing: gcc —c¢ —-I/usr/local/include -pipe -g -Wno-unused -fsigned-char
-Wno-pointer-sign -o "/tmp/cob3411 _0.0o" "callgenieregex.c"

Return status: 0

Executing: gcc —-Wl, ——export-dynamic -o "callgenieregex"

"/tmp/cob3411_0.0" "genieregex.vala.o" -L/usr/local/lib -lcob
—lm -lgmp -lncurses -1ldb -1dl -1"gobject-2.0" -1"glib-2.0"
Return status: O

$./callgenieregex

Pattern: Fortran|APL|Python

Subject: OpenCOBOL, Fortran, Vala, Genie, Python, C, APL

Result from Genie: +0000000000

replacement now: OpenCOBOL, COBOL, Vala, Genie, COBOL, C, COBOL

Pattern: (red)

Subject: The red car was going too fast

Result from Genie: +0000000000

replacement now: The COBOL car was going too fast

Pattern: [:digit:]
Subject: The Regex fails
Error while compiling regular expression [:digit:] at char 0: POSIX named classes are supported only

352 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

Result from Genie: +0000000001
replacement now: The Regex fails

30.19 5.19 Can OpenCOBOL interface with S-Lang?

Yes. The S-Lang engine can be used with OpenCOBOL for two purposes. Supporting a very nice terminal and
keyboard programmer interface S-Lang can be used to scan the keyboard for non-waiting ACCEPT key routines. As a
bonus, S-Lang has a very nice scripting engine that allows easy and direct linkage of script variables with OpenCOBOL
defined storage members.

30.19.1 5.19.1 Setup

You will need the S-Lang library for this interface. Under Debian that is simply
S apt-get install libslang2

See http://www.s-lang.org/ for details of this very capable library.

30.19.2 5.19.2 Keyboard control

This sample only show S-Lang terminal input. A very sophisticated terminal output control interface is also available.
OCOBOL >>SOURCE FORMAT IS FIXED

KDk o ok ok ok ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok ok A

x> Author: Brian Tiffin
x> Date: 20090503
*> Purpose: Experimental S-Lang interface

*> Tectonics: cobc —-x slangkey.cob —-lslang

D>k h ok Ak k Ak Ak kA khk ok kh ok k ok h sk ko kb h sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok Ak k kA kA A
identification division.

program-id. slangkey.

data division.
working-storage section.

01 thekey usage binary-long unsigned.
01 thekm usage binary-long.
01 result usage binary-long.

x> exit handler address and priority (prio is IGNORED with OCI1.1)

01 install-flag pic 9 comp-x value O.
01 install-params.
02 exit-addr usage is procedure-pointer.

02 handler-prio pic 999 comp-x.

KDk o ok ok b ok ok ok ok ok ok ok ok ok ok A

procedure division.

x> Initialize low and high level S-Lang terminal routines
call "SLtt_get_terminfo" end-call
call "SLkp_init" returning result end-call
if result equal -1
display "problem intializing S-Lang tty" end-display
stop run giving 1
end-if

30.19. 5.19 Can OpenCOBOL interface with S-Lang? 353

http://www.s-lang.org/

OpenCOBOL FAQ, Release 1.1

call "SLang_ init_tty" using

by value -1 *> abort char
by value -1 x> flow ctrl
by value 0 *> output processing
returning result
end-call

if result equal -1
display "problem intializing S-Lang tty" end-display
stop run giving 1
else
display "Keyboard in special mode" x"0d" end-display
end-if

x> install an exit handler to put terminal back
set exit-addr to entry "tty-reset"
call "CBL_EXIT_PROC" using
install-flag
install-params
returning result
end-call
if result not equal zero
display "error installing exit procedure" end-display
end-if

x> Not sure? Have SLang handle "~C or let OpenCOBOL take over?
call "SLang_set_abort_signal" using by value 0 end-call

*> The demo. Fetch a key, then fetch a keycode. 4 times.
*> SLang terminals display newline as newline. Need explicit

*> CR to get a carriage return. Hence the x"0d".

*> Plus, output is buffered until line terminators.

display
"Tap a normal key, then tap a ’special’ key, ie F1l, 4 times"
x"0d"

end-display

perform 4 times
call "SLang_getkey" returning thekey end-call
display thekey space with no advancing end-display
call "SLkp_getkey" returning thekm end-call
display thekm x"0d" end-display

end-perform

x> Exit handler will take care of resetting terminal
goback.

KDk o ok A
x> Exit procedure to ensure terminal properly reset

KDk oA
entry "tty-reset".

call "SLang_reset_tty" end-call

display "exit proc reset the tty" end-display

goback.

end program slangkey.

Outputs:

Keyboard in special mode
Tap a normal key, then tap a ’'special’ key, ie F1l, 4 times

354 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

0000000097 +0000000513
0000000001 +0000000002
0000000099 +0000065535
0000000003 +0000000003
exit proc reset the tty

having tapped, A, F1, Ctrl-A, Ctrl-B, C, EscEsc and Ctrl-C. The S-Lang abort handler pretty much takes over the
Ctrl-C handling in this sample so it looks at though Ctrl-C was tapped twice, but it wasn’t.

30.19.3 5.19.3 Scripting

S-Lang also provides a very comprehensive scripting language, which is very easy to embed.
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok A

x> Author: Brian Tiffin
x> Date: 20090505
*> Purpose: Experimental S—-Lang interface

x> Tectonics: cobc —-x callslang.cob —-lslang

F D ko k ko ok ok k k ko k ko ok ok ok ok ko Kk ok ok ok ok ok b ok kA ok A o
identification division.

program-id. callslang.

data division.
working-storage section.

01 result usage binary-long.

01 cobol-integer usage binary-long value 42.
01 cobol-float usage float-long value 0.0.
01 sl-int-type constant as 20.

01 sl-double-type constant as 27.

01 read-write constant as O.

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A

procedure division.

x> Initialize S-Lang
call "SLang_ init_all" returning result
if result equal -1
display "Sorry, problem initializing SLang" end-display
end-if

x> Register "slint" variable
call "SLadd_intrinsic_variable" using
by reference "slint" & x"00"
by reference cobol-integer
by value sl-int-type
by value recad-write
returning result
end-call
if result equal -1
display "Could not register cobol-integer" end-display
end-if

x> Register "sldbl" variable

call "SLadd_intrinsic_variable" using
by reference "sldbl" & x"00"
by reference cobol-float
by value sl-double-type

30.19. 5.19 Can OpenCOBOL interface with S-Lang? 355

OpenCOBOL FAQ, Release 1.1

by value read-write

returning result
end-call
if result equal -1

display "Could not register cobol-float" end-display
end-if

call "SLang_ load_string" using

"sldbl = sum([O, 1, 2, 3, 4, 5, 6, 7, 8, 9]);" & x"00"
returning result
end-call

if result equal -1

display "Could not interpret sum intrinsic" end-display
end-if
display "S-Lang set cobol-float to " cobol-float end-display

display "Next lines of output are S-Lang printf" end-display
call "SLang_load_string" using
() = printf("slint (cobol-integer) = %d\n", slint);’ & x"00"
returning result
end-call
if result equal -1
display "Could not interpret printf" end-display
end-if

add 1 to cobol-integer

call "SLang load_string" using
() = printf("slint after COBOL add = %d\n", slint);’ & x"00"
returning result
end-call
if result equal -1
display "error with printf after cobol add" end-display
end-if

x> Let’s get out of here and do the Dilbert Nerd Dance...Woohoo!
goback.
end program callslang.

Which produces:

S-Lang set cobol-float to 45.000000000000000000
Next lines of output are S-Lang printf

slint (cobol-integer) = 42

slint after COBOL add = 43

30.20 5.20 Can the GNAT Programming Studio be used with Open-
COBOL?

Yes. Extensions to smooth the integration of OpenCOBOL development in gnat-gps is posted at
http://svn.wp0.org/ocdocs/brian/opencobol.xml

<?xml version="1.0"?>
<Custom>
<Language>
<Name>OpenCOBOL</Name>
<Spec_Suffix>.cob</Spec_Suffix>
<Extension>.cbl</Extension>

356 Chapter 30. 5 Features and extensions

http://svn.wp0.org/ocdocs/brian/opencobol.xml

OpenCOBOL FAQ, Release 1.1

<Extension>.cpy</Extension>

<Keywords>" (identification|id|environment |data|procedure|division|</Keywords>
<Keywords>program—-id|author | </Keywords>
<Keywords>configuration|source-computer |object-computer | </Keywords>
<Keywords>special-names|repository|</Keywords>

<Keywords>input—-output |file-control|io-control | </Keywords>
<Keywords>file|working-storage|local-storage|linkage|</Keywords>
<Keywords>communication|report|screen|</Keywords>
<Keywords>section|declaratives|</Keywords>

<Keywords>end | </Keywords>
<Keywords>perform|end-perform|until|times|varying|</Keywords>
<Keywords>add|subtract |[multiply|divide|compute | </Keywords>
<Keywords>end-add|end-subtract |end-multiply|end-divide |end-compute | </Keywords>
<Keywords>accept |display|read|write|rewrite]|sort |</Keywords>
<Keywords>end-accept |end-display|end-read|end-write|end-rewrite|</Keywords>
<Keywords>move |evaluate |end-evaluate|if|end-if|when|</Keywords>

<Keywords> (un) ?string|end- (un) ?string|call|end-call | </Keywords>
<Keywords>goback |stop[\s]+run|</Keywords>
<Keywords>filler|low-value[s]?|high-value[s]?|space[s]?|zero[es]?[s]?) \b</Keywords>

<Context>
<New_Line_Comment_Start>\x> | []{6}\+x</New_Line_Comment_Start>
<String Delimiter>"</String Delimiter>
<Constant_Character>' </Constant_Character>
<Can_Indent>True</Can_Indent>
<Syntax_Highlighting>True</Syntax Highlighting>
<Case_Sensitive>False</Case_Sensitive>

</Context>

<Categories>
<Category>
<Name>procedure</Name>
<Pattern>"[0-9a-z]+\.</Pattern>
<Index>1</Index>
<Icon>subprogram_xpm</Icon>
</Category>
</Categories>
</Language>

<alias name="program">

<param name="pid">prog</param>

<text>x>0Ce<
*> > ; SOURCE FORMAT IS FIXED
*> khkkhkkhhkhkhkkhkhkhkhkkhhkhAhkhhkhkhhkdhkhhkkhkhAhhkhkhkhhkhhhrhkhkhAhbhkkhdhhhhkkhkhrhkhkdkhhrhkkhkhA ki hhk k%
x> Author: Brian Tiffin
x> Date: D
*> Purpose: _
x> Tectonics: make

o o

*> R i B B i I I e I I b e I b b e I b I e I I I I I I b I I b b b e I b b I e I b b b I 2 b b
identification division.

o

program-id % (pid) .
environment division.
configuration section.
repository.

special-names.
input-output section.

30.20. 5.20 Can the GNAT Programming Studio be used with OpenCOBOL? 357

OpenCOBOL FAQ, Release 1.1

data division.

file section.
working-storage section.
local-storage section.
linkage section.

screen section.

procedure division.
declaratives.
end declaratives.

00-main.

00-finish.
goback.
*> AR RS SR SRS S S S SRR R R R R R R R R SRR R R SR RS SRR E RS SRS SRR SR RS SIS S SRS
end program % (pid) .
</text>
</alias>

<Language>
<Name>Vala</Name>
<Spec_Suffix>.vala</Spec_Suffix>

<Keywords>" (bool | char|constpointer|double|float|size_t|ssize_t|string|unichar|void|</Keywords>
<Keywords>int |int8|int16|int32]|int64|long|short|</Keywords>

<Keywords>uint |uint8|uintl6|uint32|uint64|ulong|ushort | </Keywords>
<Keywords>class|delegate|enum|errordomain|interface|namespace|struct |</Keywords>
<Keywords>break|continueldolforlforeachlreturnlwhile\</Keywords>
<Keywords>else|if|switch|</Keywords>

<Keywords>case |default | </Keywords>

<Keywords>abstract |const |dynamic|ensures|extern|inline|internal |override|</Keywords>
<Keywords>private |protected|public|requires|signal|static|virtual|volatile|weak|</Keywords>
<Keywords>false|null|true|</Keywords>

<Keywords>try|catch|finally|throw]|</Keywords>

<Keywords>as |base|construct |delete|get|in|is|lock|new|out |params|ref|</Keywords>
<Keywords>sizeof|set|this|throws|typeof|using|value|var|yield|yields) \b</Keywords>

<Context>
<New_Line Comment_ Start>//</New_Line Comment_ Start>
<Comment_Start>/x</Comment_Start>
<Comment_End>x/</Comment_End>
<String Delimiter>"</String Delimiter>
<Constant_Character>' </Constant_Character>
<Can_Indent>True</Can_Indent>
<Syntax_Highlighting>True</Syntax Highlighting>
<Case_Sensitive>True</Case_Sensitive>

</Context>

<Categories>
<Category>
<Name>procedure</Name>
<Pattern>"[0-9a-z]+\.</Pattern>
<Index>1</Index>
<Icon>subprogram_xpm</Icon>
</Category>
</Categories>

358 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

</Language>

<tool name="cobc" package="OpenCOBOL" index="opencobol">
<language>OpenCOBOL</language>
<initial-cmd-line>-m</initial-cmd-line>
<switches lines="3" columns="2">
<title line="1" column="1" >Code generation</title>
<title line="1" column="2" >Run—-time options</title>

<title line="2" column="1" line-span="2" >Source forms and Warnings</title>

<title line="3" column="1" line-span="0" />
<title line="2" column="2" >Debugging</title>
<title line="3" column="2" >Syntax</title>

<radio>
<radio-entry label="Build dynamic module (default)" switch="-m" />
<radio-entry label="Build executable" switch="-x" />
<radio-entry label="Build object file" switch="-c" />
<radio—entry label="Preprocess only" switch="-E" />
<radio-entry label="Translation only, COBOL to C" switch="-C" />

<radio—-entry label="Compile only, output assembly file" switch="-S"

</radio>
<check label="Syntax checking only" switch="-fsyntax-only"
tip="Syntax error checking only; no output emitted" />

<combo label="Optimization" switch="-0" nodigit="1" noswitch="0"
tip="Controls the optimization level">
<combo—entry label="No optimization" value="0" />
<combo-entry label="Simple optimization" value="1" />
<combo-entry label="Some more optimization" value="s" />
<combo—entry label="Full optimization" value="2" />
</combo>

<field label="Generate Listing to " switch="-t" separator=" " as-file="true"

tip="Generate a listing file to given filename" />

<field label="Save Generated files to " switch="-save-temps" separator="="

tip="Save temporary files to given directory" />

<radio line="2" column="1">
<radio—-entry label="Format FIXED" switch="-fixed"
tip="Standards mandate default is fixed format source code" />
<radio—-entry label="Format FREE (FIXED is default)" switch="-free"
tip="Assume free format source code" />

as—directory="tn

</radio>
<check label="MF comment (may lead to ambiguous source)" switch="-fmfcomment"
tip="Allow * or / in column 1 as FIXED format line comment" />
<check 1label="FUNCTION implied" switch="-ffunctions-all" line="2" column="1"
tip="Allow use of intrinsic functions without FUNCTION keyword"
<check label="Fold Copy LOWER" switch="-ffold-copy-lower" line="2" column="1"
tip="Fold COPY subject to lower case" />
<check label="Fold Copy UPPER" switch="-ffold-copy-upper" line="2" column="1"
tip="Fold COPY subject to upper case" />
<check label="Full Warnings" switch="-W" line="2" column="1"
tip="ALL possible warnings" />
<popup label="Warnings" line="2" column="1">
<check label="All (exceptions listed below)" switch="-Wall" />
<check label="Obsolete" switch="-Wobsolete"
tip="Warn if obsolete features used" />
<check label="Archaic" switch="-Warchaic"
tip="Warn if archaic features used" />
30.20. 5.20 Can the GNAT Programming Studio be used with OpenCOBOL? 359

line="2"

colur

OpenCOBOL FAQ, Release 1.1

<check label="Redefinition" switch="-Wredefinition"

tip="Warn of incompatible redefinition of data items" />

<check label="Constant" switch="-Wconstant"

tip="Warn of inconsistent constant" />

<check label="Parentheses" switch="-Wparentheses"

tip="Warn of lack of parentheses around AND within OR" />

<check label="Strict typing" switch="-Wstrict-typing"

tip="Warn of type mismatch, strictly" />

<check label="Implicit define" switch="-Wimplicit-define"

tip="Warn of implicitly defined data items" />

<check label="Call params (Not set for All)" switch="-Wcall-params"

tip="Warn of non 01/77 items for CALL" />

<check label="Column overflow (Not set for All)" switch="-Wcolumn-overflow"

tip="Warn for FIXED format text past column 72" />

<check label="Terminator (Not set for All)" switch="-Wterminator"

tip="Warn when missing scope terminator (END-xxx)" />

<check label="Truncate (Not set for All)" switch="-Wtruncate"

tip="Warn of possible field truncation" />

<check label="Linkage (Not set for All)" switch="-Wlinkage"

tip="Warn of dangling LINKAGE items" />

<check label="Unreachable (Not set for All)" switch="-Wunreachable"

tip="Warn of unreachable statements" />

</popup>

<check label="Internal run-time error checks" switch="-debug" column="2"
tip="generate extra internal tests" />

<check label="Implicit initialize" switch="-fimplicit-init" column="2"
tip="Do automatic initialization of the Cobol runtime system" />

<check label="No truncation" switch="-fnotrunc" column="2"

<check

<check

<check

<check

<check

<check

<check

<check

<check

<check

<check

tip="Do not truncate binary fields according to PICTURE" />

label="Sign ASCII" switch="-fsign-ascii" column="2"

tip="Numeric display sign ASCII (Default on ASCII machines)" />

label="Sign EBCDIC" switch="-fsign-ebcdic" column="2"

tip="Numeric display sign EBCDIC (Default on EBCDIC machines)" />

label="Stack checking for PERFORM" switch="-fstack-check" column="2"

tip="Generate code to verify that you do not go beyond the boundary of the stack" />
label="Pass extra NULL" switch="-fnull-param" column="2"

tip="Pass extra NULL terminating pointers on CALL statements" />

label="Enable Debugging lines" switch="-fdebugging-line" line="2" column="2"
tip="Enable column 7 D (FIXED FORMAT) debug lines and >>D inline compiler dire
label="0Object Debug Information" switch="-g" line="2" column="2"

tip="Link level debug information" />

label="Trace (SECTION/PARAGRAPH)" switch="-ftrace" line="2" column="2"

tip="Enable output of trace statements for SECTION and PARAGRAPH" />

label="Trace all (SECTION/PARAGRAPH/STATEMENT)" switch="-ftraceall" line="2" column='
tip="Enable output of trace statements for SECTION, PARAGRAPH and STATEMENTS" />
label="Source locations" switch="-fsource-location" line="2" column="2"
tip="Generate source location code (Turned on by —-debug or —-g)" />

1label="COBOL2002" switch="-std=cobol2002" line="3" column="2"
tip="Override the compiler’s default, and configure for COBOL 2002" />
label="COBOL 85" switch="-std=cobol85" line="3" column="2"
tip="Override the compiler’s default, and configure for COBOL 85" />

<check label="Micro Focus" switch="-std=mf" line="3" column="2"
tip="Override the compiler’s default, and Micro Focus compatibility" />
</switches>
</tool>

360

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

<action name="make">
<external>make</external>
</action>

<action name="cobc">
<external>cobc -x %f</external>
</action>

<action name="cobcrun">
<external>cobcrun %p</external>
</action>

<action name="valac">
<external>valac --pkg gtk+-2.0 $f</external>

</action>

<action name="gdb">

<external>konsole —-vt_sz 132x24 -e gdb ./%p</external>
</action>
<action name="cgdb">

<external>konsole —-vt_sz 132x24 —-e cgdb ./%p</external>

</action>
<action name="cgdb...">
<shell>MDI.input_dialog "Enter command arguments"
<external>konsole —--vt_sz 132x24 -e cgdb —--args
</action>

<action name="gdbtui">
<external>konsole —--vt_sz 132x24 -e gdbtui --args
</action>
<action name="gdbtui...">
<shell>MDI.input_dialog "Enter command arguments"
<external>konsole —--vt_sz 132x24 -e gdbtui --args
</action>

<action name="DDD">
<external>ddd ./%p</external>
</action>

<submenu after="Build">

<title>OpenCOBOL</title>

<menu action="make">
<title>make</title>

</menu>

<menu action="cobc">
<title>cobc</title>

</menu>

<menu action="cobcrun">
<title>cobcrun</title>

</menu>

<menu action="valac">
<title>valac</title>

</menu>

<menu><title /></menu>

<menu action="gdb">
<title>gdb</title>

"Args"</shell>

./%p %1</external>

./%p %1l</external>

"Args"</shell>
./%p %1</external>

30.20. 5.20 Can the GNAT Programming Studio be used with OpenCOBOL?

361

OpenCOBOL FAQ, Release 1.1

</menu>

<menu action="cgdb">
<title>cgdb</title>

</menu>

<menu action="cgdb...">
<title>cgdb...</title>

</menu>

<menu action="gdbtui">
<title>gdbtui</title>

</menu>

<menu action="gdbtui...">
<title>gdbtui...</title>

</menu>

<menu action="DDD">
<title>ddd</title>

</menu>

</submenu>
</Custom>

which allows for development screens like
|

“; Editing switches for sp

Cobc|

Code generation

@ Build dynamic module (default)
() Build executable

() Build object file

() Preprocess only

(_) Translation only, COBOL to C

(:} Compile only, output assembly file
Syntax checking only

Optimization |5|::rne more optimization

Generate Listing to

|!homE-'brianfwﬁtingfcobnlfgl: Erowse

Save Generated files to |

Source forms and Warnings
(®) Format FIXED

(") Format FREE (FIXED is default)

|:| MF comment (may lead to ambiguous source)
[] FUNCTION implied

[] Fold Copy LOWER

[] Fold Copy UPFER

Full Warnings

Warnings:

Browse

hd

Run-time options
[] Internal run-time error checks

] Implicit initialize

[] sign Ascn

[sign EBCDIC

[] stack checking for PERFORM
[] Pass extra MULL

Debugging
Enable Debugging lines

Object Debug Information
D Trace (SECTION/PARAGRAPH)
Trace all (SECTION/PARAGRAPH/STATEMENT)

[] source locations

Syntax
[] coeoLzooz

[] coBoL &s
[] Micro Focus

Scenario

feyntax-only -m -Os -t fhome/brian/writing/cobol/gps/samplesfocsamples.lis -W -fdebugaging-line -g -ftraceall -fnotru

ﬂgK ‘ Eﬂevert ‘ xgancel ‘

or to be honest would do, if the final touches were added to the XML to integrate more with the GPS suite. There is
more work required to make a proud developer’s interface. Anyone?

362 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

30.21 5.21 Does OpenCOBOL support SCREEN SECTION?

Yes. The OpenCOBOL 1.1 pre-release now includes support for SCREEN SECTION. Experimental release for this
support occurred in early July, 2008.

The compiler recognizes most (if not all) of the Screen description entry of the COBOL 20xx Draft standard.
External variables that influence screen handling include

COB_SCREEN_EXCEPTIONS=Y To enable exceptions during ACCEPT.

COB_SCREEN_ESC=Y To enable handling of the escape key.

See Does OpenCOBOL support CRT STATUS? for more information on key codes and exception handling.

According to the standard a SCREEN SECTION ACCEPT does not need to be proceeded by a DISPLAY. The extra
DISPLAY won'’t hurt, but is not necessary.

30.21.1 5.21.1 Environment variables in source code

Thanks to Gary Cutler and opencobol.org.

In order to detect the PgUp, PgDn or PrtSc (screen print) keys, you must first set the environment variable
COB_SCREEN_EXCEPTIONS to a non-blank value.

If you want to detect the Esc key, you must set COB_SCREEN_EXCEPTIONS as described above AND
you must also set COB_SCREEN_ESC to a non-blank value. Fortunately, both of these can be done
within your OpenCOBOL program, as long as they’re done before the ACCEPT.

SET ENVIRONMENT ’COB_SCREEN_EXCEPTIONS’ TO 'Y’
SET ENVIRONMENT ’'COB_SCREEN_ESC’ TO 'Y’

30.22 5.22 What are the OpenCOBOL SCREEN SECTION colour values?

The FOREGROUND-COLOR and BACKGROUND-COLOR clauses will accept

78 Dblack value O.
78 Dblue value 1.
78 green value 2.
78 value 3.
78 value 4.
78 value 5.
78 value 6.
78 white value 7.

The display of these colours are also influenced by HIGHLIGHT, LOWLIGHT and REVERSE-VIDEO options. For
instance, brown will display as yellow when HIGHLIGHT is used.

30.23 5.23 Does OpenCOBOL support CRT STATUS?

Yes.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

CRT STATUS IS screen-status.

30.21. 5.21 Does OpenCOBOL support SCREEN SECTION? 363

http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY screenio.

01 screen-status pic 9(4).

PROCEDURE DIVISION.

3—-SCR-F1

There is also a special OpenCOBOL variable, COB-CRT-STATUS which can be used instead of the CRT STATUS
special name.

There is also a COPY text that ships with OpenCOBOL, copy/screenio.cpy that can be included in the DATA DIVI-
SION and provides 78 level constants for supported key status codes. Some values include:

* COB-SCR-F1 thru
* COB-SCR-F64
* COB-SCR-ESC

examine the file to see the other values.

30.24 5.24 What is CobCurses?

CobCurses is an optional package designed to work with OpenCOBOL 1.0, before OpenCOBOL 1.1 SCREEN SEC-
TION support was initiated. It has many features beyond simple SCREEN SECTION handling.

See http://sourceforge.net/projects/cobcurses for full details. This is a major piece of work by Warren Gay, ve3wwg.

From an opencobol.org posting by Warren announcing release 0.95:

CobCurses is a package designed to allow Open-Cobol
programmers to create screens on open system platforms,
or those (like Windows) that can use PDCurses. Since
handcrafting screens is tedious work, this package
includes a "Screen Designer" utility.

All User Guides and Programmer Guide documentation can
be found on the source forge (see link at bottom).

==== RELEASE NOTES ====

A large number of internal changes were implemented in
this release, but first let’s cover the user visible
improvements:

1. MENUS! Popup menus are now supported, and are available
in sdesign with every Action field. In fact, any sdesign
field that is marked with a diamond graphic, has the
ability to popup a menu with F1 (or "O0).

2. To support menus, FUNCTION keys are now available in
Action mode (though CONTROL-O is an alternate way

of opening a menu). This included a new event

callback NC-FKEY-EVENT.

3. GRAPHIC characters in the screen background. It is now
possible using sdesign to draw alternate-charset

364 Chapter 30. 5 Features and extensions

http://sourceforge.net/projects/cobcurses
http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

graphics in your screen background. See the notes in
the opening help screen for the "Paint" function.

4. TRACE facilities. CobCurses now includes an
environment variable that can enable capturing of
trace information to a file for debugging. A routine
named NC_TRACE_MSG can also be used to add custom
messages to the trace file.

INTERNAL CHANGES:
The main two major internal changes were:

1. The terminal support has been virtualized, so that
the CobCurses routines deal with a "terminal"

object (not curses routines). This will eventually
lead to other possible windowing interfaces like
perhaps graphic X Window or native Windows support.

The other motivation for this was to allow CobCurses
to have one consistent set of constants for colours,
attributes and character sets. Previously, these
values were different depending upon the platform
and implementation of curses used.

2. Menu support has been provided independently of curses.
This is important for portability since PDCurses and
some platforms do not provide a curses menu library.

This also guarantees that CobCurses menus will behave
consistently on all platforms (and overcome menu paging
bugs in ncurses).

PLANNED FOR THE NEXT RELEASE:

Please avoid writing much code that works with colour pairs.
In the next release, it is planned to hide the colour pair
value altogether by using a TDC (Terminal Drawing Context) .
This TDC will tie together attributes and colours, and
perhaps other "drawing contexts" so that you won’t have to
manage colour pairs (this will be transparent). This will
also pave the way for graphical interfaces where a selected
font and line styles etc. may also be supported.

NOTES:

HPUX users will need to link with ncurses,

instead of the native HPUX curses libraries. I didn’t
have time to fully investigate this, but the native
include files define things like MENU and ITEM types
that conflict with the CobCurses defined ones.

The release is available for download here:

http://sourceforge.net/projects/cobcurses

30.24. 5.24 What is CobCurses? 365

OpenCOBOL FAQ, Release 1.1

30.25 5.25 What is CobXRef?

CobXRef is a COBOL cross-referencing utility written by Vincent Coen and ported to OpenCOBOL 1.1.

Current source code is available at http://svn.wp0.org/add1/tools/cobxref or http://sourceforge.net/projects/cobxref/

and is currently (February 2013) in active development.

The system ships with full documentation and information for building from source is included in the readme file.

Fetching the utility

S svn checkout http://svn.wp0O.org/addl/tools/cobxref

Visit the project space at https://sourceforge.net/projects/cobxref/ for the latest information.

Example using the cobxref.cbl OpenCOBOL program for source code:

$ cobc -E cobxref.cbl
$ cobxref cobxref.i
$ cat cobxref.lst

09/02/13

002063
002264
002702
002725
002736
002748
002923

002033
002124
002257
002180

002051
002275

002669

002903

ACS Cobol Cross Reference Xref v0.95.20 (09/02/2013@00:33) Dictionary File for COBXREF

Symbols of Module: (COBXREF)

Data Section (FILE) Defn Locations

_________________________________ o

FS-REPLY 000067F 000195 002904

P-CONDITIONS 000098F 001981

P-VARIABLES 000099F 001980

PL-PROG-NAME 000095F 002309 002312

PRINT-FILENAME 000062F 000197 002859 002924

PRINTLINE 000083F 001397 001398 001399 001400 001937 001939 001942
002133 002135 002138 002205 002215 002225 002227
002271 002284 002288 002290 002301 002315 002701
002703 002704 002705 002716 002717 002720 002721
002726 002727 002728 002731 002732 002734 002735
002737 002740 002741 002742 002743 002746 002747
002751 002752 002753 002756 002757 002758 002759

PRINTLINEZ2 000097F 001979 001982

SDSORTKEY 000119F 001861

SKADATANAME 000108F 001120 001122 001911 001918 001928 001943 002024
002035 002042 002049 002054 002056 002064 002106
002126 002139 002179 002192 002201 002206 002248
002266 002272 002349 002351

SKAREFNO 000111F 001124 001944 001952 002065 002079 002140 002148
002207 002273 002350 002352

SKAWSORPD 000109F 001116 001921 001923 001929 001945 002034 002036
002057 002070 002115 002141 002196 002208 002267
002336 002668

SKAWSORPD2 000110F 001117 001930 002037 002058 002069 002274 002337

SL-GEN-REFNO1 000080F 002332

SORTFILE 000069F 000117 001860

SORTRECORD 000107F 001113 001126 002354 002923

SOURCE-LIST 000079F 002330 002333

SOURCE-LISTING 000062F 000078 001094 001145 001386 001449 001472 001594

SOURCEFILENAME 000065F 000196 002833 002838 002924

SOURCEINPUT 000065F 000101 001146 001383 001449 001472 001594 002371

SOURCEOUTPUT 000081F 002331

366 Chapter 30. 5 Features and extensions

(

http://svn.wp0.org/add1/tools/cobxref
http://sourceforge.net/projects/cobxref/
https://sourceforge.net/projects/cobxref/

OpenCOBOL FAQ, Release 1.1

001472

002007
002159

002272

09/02/13

001115
001190
001286
001717
001977
002311

002880

001562

001569

002578

002441

SOURCERECIN 000103F 002331 002370 002375

SUPPLEMENTAL-PART1-0UT 000059F 000073 000105 001106 001145 001381 001383 001449
001594 001862

SUPPLEMENTAL-PART2-IN 000056F 000074 000113 001863 001891 001892 001904 001907
002008 002018 002020 002091 002092 002099 002101
002160 002170 002172 002230 002231 002241 002244

XRDATANAME 000084F 001933 001943 002064 002129 002139 002206 002226
002289 002307 002311

XRDEFN 000085F 001944 002065 002140 002207 002273 002303

XRREFERENCE 000089F 001952 002079 002148

XRTYPE 000086F 001945 002070 002072 002141 002208 002275 002277 002314

ACS Cobol Cross Reference Xref v0.95.20 (09/02/2013@00:33) Dictionary File for COBXREF

Symbols of Module: COBXREF (COBXREF)

Data Section (WORKING-STORAGE) Defn Locations

_________________________________ o

A 000138wW 001084 001085 001086 001088 001089 001090 001114
001116 001117 001119 001122 001124 001125 001185
001200 001202 001241 001242 001244 001267 001269
001316 001318 001343 001351 001492 001542 001668
001719 001719 001732 001735 001742 001747 001972
001980 001981 002302 002303 002304 002306 002308
002312 002585 002641 002645

ADDITIONAL-RESERVED-WORDS 000490w 001018

ALL-FUN-IDX 000478wW 002667 002670

ALL-FUNCTIONS 000477wW 001077 002665

ARG-NUMBER 000135W 002823 002824 002826

ARG-VALS 000361W 001101 002864

ARG-VALUE 000362W 002832 002856 002868 002869 002872 002873 002879
002885 002886 002892 002893 002899 002900 002912

B 000139W 001732 001736 001747 001752 002314 002585

BUILD-NUMBER 000137W 001456 001459 001465 001466 001469 001550 001553
001601 001608 001625 002764 002766 002769 002956

C 000140wW 001732 001737 001760 002585

COBOLSEQNO 000210W 002374

CON-TAB-BLOCKS 001026W 001967 001990

CON-TAB-COUNT 001032W 001233 001234 001235 001554 001563 001564 001567
001571 001573 001964 001966 001977 001989 002932

CON-TAB-SIZE 001031w 001554 001555 001556 001557 001563

CONDITION-TABLE 001025W 002928

CONDITIONS 001029W 001235 001569 001573 001980 001990

D 000141w 001732 001738 001767 001772 001775 002400 002577
002582 002592 002595 002596 002598 002598

DUMP-RESERVED-WORDS 000156w 001083

E 000142Ww 002485 002487 002490 002492 002500

END-PROG 000172wWw 001143 001380 001385 001389 001395 001655 002364

ERROR-MESSAGES 000335wW

F-POINTER 000134W 001139 002664 002670 002934

FS-REPLY 000195wW 002904

FULL-SECTION-NAME 000374w 001244 002723

FUNCTION-TABLE 000387w 000476

FUNCTION-TABLE-SIZE 000481w 001089

GEN-REFNO1 000136W 001439 001587 002326 002332 002350 002352

GIT-BUILD-NO 001043W 002956 002962

GIT-ELEMENTS 001035W 001865 002963

30.25. 5.25 What is CobXRef? 367

(

OpenCOBOL FAQ, Release 1.1

GIT-HOLDWSORPD 001041W 001116 001125 002304 002958

GIT-HOLDWSORPD2 001042w 001117 002959

GIT-PROG-NAME 001039W 002308 002312 002957

GIT-REFNO 001040W 001124 002303 002955

GIT-TABLE-COUNT 001045W 001112 001115 001864 001878 002302 002946 002947 002954
002955 002956 002957 002958 002959 002961 002962 002963

GIT-TABLE-SIZE 001044W 002947 002948 002949 002950 002951

GIT-WORD 001038W 001119 001122 001865 002306 002311 002954

GLOBAL-ACTIVE 000178W 001603 001607 001624

GLOBAL-CURRENT-LEVEL 000201W 001425 001428 001460 001463 001586 002944

GLOBAL-CURRENT-REFNO 000200W 001439 001587 002955

GLOBAL-CURRENT-WORD 000199W 001438 001588 002923 002954

GLOBAL-ITEM-TABLE 001034w 001071

GOTASECTION 000185W 001370 001414 001417 001418 002776 002781 002785 002789
002793 002797 002801 002805 002809 002814

GOTENDPROGRAM 000186W 002930

H1-DD 000241W 002696

H1-HH 000247W 002699

H1-MIN 000249W 002700

H1-MM 000243W 002697

H1-YY 000245W 002698

H1PROG-NAME 000239W 001134

H1PROGRAMID 000252W 002694

HAD-END-PROG 000175W 002361

HAVE-NESTED 000181W 001164 001171

HD-D 000310W 002684

HD-DATE-TIME 000312W 002693

HD-HH 000303W 002687

HD-M 000309W 002683

HD-MM 000304W 002688

HD-SS 000305W 002689

HD-UU 000306W 002690

HD-Y 000308W 002682

HD2-D 000313W 002684

HD2-HH 000319W 002687

HD2-M 000315W 002683

HD2-MM 000321W 002688

HD2-SS 000323W 002689

HD2-UU 000325W 002690

HD2-Y 000317W 002682

HDDATE 000307W 002680 002681

HDR1 000236W 002703

HDR10 000286W 002751

HDR11 000290W 002756

HDR11A-SORTED 000292W 001968 001992

HDR11B-SORTED 000296W 001969 001991

HDR12-HYPHENS 000299W 002757

HDR3 000254W 002726 002735 002741

HDR5-PROG-NAME 000261W 002707 002712 002713

HDR5-SYMBOLS 000259W 002716

HDR6-HYPHENS 000268W 002713 002714

HDR6-SYMBOLS 000263w 002717

HDR7-VARIABLE 000272W 002722 002724 002733

HDR7-WS 000270W 002725 002734

HDR8-HD 000277W 002119

HDR8-WS 000276W 002740

HDRY 000282W 002746

HDTIME 000302W 002685 002686

HOLDFOUNDWORD 000189W 001716 001719

368 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

HOLDID 000203w 001096 001098 001100 001167 001170 002691 002708

HOLDID-MODULE 000204w 001100 001174 001177 002710

HOLDWSORPD 000187w 001291 001328 001354 001372 001376 001415 001461
002339 002353 002409 002419 002777 002780 002784
002792 002796 002800 002804 002808 002932 002958

HOLDWSORPD2 000188w 001292 001329 001355 001436 001707 001710 001718
002337 002810 002932 002959

LINE-COUNT 000129w 001872 002090 002102 002118 002120

LINE-END 000131w 002396 002596

LIST-SOURCE 000154w 001135 002329

LSECT 000356w 001945 002070 002141 002208 002275 002314

MSG1 000336W 001893 002009 002093 002161 002232

MSG10 000348wWw 002952

MSG1l6 000350w 001298

MSG2 000337w 001144

MSG4 000338wW 001447

MSG5 000340w 001469

MSG6 000342w 001558

MSG7 000344w 001783

MSG8 000345w 002367

MSG9 000346wW 002905

P-FUNCTION 000480wWw 001077 001090 002667

P-OC-IMPLEMENTED 000479wW

PRINT-FILENAME 000197w 002859 002924

PROG-BASENAME 000198wW 001096 001098 002856 002858

PROG-NAME 000122w 001134 002840

Q 000148w 001139 001732 001758 001761 001787 001788 001790
001798 001800 001802 001808 001811 001812 001842
001897 001934 001935 001936 001949 001951 001952
002076 002078 002079 002095 002130 002131 002132
002147 002148 002165 002209 002213 002236 002261
002282

REPORTS-IN-LOWER 000162w 001095 001118 001165 001172 001565 002305 002341

RESERVED-NAMES 001019w 001076 002642

RESVD-IDX 001020w 002644 002645

RESVD-IMPLEMENTED 001021w

RESVD-TABLE-SIZE 001023w 001085

RESVD-WORD 001022w 001076 001086 002644

S 000143w 001732 001758 001761 001790 001810 001811 001846
002459 002479 002493 002504 002526 002543

S-POINTER 000125w 001139 002158 002214 002224 002229 002263 002283
002934

S-POINTER2 000126W 001373 002427 002443 002444 002447 002450 002451
002459 002463 002465 002468 002478 002479 002483
002490 002493 002497 002499 002504 002511 002526
002543 002552 002934

S-POINTER3 000127w 002934

S-POINTER4 000128wW 002935

SAVED-VARIABLE 000191w 001220 001234 001457 001535 001543 001551 001566
001602 001626

SAVESKADATANAME 000190wWw 001890 001918 001928 002005 002033 002035 002042
002054 002056 002088 002124 002126 002157 002192
002228 002257 002266 002924

SAVESKAWSORPD 000192wWw 001929 002006 002036 002043 002050 002057 002089
002229 002262 002267 002282

SAVESKAWSORPD2 000193w 001930 002006 002037 002058 002089 002158

SECTION-NAME 000375wW 002779 002783 002787 002791 002795 002799 002803

SECTION-NAMES—-TABLE 000364wW 000373

SECTION-USED-TABLE 000358w 001873 002931

30.25. 5.25 What is CobXRef? 369

002957

002336
002788

001720

001796
001844
002013
002145
002278

001848

002287

002452

002485
002532

001571

002049
002201

002158

002807

OpenCOBOL FAQ, Release 1.1

SECTTABLE 000353w 000355

SOURCE-EOF 000169W 001142 001297 001657 002366 002440 002554

SOURCE-LINE-END 000132W 002396 002443 002451

SOURCE-WORDS 000133W 001709 002428 002560

SOURCEF ILENAME 000196W 002833 002838 002924

SOURCEIN8-160 000212W 001149 001183 001204 001207 001209 001244 001271
001275 001719 002376 002380 002383 002391 002392
002394 002404 002410 002411 002420 002444 002447
002460 002468 002478 002480 002487 002492 002494
002529 002578 002591 002592 002593 002598

SOURCETINWS 000209W 001471 002370

STRING-POINTER 000123W 002825 002831 002834 002839 002855 002857 002870
002911 002912

STRING-POINTER2 000124W 002855 002860

SVIWHAT 000213W 002779 002783 002787 002791 002795 002799 002803

SW-2 000153W 002881

SW-4 000155W 002887

SW-5 000158W 002895

SW-6 000161W 002901

SW-END-PROG 000171W 001401 002412

SW-GIT 000177W 001437 001462 001521 001621 002815

SW—-HAD-END-PROG 000174w 002362 002412

SW-NESTED 000180w 002412

SW-SOURCE-EOF 000168W 002372 002930

T 000144W 001754 001756 001797 001803 001815 001829 001833
001839 001840

USECT 000359W 001125 001886 002353

VARIABLES 001030W 001234 001567 001571 001967 001981

WE-ARE-TESTING 000159W 001388 002413 002418 002561 002597 002960

WORD-DELIMIT 000183W 001214 001224 001236 001280 001288 001311 001316
001339 001357 001497 001502 001506 001509 001517
001605 001659 001708 002445 002462 002469 002482
002488 002491 002496 002501 002531 002537 002562

WORD-DELIMIT2 000184W 002506 002525 002529 002537 002544

WORD-LENGTH 000130W 001322 001446 001447 001714 001717 001721 001722
001744 001745 001748 001749 001751 001753 001755
001764 001771 001773 001777 001798 001808 001815
001839 001841 002446 002470 002521 002545 002563
002768

WS-ANAL1 000194W 001874 001886 001887 001905 001921 001923 002723

WS-WC-DD 000330W 002696

WS-WC-HH 000331W 002699

WS-WC-MIN 0003320 002700

WS-WC-MM 000329W 002697

WS-WC-YY 000328W 002698

WS-WHEN-COMPILED 000327w 002695

WSF1-1 000219W 001311 001313 001337 001660 001670 001672 001675
001680 001683 001686 002467 002473 002475 002476
002502 002509 002513 002517 002525

WSF1-2 000218W 001699

WSF1-3 000217W 001693 001701

WSF3-1 000226W 002766 002770

WSF3-2 000227W 002771

WSFOUNDNEWWORD 000230W 001776 001778 001779 001828 001831 001842 001844

WSFOUNDNEWWORD2 000231W 001828 001836 001846 001848 002926

WSFOUNDNEWWORD 3 000232W 001731 001790 001811 001819 002925

WSFOUNDNEWWORD 4 000233W 002338 002343 002345 002349 002351 002667 002925

WSFOUNDNEWWORD 5 000234W 002586 002592 002593 002594

WSFOUNDWORD 000216W 000225

370 Chapter 30. 5 Features and extensions

001273
002393
002450
002500

002874

002807

001838

001331
001600
002486

001733
001756
001827
002765

001678
002477

002926

OpenCOBOL FAQ, Release 1.1

WSFOUNDWORD2 000225wW 001157
001227
001446
001507
001615
001714
001740
001778
001835
002448
002510
Y 000145w 001732
Y2 000146wWw 001732
Z 000147w 001733
001765
002518

001166
001235
001447
001520
001616
001721
001745
001779
001843
002458
002519
001739
001740
001735
001766
002519

001169 001173
001306 001345
001470 001485
001523 001534
001620 001637
001722 001735
001748 001753
001788 001790
001844 001847
002461 002471
002528 002530
001741 001757
001741

001736 001737
001768 001778
002521 002538

ACS Cobol Cross Reference Xref v0.95.20 (09/02/2013@00:33) Dictionary

Variable Tested [S] Symbol (88-Conditions)

SN-TEST-1 SNT1-ON

Listing above limited to 300 lines

30.26 5.26 Does OpenCOBOL implement Report Writer?

Not at this time. July, 2008

But it does support LINAGE. See Does OpenCOBOL implement LINAGE?

30.27 5.27 Does OpenCOBOL implement LINAGE?

001176 001216
001424 001427
001488 001489
001551 001568
001673 001676
001736 001737
001754 001755
001800 001811
001848 002338
002481 002495
002539 002544

001738 001739
001827 001830
002539 002543

001220
001433
001493
001572
001681
001738
001768
001819
002342
002503
002563

001740
001835
002544

File for COBXREF

Yes. LINAGE sets up logical pages inside file descriptors enhancing the WRITE operations and enabling the END-

OF-PAGE clause.

FILE SECTION.
FD A-REPORT
LINAGE IS 13 LINES
TOP 2
FOOTING 2
BOTTOM 3.

LINAGE clauses can set:

TOP
LINES
FOOTING
BOTTOM

The LINAGE-COUNTER noun is maintained during writes to LINAGE output files.

See LINAGE for a sample program.

30.26. 5.26 Does OpenCOBOL implement Report Writer?

371

001226
001438
001503
001588
001684
001739
001771
001830
002345
002505
002644

001764
001841
002545

09/02/13

(

OpenCOBOL FAQ, Release 1.1

30.28 5.28 Can I use ctags with OpenCOBOL?

Yes. Use the Exuberant version of ctags. Exuberant ctags recognizes COBOL, producing a TAGS or tags file suitable
for emacs, vi, nedit and other editors that support the ctags format. ctags, by default, only supports the competition,
C and Fortran.

After running ctags program.cob
$ vi —t WORKING-STORAGE

will open program.cob and start at the line defining the working-storage section. Note: tags are case-sensitive and for
larger projects, the above vi command would start an edit of the first file with an occurrence of WORKING-STORAGE
found in the tags.

30.29 5.29 What about debugging OpenCOBOL programs?

OpenCOBOL internal runtime checks are enabled with -debug.
Support for tracing is enabled with -ftrace and -ftraceall.
Source line location is enabled with -fsource-location, and implied with the -g and -debug options..

Activation of FIXED format D indicator debug lines is enabled with -fdebugging-line. In FREE format, >>D can be
used anywhere on a line. See Does OpenCOBOL support D indicator debug lines?.

-fstack-check will perform stack checking when -debug or -g is used.
-fsyntax-only will ask the compiler to only check for syntax errors, and not emit any output.

To view the intermediate files that are generated, using -C will produce the .c source files and any .c.l.h and c.h header
files. -save-temps[=dir] will leave all intermediate files in the current directory or the optional directory specified,
including .i files that are the COBOL sources after COPY processing.

Support for gdb is enabled with -g.

$ gdb hello

GNU gdb 6.7.1-debian

Copyright (C) 2007 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "i486-linux—-gnu"...

Using host libthread_db library "/lib/i686/cmov/libthread_db.so.1l".

(gdb) break 106

Breakpoint 1 at OxOBFUSCA: file hello.c, line 106.

(gdb) break 109

Breakpoint 2 at OxTETHESY: file hello.c, line 1009.

(gdb) run

Starting program: /home/brian/writing/cobol/hello

[Thread debugging using libthread_db enabled]

[New Thread O0xSTEMADDR (LWP 5782)]

[Switching to Thread O0xESSES6b0 (LWP 5782)]

Breakpoint 1, hello_ (entry=0) at hello.c:106

106 cob_new_display (0, 1, 1, &c_1);
(gdb) cont
Continuing.

Hello World!

372 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

Breakpoint 2, hello_ (entry=0) at hello.c:109

109 cob_set_location ("hello", "hello.cob", 6, "MAIN SECTION", "MAIN PARAGRAPH",
(gdb) cont
Continuing.

Program exited normally.
(gdb)

Setting a break at line 106 and 109 was found by a quick look through the C code from $ cobc -C hello.cob and
seeing where the DISPLAY call and STOP RUN was located. Note: just because; the gdb displayed addresses were
obfuscated from this listing.

30.29.1 5.29.1 Some debugging tricks

From [human] on opencobol.org:

If you want to have different outputs in debug / normal mode use a fake if 1 =1 like

OCOBOL
D IF 1 =1
D DISPLAY "Debug Line" END-DISPLAY
D ELSE
DISPLAY "Normal Line" END-DISPLAY
D END-IF

For using the environment Just define
OCOBOL
01 debugmode pic x.
88 debugmode-on values '0O’, 'Y’, 'J', 'o', 'y', "3, "1’.

put an

OCOBOL
accept debugmode from Environment "DEBUGMODE"
end-accept

at the beginning of each program (or define debugmode as external) and use it in your programs like

OCOBOL
IF debugmode-on
DISPLAY "Debug Line" END-DISPLAY
ELSE
DISPLAY "Normal Line" END-DISPLAY
END-IF

For having no debug code in runtime you can combine these two

OCOBOL
D 01 debugmode pic x.
D 88 debugmode-on wvalues '0O’, ’'Y’, 'J’, o', 'y', "3", "1’'.
D accept debugmode from Environment "DEBUGMODE"
D end-accept
D IF debugmode-on
D DISPLAY "Debug Line" END-DISPLAY
D ELSE

30.29. 5.29 What about debugging OpenCOBOL programs? 373

OpenCOBOL FAQ, Release 1.1

DISPLAY "Normal Line" END-DISPLAY
D END-IF

In this way you have fast code at runtime (if not compiled with -fdebugging-line) and can switch the output during
development.

The advantages over a compiler switch to disable the displays are:
* You can always use display in your program, not only for debug information.
* You see in the code what you do.
* If compiled with lines that have ‘D’ indicator you can switch at runtime.

* If compiled without lines that have ‘D’ indicator you can have faster and smaller modules.

30.29.2 5.29.2 Animator

Federico Priolo posted this beauty of a present on opencobol.org
TP-COBOL-DEBUGGER
http://sourceforge.net/projects/tp-cobol-debugg/ and on his company site at http://www.tp-srl.it/

A system to preprocess OpenCOBOL inserting animator source code that at runtime provides a pretty slick stepper
with WORKING-STORAGE display.

This open source bundle is OpenCOBOL. Compile the animator, run it over your own programs and it generates a new
source file that when compiled and evaluated, runs in a nice SCREEN SECTION showing original source and a view
pane into WORKING-STORAGE.

30.29.3 5.29.3 Unit testing

See What is COBOLUnit? for links to a well define full on Unit testing framework for COBOL, written in Open-
COBOL.

30.30 5.30 Is there a C interface to OpenCOBOL?

Most definitely. See http://www.opencobol.org/modules/bwiki/index.php?cmd=read&page=UserManual%2F2_3#content_1_0
for details.

As a short example, showing off a little of cobc’s ease of use when it comes to C source code.

hello.c

#include <stdio.h>
int main(int argc, char xargv([]) {

printf ("Hello C compiled with cobc\n");
}

int hello(int argc, char *argv[]) {
printf ("Hello C compiled with cobc, run from hello.so with cobcrun\n");

}

With a sample run of

374 Chapter 30. 5 Features and extensions

http://opencobol.org/
http://sourceforge.net/projects/tp-cobol-debugg/
http://www.tp-srl.it/
http://www.opencobol.org/modules/bwiki/index.php?cmd=read&page=UserManual%2F2_3#content_1_0

OpenCOBOL FAQ, Release 1.1

S cobc hello.c

$ cobcrun hello

Hello C compiled with cobc, run from hello.so with cobcrun
S cobc -x hello.c

$./hello

Hello C compiled with cobc

[btiffin@home cobol]$ cobc -v —-x hello.c

Executing: gcc —c¢ —-I/usr/local/include -pipe -Wno-unused —-fsigned-char
-Wno-pointer-sign -o "/tmp/cob2785_0.0" "hello.c"

Return status: O

Executing: gcc -W1l, ——export-dynamic -o "hello" "/tmp/cob2785_0.0"
-L/usr/local/lib -lcob -1lm -lgmp -lncurses -1db -1d1

Return status: O

30.31 5.31 What are some idioms for dealing with C char * data from
OpenCOBOL?

Thanks to Frank Swarbrick for pointing these idioms out

To add or remove a null terminator, use the STRING verb. For example

OCOBOL
* Add a null for calling C
STRING current-url
DELIMITED BY
X"00" DELIMITED BY SIZE
INTO display-ur
MOVE display-url TO current-url

* Remove a null for display
STRING current-url
DELIMITED BY
INTO display-ur

Or to make changes in place
OCOBOL
* Change nulls to spaces
INSPECT current-url
REPLACING ALL X"00" WITH

Or there is also modified references in OpenCOBOL
OCOBOL
* Assume IND 1is the first trailing space (or picture limit).
* Note: OpenCOBOL auto initializes working-storage to SPACES or ZEROES
* depending on numeric or non-—-numeric pictures.
* Remove null
MOVE TO current—-url (IND:1).

* Add a zero terminator
MOVE X"00" TO current-url (IND:1).

And the OpenCOBOL CONCATENATE intrinsic

OCOBOL
MOVE FUNCTION CONCATENATE (filename; X"00") TO c-field.

[Roger] While points out: X”00” is almost always interchangeable with LOW-VALUE.

30.31. 5.31 What are some idioms for dealing with C char * data from OpenCOBOL? 375

OpenCOBOL FAQ, Release 1.1

In all of the above snippets, the source code X00” can be replaced by the COBOL noun LOW-VALUE or LOW-
VALUES. Except when a program collating sequence is active and where the first character is not X”00”.

With the CALL verb, use ADDRESS OF and/or BY REFERENCE
CALL "CFUNCTION" USING BY REFERENCE ADDRESS OF current-url.

The above being equivalent to char** in C.

COBOL, by its nature, passes all arguments by reference. That can be overridden with the BY VALUE clause and the
BY CONTENT clause.

30.32 5.32 Does OpenCOBOL support COPY includes?

Yes. COPY is fully supported, all variations from the standards up to and including the proposed 20xx standards.
Inline REPLACE text substitutions are also supported.

The -I compiler option influences the copybook search path and -E can be used to examine the after COPY prepro-
cessor output.

There is also -ffold-copy-upper and -ffold-copy-lower compiler controls.

30.33 5.33 Does OpenCOBOL support WHEN-COMPILED?

Both as a noun and as an intrinsic function.

DISPLAY WHEN-COMPILED.
DISPLAY FUNCTION WHEN-COMPILED.

07/05/0805.15.20
2008070505152000-0400

Note: The noun WHEN-COMPILED is non-standard and was deemed obsolete in the pre 85 standard.

30.34 5.34 Whatis PI in OpenCOBOL?

With OpenCOBOL 1.1

DISPLAY FUNCTION PI.
3.1415926535897932384626433832795029

DISPLAY FUNCTION E.
2.7182818284590452353602874713526625

Thats 34 digits after the decimal. Developers that need to know the tolerances for use in calculations are directed to
poke around the freely available source code, and to read up on GMP.

30.35 5.35 Does OpenCOBOL support the Object features of the 2002 stan-
dard?

Not yet. July 2008

376 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

30.36 5.36 Does OpenCOBOL implement PICTURE 78?

Yes. PICTURE 78 clauses can be used for constants, translated at compile time. This common non-standard extension
is supported in OpenCOBOL.

30.37 5.37 Does OpenCOBOL implement CONSTANT?

Current OC 1.1 has preliminary support for a subset of the standard conforming “CONSTANT” phrase. eg
01 MYCONST CONSTANT AS 1.

Note: there is a syntax difference between 78 and CONSTANT.

30.38 5.38 What source formats are accepted by OpenCOBOL?

Both FIXED and FREE COBOL source formats are supported. FIXED format follows the 1-6, 7, 8-72 special columns
of the COBOL standards. The compiler directives:
Column
12345678901234567890
>>SOURCE FORMAT IS FREE
>>SOURCE FORMAT IS FIXED

can be used. The directive must occur at column 8 or beyond if the ACTIVE scan format is FIXED. As per the 2002
standard this directive can be used to switch formats multiple times within a compilation unit.

Continuation indicators in column 7 are not applicable to FREE format and are not supported in this mode of transla-
tion. String catenation can always be used; the & operator.

The special *> till end of line comment is supported in both FREE and FIXED forms, but by necessity will need to be
placed at column 7 or greater in FIXED format sources.

The -free and -fixed options to cobc also influence the expected source formats, with the default being mandated by
the standards as FIXED.

30.39 5.39 Does OpenCOBOL support continuation lines?

Yes. A dash - in column 7 can be used for continuation lines. But, by necessity continuation lines only apply in FIXED
format source code. FREE format COBOL does not support continuation as there is no real meaning to column 7 in
FREE form source.

Note that in this example there is no terminating quote on the string continuations, but there is an extra starting quote
following the dash

123456789012345678901234567890123456789012345678901234567890123456789012
identification division.
program-id. longcont.

data division.
working-storage section.
01 longstr pic X (80)
value "This will all be one string in FIXED forma
-"t source code".
01 otherstr pic X(148) value "this
-"string will have spaces between the words THIS and STRING, as

30.36. 5.36 Does OpenCOBOL implement PICTURE 78? 377

OpenCOBOL FAQ, Release 1.1

—"continuation lines always fill to column 72.".

procedure division.

display longstr.

display length longstr.

display function length (function trim(longstr trailing)).
display otherstr(1:72).

display otherstr (73:75).

display length otherstr.

display function length (function trim(otherstr trailing)) .
goback.

Compiled with:

S cobc longcont.cob
S cobcrun longcont
produces:

This will all be one string in FIXED format source code

80

00000055

this string will have spaces between the words
THIS and STRING, as continuation lines always fill to column 72.

148

00000139

Note: The DISPLAY of otherstr was split to avoid any wide browser scrolling, not for any COBOL reasons.

Also note that the rules for continuation lines are quite difficult to describe simply and concerned OpenCOBOL
programmers are urged to read through the standards documents for full details.

30.40 5.40 Does OpenCOBOL support string concatenation?

Absolutely. Sources that need long strings, or those wishing to enhance source code readability, can use the & operator

identification division.
program-id. longstr.

data division.
working-storage section.

01 longstr pic X (80)
value "This " & "will " & "all " & "be " &
"One " &

"string " & "in both FIXED and FREE" &
" format source code".
procedure division.

display longstr.

goback.

Run this with

S cobc longstr.cob

$ cobcrun longstr

This will all be one string in both FIXED and FREE format source code
S cobc —-free longstr.cob

$ cobcrun longstr

This will all be one string in both FIXED and FREE format source code

And for an Intrinsic FUNCTION unique to OpenCOBOL, see FUNCTION CONCATENATE.

378 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

30.41 5.41 Does OpenCOBOL support D indicator debug lines?

Yes, in two forms. As for continuation lines, column 7 has no meaning for SOURCE FORMAT IS FREE source code
so the standard D in column 7 can not be used. FORMAT FREE source code can use the >>D compiler directive
instead. Use D lines as a conditional include of a source code line. These debug lines will only be compiled if the
-fdebugging-line compiler switch is used.

From human on opencobol.org

If you put a D in column 7 OC handles this as a comment. These lines are
only compiled if you run cobc with -fdebugging-line.

By using this you can put some test messages etc. into your program that
are only used if necessary (and therefore build with -fdebugging-line).

OpenCOBOL also supports a >>D debug compile time directive and a handy trick for those that like to write code that
be compiled in both FIXED and FREE forms, is to place the directive in column 5, 6 and 7.

Column
12345678901234567890
DISPLAY "Normal Line" END-DISPLAY
>>DDISPLAY "Debug Line" END-DISPLAY

This allows use of the directive form in FORMAT FREE and also, with the D in column 7, will compile properly in
FORMAT FIXED. In FORMAT FIXED the >> in columns 5 and 6 will be ignored as part of the sequence number
field.

For more information on debugging support see What about debugging OpenCOBOL programs?

30.42 5.42 Does OpenCOBOL support mixed case source code?

Absolutely, kind of. Mixed case and mixed format, ASCII and EBCDIC. Most COBOL compilers have not required
uppercase only source code for quite a few years now. Still, most COBOL compilers including OpenCOBOL folds
parts of the source to uppercase with certain rules before translating.

The compiler is case insensitive to names

000100 identification division.
000200 program—id. mixcase.

000300 data division.

000400 working-storage section.
000500 01 SOMEUPPER pic x(9).

000600 01 S ber pic x(9).

000700 01 someupper pic x(9).

000800

000900 procedure division.

001000 move "SOMEUPPER" to SOMEUPPER.
001100 move "SomeUpper" to S Ur r
001200 move "someupper" to someupper.

001300 display "SOMEUPPER: " SOMEUPPER end-display.
001400 display "SomeUpper: " SomeUpper end-display.
001500 display "someupper: " someupper end-display.
001600 stop run.

Attempted compile with:

S cobc —x mixcase.cob

produces:

30.41. 5.41 Does OpenCOBOL support D indicator debug lines? 379

http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

mixcase.cob:10: Error: ’SOMEUPPER’ ambiguous; need qualification
mixcase.cob:5: Error: ’SOMEUPPER’ defined here
mixcase.cob:6: Error: ’SOMEUPPER’ defined here
mixcase.cob:7: Error: ’SOMEUPPER’ defined here

Note; that although the folded declarations conflict, the DISPLAY quoted strings will NOT be folded, and would
display as expected.

Case sensitivity is also at the mercy of operating system conventions. Under GNU/Linux, OpenCOBOL’s dynamic
link loader is case sensitive.
CALL "CS$JUSTIFY" USING center-string "C" END-CALL.

is not the same as

CALL "c$justify" USING center-string "C" END-CALL.

In support of case folding and COPY libraries, OpenCOBOL supports -ffold-copy-lower and -ffold-copy-upper. For
mixing and matching legacy sources.

Trivia The expressions uppercase and lowercase date back to early moveable type. Typographers would keep two
cases of metal casted letters, Capitalized and normal. Usually set on stacked shelves over the workbench. The
small letters, being used more frequently, ended up on the lower shelf; the lower case letters.

30.43 5.43 What is the shortest OpenCOBOL program?

All that is needed is a program-id. Doesn’t do much.

program-id. a.

Update: It turns out that an empty file is the shortest OpenCOBOL that will do nothing. From Roger

$ 1ls -1 empty.cob
-rw—-r——r—— 1 root root 0 Jun 21 12:35 empty.cob

$ cobc -x -frelax-syntax empty.cob
empty.cob: 1l: Warning: PROGRAM-ID header missing - assumed

$./empty
$

(Alternate to -frelax-syntax is -std=mf)

30.44 5.44 What is the shortest Hello World program in OpenCOBOL?

A short version of OpenCOBOL hello world, compiled -free

program-id.hello.procedure division.display "Hello World!".
Thanks to human and the opencobol.org forums.
Please note: This is not good COBOL form, and is only shown as an example of the possibilities.

Update: From Roger the shortest hello world program can be

$ cat hello.cob
display"Hello World!".

$ cobc -x -frelax-syntax —-free hello.cob
hello.cob: 1: Warning: PROGRAM-ID header missing - assumed
hello.cob: 1: Warning: PROCEDURE DIVISION header missing - assumed

380 Chapter 30. 5 Features and extensions

http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

$./hello
Hello World!
$

So, that means, display’’Hello World!”. is all you need, if you compile with relax-syntax.

30.45 5.45 How do I get those nifty sequential sequence numbers in a
source file?

FIXED format COBOL uses the first 6 positions of each line as a programmer defined sequence field. This field is
stripped as part of the preprocessing and is not validated. Historically, the sequence numbers were used to verify that
card punch cards were read into a card reader in the proper order. Many legacy COBOL programs have sequentially
numbered sequence values. Here is a little vi trick to renumber the sequence field by 100s.

Given

000005% HELLO.COB OpenCOBOL FAQ example
000010 IDENTIFICATION DIVISION.

000020 PROGRAM-ID. hello.

000030 PROCEDURE DIVISION.

000040 DISPLAY "Hello World!".

000100 STOP RUN.

Running the following ex filter
% !perl -ne ‘printf(‘\%06d\%s\n”, $. * 100, substr($_, 6, -1));’

produces a nicely resequenced source file.

000100% HELLO.COB OpenCOBOL FAQ example
000200 IDENTIFICATION DIVISION.

000300 PROGRAM-ID. hello.

000400 PROCEDURE DIVISION.

000500 DISPLAY "Hello World!".

000600 STOP RUN.

* Note: Only use this on already FIXED form source. If used on any FREE format COBOL, the first 6 columns
will be damaged.

This has no effect on the compilation process, it only effects the appearance of the sources.

Note: Be careful not to confuse SEQUENCE NUMBERS with source code LINE NUMBERS. They are not the
same.

¢ Vim: For users of the Vim editor, the command

:set number

will display the number of each source line. Many editors support the display of line numbers. Even

$ less -N

can be used to display line numbers of its input.

30.46 5.46 Is there a way to count trailing spaces in data fields using Open-
COBOL?

Yes. Quite a few. But instead of resorting to a PERFORM VARYING sequence try

30.45. 5.45 How do | get those nifty sequential sequence numbers in a source file? 381

OpenCOBOL FAQ, Release 1.1

01 B-COUNT PIC 999 VALUE 0.
01 TEST-CASE PIC X(80)
VALUE "This is my string.".

ONE-WAY .
INSPECT FUNCTION REVERSE (TEST-CASE)
TALLYING B-COUNT
FOR LEADING ' .
DISPLAY B-COUNT.

TWO-WAY .
INSPECT TEST-CASE
TALLYING B-COUNT
FOR TRAILING SPACE.
DISPLAY B-COUNT.

THREE-WA
IF TEST-CASE EQUAL SPACES
COMPUTE B-COUNT = LENGTH OF TEST-CASE
ELSE
COMPUTE
COUNT = LENGTH TEST-CASE -
FUNCTION LENGTH (FUNCTION TRIM(TEST-CASE TRAILING))
END-COMPUTE
END-IF
DISPLAY B-COUNT.

produces:

062
124
062

The second value is 124 as TWO-WAY accumulates another 62 after ONE-WAY. The INSPECT verb does not initialize
a TALLYING variable.

Information modified from opencobol.org forum post.

30.47 5.47 Is there a way to left justify an edited numeric field?

Yes, a couple of ways.

Assuming a working storage of

01 mynumber PIC 9(8) VALUE 123.
01 myedit PIC Z(7)9.
01 mychars PIC X(8).

01 spcount PIC 99 USAGE COMPUTATIONAL.

MOVE mynumber TO myedit

MOVE myedit TO mychars
DISPLAY mynumber END-DISPLAY
DISPLAY myedit END-DISPLAY

00000123
123

With OpenCOBOL, the intrinsic
FUNCTION TRIM(myedit LEADING)

382 Chapter 30. 5 Features and extensions

http://opencobol.org/

OpenCOBOL FAQ, Release 1.1

will trim leading whitespace. The LEADING is not really necessary as TRIM removes both leading and trailing
whitespace.

OpenCOBOL also ships with a library function for justification of strings
CALL "CS$JUSTIFY" USING mychars "L" END-CALL

to left justify an alphanumeric field. “R” for right, or “C” for centre.

But a generic idiom that should work across all capable COBOL systems
MOVE 0 TO spcount

INSPECT myedit TALLYING spcount FOR LEADING

MOVE myedit (spcount + 1:) TO mychars

DISPLAY myedit END-DISPLAY
DISPLAY mychars END-DISPLAY
123
123
MOVE 0 TO spcount
INSPECT mynumber TALLYING spcount FOR LEADING
DISPLAY mynumber
DISPLAY mynumber (spcount + 1z:)

Uses the INSPECT verb to count leading spaces, then reference modification to move the characters one past the
spaces till the end of the edit field to an alpha field.

30.48 5.48 Is there a way to detemermine when OpenCOBOL is running
ASCII or EBCDIC?

OpenCOBOL supports both ASCII and EBCDIC character encodings. A simple test such as
01 MYSPACE PIC X VALUE X"20".
88 MYISASCII VALUE

IF MYISASCII
DISPLAY "I’'m ASCII" END-DISPLAY
END-IF

can be used to determine the character set at run-time.

30.49 5.49 Is there a way to determine when OpenCOBOL is running on
32 or 64 bits?

OpenCOBOL builds and supports both 32 and 64 bit architectures. A simple test such as
01 MYPOINTER USAGE POINTER.

IF FUNCTION LENGTH (MYPOINTER) EQUALS 8
DISPLAY "This is a 64 bit machine" END-DISPLAY
END-IF

can be used to determine the native bit size at run-time.

30.48. 5.48 Is there a way to detemermine when OpenCOBOL is running ASCIl or EBCDIC? 383

OpenCOBOL FAQ, Release 1.1

30.50 5.50 Does OpenCOBOL support recursion?

Yes. Not completely to standard currently (February 2013), as there are no restrictions on calling programs in a
recursive manner, but yes.

A made up example using a factorial called program

OCOBOLA> s,k Atk hhhhhhhhhdhb bbb bbb d A bbb d Ak b b h Ak bk b hkh kb h ok h sk h ok h ok ko ko h ok kAt

x> Author: Brian Tiffin
*> Date: 29-Dec-2008
*> Purpose: Horsing around with recursion

*> Tectonics: cobc —-x recurse.cob

*> Kk ko ok ok ko b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok b b ok b ok b ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ko kA
identification division.

program-id. recurse.

data division.
working-storage section.
78 n value 4.

01 fact usage binary-long.

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A ok

procedure division.

call "factorial" using by value n returning fact end-call
display n "! = " fact end-display

goback.
end program recurse.
*> LR g b b b b g b b b b g b b b g b b b i g b b b g g b b b g b b b b g b b b b g b b b g b b b b g b b b g g b b b g g g

KDk ok ok ok ok ok ok ok ok ok ok ok sk o ok A

*> LR b b b b g g b b b g b b b b b b b g b b b b g b b b g b b b b g b b b g b b b g b b b b g b b b b g b b b b g g
identification division.
program-id. factorial is recursive.

data division.
local-storage section.
01 result usage is binary-long.

linkage section.
01l num usage is binary-long.

L

procedure division using by value num.

display "num: " num end-display

if num equal zero
move 1 to return-code
display "ret: " return-code end-display
goback

end-if

subtract 1 from num end-subtract
call "factorial" using by value num returning result end-call

compute return-code = (num + 1) * result end—compute
display "ret: " return-code end-display
goback.

384 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

end program factorial.

Produces:

num: +0000000004
num: +0000000003
num: +0000000002
num: +0000000001
num: +0000000000
ret: +000000001
ret: +000000001
ret: +000000002
ret: +000000006
ret: +000000024
4! = +0000000024

Of course the Intrinsic FUNCTION FACTORIAL might be a more efficient and much easier way at getting factorials.

30.51 5.51 Does OpenCOBOL capture arithmetic overflow?

Yes. Here is one sample using ADD with ON SIZE ERROR.

And please note that OVERFLOW is a conditional for STRING. In COBOL, what this author terms ‘overflow’ is less
technically correct than ‘size error’ when using COBOL arithmetic terminology.

OCOBOLA> s,k hkhkhhhhh bk bk kb hhk bk sk h sk h sk k sk ok h ok h ok ok kb kh ok ok ok hk k h ok ko k ok ok h ok ok ok ok h ok kAt

x> Author: Brian Tiffin
*> Date: 04-Feb-2009
*> Purpose: Factorial and overflow

*> Tectonics: cobc —-x overflowing.cob

*> LR g b b b g g b b b g b b b g b b b g g b b b g g b b b g b b b b g b b b b g b b b g b b b b g g b b b g b b b b g g
identification division.

program-id. overflowing.

data division.

working-storage section.

01 fact usage binary-long.
01 answer usage binary-double.

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A ok
procedure division.
00-main.

perform
varying fact from 1 by 1
until fact > 21

add function factorial(fact) to giving answer
on size error
display
"overflow at: " fact " is " answer
" without test " function factorial (fact)

end-display
not on size error
display fact ": " answer end-display
end-add
end-perform

00-leave.

30.51. 5.51 Does OpenCOBOL capture arithmetic overflow? 385

OpenCOBOL FAQ, Release 1.1

goback.

end program overflowing.

Kk ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok A ok ok ok K ok ok ok o ok ok Ak

which outputs:

+0000000001:
+0000000002:
+0000000003:
+0000000004:
+0000000005:
+0000000006:
+0000000007:
+0000000008:
+0000000009:
+0000000010:
+0000000011:
+0000000012:
+0000000013:
+0000000014:
+0000000015:
+0000000016:
+0000000017:
+0000000018:
+0000000019:
overflow at:
overflow at:

+00000000000000000001
+00000000000000000002
+00000000000000000006
+00000000000000000024
+00000000000000000120
+00000000000000000720
+00000000000000005040
+00000000000000040320
+00000000000000362880
+00000000000003628800
+00000000000039916800
+00000000000479001600
+00000000006227020800
+00000000087178291200
+00000001307674368000
+00000020922789888000
+00000355687428096000
+00006402373705728000
+00121645100408832000

+0000000020 is +00121645100408832000 without test 432902008176640000
+0000000021 is +00121645100408832000 without test 197454024290336768

30.52 5.52 Can OpenCOBOL be used for plotting?

Yes? One way is with an external call to gnuplot.

OCOBOL >>SOURCE FORMAT IS FIXED

R R I b I b e S b e S b e b b S b S b I S b b b b I S b b b b S SE b S b b b S b S S S b b b Sb b I S b I S gb Y

* Author: Brian Tiffin

* Date:
* Purpose:
* Tectonics:

29-July-2008

Plot trig and a random income/expense/worth report
requires access to gnuplot.
cobc —-Wall -x plotworth.cob

http://www.gnuplot.info

* OVERWRITES ocgenplot.gp ocgpdata.txt sincos.png ploworth.png

AA A A A A AA hA A A A A A A A A A A d A d A h Ak h h

identification division.
program-id. plotworth.

environment division.
input-output section.
file-control.

select scriptfile

assign to "ocgenplot.gp"
organization is line sequential.

select outfile

assign to "ocgpdata.txt"
organization is line sequential.

select moneyfile

assign to "ocgpdata.txt"
organization is line sequential.

data division.

386

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

file section.

fd scriptfile.
01 gnuplot-command pic x(82).

fd outfile.
01 outrec.

03 x-value pic
03 filler pic
03 sin-value pic
03 filler pic
03 cos-value pic

fd moneyfile.

01 moneyrec.
03 timefield pic
03 filler pic
03 income pic
03 filler pic
03 expense pic
03 filler pic
03 networth pic

-z2222229.99.
X.
-z2229.9999.
X.
-z22229.9999.

9(8).

X.
-z2222229.99.
X.
-z2222z29.99.
X.
-2zzz22z9.99.

working-storage section.

01 angle

01 dates pic 9(8).
01 days pic s9(9).
01 worth pic s9(9).
01 amount pic s9(9).

01 gplot pic

01 result pic s9(9).

procedure division.

x(80) value is

pic s9(7)v99.

* Create the script to plot sin and cos
open output scriptfile.

move "plot 'ocgpdata.txt’

- to gnuplot-command.

write gnuplot-command.
move "replot

"ocgpdata.txt’

- to gnuplot-command.

write gnuplot-command.

move "set terminal png; set output
- to gnuplot-command.

write gnuplot-command.

close scriptfile.

* Create the sinoidal data
open output outfile.

move spaces

to outrec.

"sincos.png’;

perform varying angle from -10 by 0.01

* Invoke gnuplot

until angle > 10

move angle to x-value

move function sin (angle)
move function cos (angle)

write outrec
end-perform.
close outfile.

to sin-value

to cos-value

"gnuplot -persist ocgenplot.gp’.

using 1:2 with lines title ’sin(x)’"

using 1:3 with lines title ’cos(x)’"

replot"

30.52. 5.52 Can OpenCOBOL be used for plotting?

387

OpenCOBOL FAQ, Release 1.1

call "SYSTEM" using gplot
returning result.

if result not = 0
display "Problem: " result
stop run returning result
end-if.

* Generate script to plot the random networth
open output scriptfile.

move "set xdata time" to gnuplot-command.

write gnuplot-command.

move ’set timefmt "%$Y%m%d"’ to gnuplot—-command.
write gnuplot-command.

move ’'set format x "%$m"’ to gnuplot-command.
write gnuplot-command.

move ’'set title "Income and expenses"’ to gnuplot-command.

write gnuplot-command.
move ’'set xlabel "2008 / 2009"’ to gnuplot-command.
write gnuplot-command.

move ’'plot "ocgpdata.txt" using 1:2 with boxes title "Income"

-’ linecolor rgb "green"’ to gnuplot—-command.
write gnuplot-command.

move ’'replot "ocgpdata.txt" using 1:3 with boxes title "Expense"

-’ linecolor rgb "red"’ to gnuplot-command.
write gnuplot-command.

move ’'replot "ocgpdata.txt" using 1:4 with lines title "Worth"’

- to gnuplot-command.
write gnuplot-command.

move ’set terminal png; set output "plotworth.png"; replot’

- to gnuplot-command.
write gnuplot-command.
close scriptfile.

* Generate a bi-weekly dataset with date, income, expense,
open output moneyfile.

move spaces to moneyrec.

move function integer-of-date (20080601) to dates.

move function random(0) to amount.

perform varying days from dates by 14
until days > dates + 365

move function date-of-integer (days) to timefield
compute amount = function random() x 2000
compute worth = worth + amount
move amount to income
compute amount = function random() x 1800
compute worth = worth - amount
move amount to expense
move worth to networth
write moneyrec

end-perform.

close moneyfile.

* Invoke gnuplot again. Will open new window.
call "SYSTEM" using gplot
returning result.
if result not = 0
display "Problem: " result
stop run returning result

worth

388 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

end-if.

goback.

Which displays and saves:
1

30.52. 5.52 Can OpenCOBOL be used for plotting? 389

OpenCOBOL FAQ, Release 1.1

Incone and expenses

28— T T T T T T T

T LI |
Incone

Expense 1
Horth ——

1588

1688

988

=588 .

=1488 7

=1388 7

-EBHH L L 1 L L 1 L L 1 L L 1 M L 1 L L 1 L L 1 L L 1 L L 1 L P | L L 1 L L 1 L L
a3 a6 a7 a5 a9 18 11 12 a1 ez a3 a4 a3 a6

2008 / 2089

30.53 5.53 Does OpenCOBOL support the GIMP ToolKit, GTK+?

Yes. A binding for GTK+ is in the works. Early samples have proven workable and screenshots of OpenCOBOL GUI
screens are shown here.

What does GIMP stand for?

GIMP is an acronym for the GNU Image Manipulation Program, a very complete and robust grapic design
tool. See the GIMP site for more information.
GTK+ is the GIMP ToolKit. See the GTK site for more information.

Simple buttons

390 Chapter 30. 5 Features and extensions

http://www.gimp.org
http://www.gtk.org

OpenCOBOL FAQ, Release 1.1

Hello from GTK in OpenCOBOL at 2088120111495787-0500
Hello from GTK 1in OpenCOBOL at 2008120111500044-0500

[

OpenCOBOL with GTI — O X

Hello from OpenCOBOL and GTK ﬂ

Euudbyeﬁnn10penCGEGLandETHl

Text entry widget

Hello from GTK 1in OpenCOBOL at 2008120312472750-0500

text:
text:
text:
text:
text:

[

first entry , t0B00068011
first entry - editted , thppRRAAa21
then a clear , +0RRAAAAA 12

, +O00DOROO0O0
and a final entry for the screen, +0000000632

OpenCOBOL GTK+ - O X

Hello from OpenCOBOL and GTK

Iand a final entry for the screenshot]

Goodbye from OpenCOBOL and GTK

Sample OpenCOBOL that generated the above
OCOBOL >>SOURCE FORMAT IS FIXED

*>
*>
*>
*>
x>
*>
*>
x>
x>

ER R b b i b b b b b b b b b b b b b b b S b i g b b b i b b b b e b b e S b b b i b b b b b b g i b b b b b b i b

Author: Brian Tiffin
Date: 03-Dec-2008
Purpose: Hello from GTK+

Requires: 1libgtk2.0, libgtkZ2.0-dev, gtk2.0, pkg-config
Tectonics:

cobc -c¢ ‘pkg-config —--cflags gtk+-2.0"' ocgtk.c

cobc -x ‘pkg-config —--1ibs gtk+-2.0"' gtkhello.cob ocgtk.o

ER b i e e b b e b b b b i b b b e b e i b b b b b b i b b b b i e b i b b b b b b b b b b g

identification division.
program—id. gtkhello.

data division.

working-storage section.

01
01
01
01
01

result usage binary-long.
gtk-window usage pointer.
gtk-box usage pointer.
gtk-hello usage pointer.
gtk-textentry usage pointer.

30.53. 5.53 Does OpenCOBOL support the GIMP ToolKit, GTK+?

391

OpenCOBOL FAQ, Release 1.1

01 gtk—-goodbye usage pointer.
01 callback usage procedure-pointer.
01 params usage pointer.

KDk o ok

procedure division.

*> Initialize GTK
CALL "CBL_OC_GTK_INIT_ CHECK" returning result END-CALL
>>D display "init: " result end-display

x> Create a toplevel window
CALL "CBL_OC_GTK_WINDOW_NEW" returning gtk-window END-CALL
>>D display "win: " gtk-window end-display

x> Set the titlebar - using cob_field now **HEREx*x*
CALL "CBL_OC_GTK_WINDOW_SET_TITLE"
using by value gtk-window
by reference "OpenCOBOL GTK+"
END-CALL
>>D display "title: " gtk-window end-display

*> Set the border width
CALL "CBL_OC_GTK_CONTAINER_SET_BORDER_WIDTH"
using by value gtk-window
by value 5
END-CALL
>>D display "border: " gtk-window end-display

*> connect a window destroy, quit main loop handler
set callback to entry "CBL_OC_destroy"
CALL "CBL_OC_G_SIGNAL_CONNECT"
using by value gtk-window

by reference "delete_event" & x"00"

by value callback

by value params
END-CALL

x> Create a vertically packed box
CALL "CBL_OC_GTK_VBOX_NEW"
using by value 0

by value 5
returning gtk-box
END-CALL
>>D display "box: " gtk-box end-display

*> Add the box to the window
CALL "CBL_OC_GTK_CONTAINER_ADD"
using by value gtk-window
by value gtk-box
END-CALL

x> Create the hello button
CALL "CBL_OC_GTK_BUTTON_NEW_WITH_LABEL"
using by reference "Hello from OpenCOBOL and GTK" & x"00"
returning gtk-hello
END-CALL
>>D display "button: " gtk-hello end-display

392 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

x> Connect the hello button to the hello code
set callback to entry "CBL_OC_hello"
CALL "CBL_OC_G_SIGNAL_CONNECT"
using by value gtk-hello

by reference "clicked" & x"00"

by value callback

by value params
END-CALL

x> Pack the button into the box, top to bottom
CALL "CBL_OC_GTK_BOX_PACK_START"
using by value gtk-box

by wvalue gtk-hello

by value 1

by value 1

by wvalue 0
END-CALL

*> button 1is ready to show
CALL "CBL_OC_GTK_WIDGET_SHOW"

using by value gtk-hello
END-CALL

x> Add a text entry field
CALL "CBL_OC_GTK_ENTRY_NEW"

returning gtk-textentry
END-CALL

*> Connect code to the text entry, passing the entry widget
set callback to entry "CBL_OC_activate"
CALL "CBL_OC_G_SIGNAL_CONNECT"
using by value gtk-textentry

by reference "activate" & x"00"

by wvalue callback

by value gtk-textentry
END-CALL

*> Pack the text field into the box, top to bottom
CALL "CBL_OC_GTK_BOX_PACK_START"
using by value gtk-box

by value gtk-textentry

by value 1

by value 1

by value 0
END-CALL

x> text field is ready to show
CALL "CBL_OC_GTK_WIDGET_SHOW"

using by value gtk-textentry
END-CALL

x> Create the bye button
CALL "CBL_OC_GTK_BUTTON_NEW_WITH_LABEL"
using by reference "Goodbye from OpenCOBOL and GTK" & x"00"
returning gtk-goodbye
END-CALL
>>D display "button: " gtk-goodbye end-display

30.53. 5.53 Does OpenCOBOL support the GIMP ToolKit, GTK+?

393

OpenCOBOL FAQ, Release 1.1

*> Connect the bye button to the bye code
set callback to entry "CBL_OC_destroy"
CALL "CBL_OC_G_SIGNAL_CONNECT"
using by value gtk-goodbye

by reference "clicked" & x"00"

by value callback

by value params
END-CALL

*> Pack the button into the box, under hello
CALL "CBL_OC_GTK_BOX_PACK_START"
using by value gtk-box
by value gtk-goodbye
by value 1
by value 1
by value 0
END-CALL
>>D display "pack: " gtk-box end-display

*> button 1is ready to show
CALL "CBL_OC_GTK_WIDGET_SHOW"

using by value gtk-goodbye
END-CALL

*> box 1s ready to show

CALL "CBL_OC_GTK_WIDGET_SHOW"
using by value gtk-box

END-CALL

*> window 1s ready to show
CALL "CBL_OC_GTK_WIDGET_SHOW"

using by value gtk-window
END-CALL

x> Start up the event loop, control returned when GTK main exits
CALL "CBL_OC_GTK_MAIN" END-CALL

*> Something terminated the GTK main loop, sys—-close or bye or
display "ending..." end-display

goback.
end program gtkhello.

KDk oAk ok o

> kkrk window ShUutdown CaAllbDaCK # %k kkk k k ok sk k sk Kk k 5k sk 5k & ok 5k % ok 5k 5 ok ok 5 * %
identification division.

program—-id. CBL_OC_destroy.

data division.

linkage section.

01 gtk-window usage pointer.

01 gtk-data usage pointer.

procedure division using by value gtk-window by wvalue gtk-data.
CALL "CBL_OC_GTK_MAIN_QUIT" END-CALL
goback.

end program CBL_OC_destroy.

KDk o ok o ok ok

394 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

*> wkrk hello button Click CAllbaACK k% k sk sk kk k5 k ok sk ok 5k ok Kk 5k ok 5 ok % 5k ok % ok 5 % *
identification division.

program—-id. CBL_OC_hello.

data division.

linkage section.

01 gtk-window usage pointer.

01 gtk-data usage pointer.

procedure division using by value gtk-window by wvalue gtk-data.
display

"Hello from GTK in OpenCOBOL at "

function current-date
end-display

goback.
end program CBL_OC_hello.

x> *%*% text entry activation callbacCk sk ks kkkk ko k sk kk ok ok ok 5k 5k ok ok ok & 5 &
x> This procedure called from GTK on enter key pressed in entry
identification division.

program-id. CBL_OC_activate.

data division.

working-storage section.

01 textfield pic x(32).

01 textlen usage binary-long.

linkage section.
01 gtk-window usage pointer.
01 gtk-data usage pointer.

procedure division using by value gtk-window by wvalue gtk-data.

CALL "CBL_OC_GTK_ENTRY_GET_TEXT"
using by value gtk-data
textfield
returning textlen
END-CALL
display "text: " textfield ", " textlen end-display

goback.
end program CBL_OC_activate.
Using this very early thin wrapper to GTK+

/+* OpenCOBOL GTK+ 2.0 wrapper */
/+ Tectonics: cobc -c ‘pkg-config --cflags gtk+-2.0"' ocgtk.c #*/

#include <memory.h>
#include <stdlib.h>
#include <libcob.h>

#include <gtk/gtk.h>
#include <glib.h>

#include "ocgtk.h"

/+ Initialize the toolkit, abends 1f not possible x*/
int

30.53. 5.53 Does OpenCOBOL support the GIMP ToolKit, GTK+? 395

OpenCOBOL FAQ, Release 1.1

CBL_OC_GTK_INIT (int argc, char xargv[])
{

gtk_init (¢argc, &argv);

return 0O;

/* Initialize the toolkit, return false if not possible */

/+ Need pointers to argc and argv here */
int
CBL_OC_GTK_INIT_CHECK()
{
gboolean gres = gtk_init_check (0, NULL);
return (gres == TRUE) ? 0 : -1;

/* Create new window */
GtkWidget*
CBL_OC_GTK_WINDOW_NEW ()

{
return gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

/% set the title =*/
int

CBL_OC_GTK_WINDOW_SET_TITLE (void *window, char =xtitle)

{

struct cob_module *module;
cob_field =*title_field;
char xcstr;

/#* Error conditions simply return, doing nothing #*/

if (cob_get_global_ptr()->cob_call_params < 2) { return 1; }
module = cob_get_global_ptr () ->cob_current_module;
if (module == NULL) {

//cob_runtime_error ("No module!");
//cob_stop_run(1);
return 1;

title_field = module->cob_procedure_parameters[1l];

if (!'title_field) { return 1; }
cstr = (char *)malloc(title_field->size + 1);
if (!cstr) { return 1; }

memcpy (cstr, title_field->data, title_field->size);

cstr(title_field->size] = "\0’;

gtk_window_set_title (GTK_WINDOW (window), cstr);

free(cstr);
return O;

/% Widget sizing =/

int

CBL_OC_GTK_WIDGET_SET_SIZE_REQUEST (void *widget,
{

int x, int y)

396

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

gtk_widget_set_size_request (GTK_WIDGET (widget), x, Vv);
return O;

/+ Set border width */

int

CBL_OC_GTK_CONTAINER_SET_BORDER_WIDTH (void *window, int pixels)

{
gtk_container_set_border_width (GTK_CONTAINER (window), pixels);
return 0;

/* New vertical box */

GtkWidget*

CBL_OC_GTK_VBOX_NEW (int homogeneous, int spacing)
{

return gtk_vbox_new ((gboolean)homogeneous, (gint)spacing);

/% New horizontal box */

GtkWidget

CBL_OC_GTK_HBOX_NEW (int homogeneous, int spacing)
{

return gtk_hbox_new ((gboolean)homogeneous, (gint)spacing);

/* packing boxes */

int

CBL_OC_GTK_BOX_PACK_START (void *gcont, wvoid *gobj, int expand, int fill, int padding)

{
gtk_box_pack_start (GTK_BOX (gcont), gobj, (gboolean)expand, (gboolean)fill, (guint)padding);
return 0;

/% menus #*/

GtkWidget«
CBL_OC_GTK_MENU_BAR_NEW ()
{

return gtk_menu_bar_new();

GtkWidget
CBL_OC_GTK_MENU_NEW ()
{

return gtk_menu_new();

GtkWidget
CBL_OC_GTK_MENU_ITEM_NEW_WITH_LABEL (char *label)
{

struct cob_module *module;

cob_field =+title_field;

char ~cstr;

GtkWidget *item;

/#* Error conditions simply return, doing nothing =*/
if (cob_get_global ptr()->cob_call_params < 1) { return NULL; }

module = cob_get_global_ptr () ->cob_current_module;

30.53. 5.53 Does OpenCOBOL support the GIMP ToolKit, GTK+? 397

OpenCOBOL FAQ, Release 1.1

if (module == NULL) {
//cob_runtime_error ("No module!");
cob_stop_run(l);

title_field = module->cob_procedure_parameters[0];
if (!title_field) { return NULL; }

cstr = (char *)malloc(title_field->size + 1);
if (!cstr) { return NULL; }

memcpy (cstr, title_field->data, title_field->size);
cstr(title_field->size] = "\0’;

item = gtk_menu_item_new_with_label (cstr);
gtk_widget_set_tooltip_text (item, (gchar =)cstr);

free(cstr);

return item;

int
CBL_OC_GTK_MENU_ITEM_SET_SUBMENU (void *item, wvoid *menu)
{
gtk_menu_item_set_submenu (GTK_MENU_ITEM (item), menu);
return 0O;

int

CBL_OC_GTK_MENU_SHELI,_APPEND (void +menu, void xitem)

{
gtk_menu_shell_append (GTK_MENU_SHELL (menu), item);
return 0;

/+ New button =/
GtkWidget*
CBL_OC_GTK_BUTTON_NEW_WITH_LABEL (char =*label)
{
GtkWidget =xbutton;
button = gtk_button_new_with_label (label);
if (button) {
gtk_widget_set_tooltip_text (button, (gchar «)label);
}

return button;

/* New text entry =/

GtkWidget*

CBL_OC_GTK_ENTRY_NEW () {
return gtk_entry_new();

/* Set text in entry #*/
int
CBL_OC_GTK_ENTRY_SET_TEXT (void *entry, char x*text)

{
gtk_entry_set_text (GTK_ENTRY (entry), text);

398 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

return 0O;

/#* Get the text in an entry #*/
int
CBL_OC_GTK_ENTRY_GET_TEXT (void *entry, char xtext)
{
struct cob_module *module;
cob_field +*text_field;
size_ t text_length;

module = cob_get_global_ptr () ->cob_current_module;
text_field = module->cob_procedure_parameters[1l];

const gchar xentry_text;
entry_text = gtk_entry_get_text (GTK_ENTRY (entry));

text_length = entry_text ? strlen(entry_text) : 0;
text_length = (text_length > text_field->size) ? text_field->size : text_length;
memset (text_field->data, ' ', text_field->size);

memcpy (text_field->data, entry_text, text_length);
return (int)text_length;

/% connect event to callback */
int
CBL_OC_G_SIGNAL_CONNECT (int xgobj, char xsgn, void (cb) (void *, wvoid), wvoid xparm)
{
g_signal_connect (G_OBJECT (gobj), sgn, G_CALLBACK(cb), parm);
return 0;

/% add object to container */
int
CBL_OC_GTK_CONTAINER_ADD (void *window, wvoid *gobj)
{
gtk_container_add (GTK_CONTAINER (window), gobij);
return 0O;

/+ tell gtk that object is now ready =/
int
CBL_OC_GTK_WIDGET_SHOW (void +gobj)
{
gtk_widget_show (gobij);
return O;

/+ tell gtk to ready all the wdigets x/
int
CBL_OC_GTK_WIDGET_SHOW_ALL (void xwindow)
{

gtk_widget_show_all (window) ;

return 0;

/+ Some dialogs */
GtkWidget*

30.53. 5.53 Does OpenCOBOL support the GIMP ToolKit, GTK+?

399

OpenCOBOL FAQ, Release 1.1

CBL_OC_GTK_FILE_SELECTION_NEW (char *title)
{
return gtk_file_selection_new(title);

}

/+ the event loop #*/
int
CBL_OC_GTK_MAIN ()
{
gtk_main();
return O;

/* stop the gui */
int
CBL_OC_GTK_MAIN_QUIT ()
{
gtk_main_qgquit () ;
return 0;
}
VAT YA

A screenshot with added menu and file dialog after hitting File -> Open

400

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

—

- title | = a8

,|fhumefbrianfwriﬁngfcubulfgﬁc[- |

Al % Folders — |Files B
1 ! a.out
Home o base
:| calendar.c
gtkcaller :
H Dgsktu gtkcaller.cob
gtkhello
EE-%] gtkhellol.cob -
Documents - New Folder -+ Bename F|Ie| ﬂ Delete F|Ie| €

Selection: fhome/brianfwriting/cobolfgtk

OpenCOBOL GTK+ — O X <ok & cancel

Fle Help

. _Hello from OpenCOBOL and GTK

Goodbye from OpenCOBOL and GTK

30.53.1 5.53.1 A web browsing widget embedded in OpenCOBOL?

Yep.
A short sample, made for OpenCOBOL 1.0’s first birthday, Dec 27th, 2008.

int
CBL_OC_GTKHTML (char xhtml_string)
{

GtkWidget =xapp;

GtkWidget =xhtml;

GtkWidget =scrolled_window;

char xfakeargv[2] = {"happybday", ""};
/* prepare our environment, we need gnome and gconf x/
gnome_init ("Example_ 1", "1.0", 1, fakeargv);

gconf_init (1, fakeargv);

/* create GtkHTML widget =/

30.53. 5.53 Does OpenCOBOL support the GIMP ToolKit, GTK+? 401

OpenCOBOL FAQ, Release 1.1

html = gtk_html_new ();

gtk_signal_connect (GTK_OBJECT (html), "url_ requested",
GTK_SIGNAL_FUNC (url_requested), NULL);
gtk_signal_connect (GTK_OBJECT (html), "object_requested",

GTK_SIGNAL_FUNC (object_requested), NULL);
gtk_html_load_from_ string (GTK_HTML (html), html_string, -1);

/+ create GNOME app and put GtkHTML in scrolled window in it #*/
app = gnome_app_new ("Example 1", "Happy Birthday OpenCOBOL");

scrolled_window = gtk_scrolled_window_new (NULL, NULL);
gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_window),

GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC);
gtk_container_add (GTK_CONTAINER (scrolled_window), html);

gnome_app_set_contents (GNOME_APP (app), scrolled_window);
gtk_window_set_default_size (GTK_WINDOW (app), 320, 100);
gtk_widget_show_all (app);

/% run the main loop */
gtk_main ();

return 0O;
}
/xx/

displays
Happy Birthday OpenCOBOL

Happy Birthday 1.0 OpenCOBOL 1.0!!
opencobok &

gnbackl

when called with this COBOL.

KD sk o ok

*> Author: Brian Tiffin
*> Date: 27-Dec-2008
*> Purpose: Happy Birthday OpenCOBOL

*> Tectonics:
*> gcc —-c ‘pkg-config —--cflags —--1libs libgnome-2.0 libgnomeui-2.0

*> gtk+-2.0 libgtkhtml-3.14"' hellogtk.c

*> cobc —lgtkhtml-3.14 —-Ilgnomeui-2 —-1SM —-1ICE -lglade-2.0

*> —lbonoboui-2 —-lgnomevfs-2 —-lgnomecanvas-2 —lgnome-2 -lpopt
*> —1bonobo-2 -1lbonobo-activation —-10ORBit-2 -lart_lgpl_2

*> —lgconf-2 —-lgthread-2.0 —-1rt —-1gtk-x11-2.0 —-1xmlZ2

*> -lgdk-x11-2.0 —-latk-1.0 -lgdk_pixbuf-2.0 —-1m

*> —lpangocairo-1.0 —-lpango-1.0 —-lcairo —-lgobject-2.0

*> —lgmodule-2.0 —-1dl1 -1glib-2.0 -x ocgtkhtml.cob hellogtk.o

*> R b
identification division.
program-id. ocgtkhtml.

402 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

data division.

working-storage section.

01 result usage binary-long.

01 html-string pic x(512) value
"Happy Birthday 1.0 " &
"OpenCOBOL 1.0!!
" &
"<div align=’center’>" &
"opencobol " &
"

<OBJECT CLASSID=close_button>Closebutton" &
"</OBJECT></div>" & x"00".

*> R b i b b b b b b b b b b b b b b g b b b b b b b b b b b b b b b b b b b i b b b b b b b b b b b b b b b b i

procedure division.

call "CBL_OC_GTKHTML" using
by reference html-string
returning result
end-call

goback.
end program ocgtkhtml.

30.54 5.54 What is ocsort?

Proof of concept release as of February 2010
A powerful external sort utility using OpenCOBOL for the sort engine.

A preliminary version can be referenced through http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=915&forum=1&po
or directly from http://oldsite.add1tocobol.com/tiki-download_file.php?fileld=74

ocsort supports a variety of sorting options, for example:
ocsort sort fields"(1,5,CH,A,11,4,CH,A)" use inputfile record £f,391 org sqg give outputfile org sqg

Users of MFSORT may recognize the syntax. Explaining the above example, Angus posted:

This will sort the file "inputfile", a fixed length file (391 byte each
record, organization sequential), and create a file "outputfile" sorted
(which is of the same type). The sort fields are

(start, length, type, direction)

=> start=1

=> length=5

=> type = character (you can sort on comp3 fields, but ocsort don’t handle it)
=> direction = ascending (or descending)

It’s like an order by.

The omit/include condition allow to remove record from the file (ex if
character number 5 of this record is ’'F’, omit the record). You can use and,
or, greater than...)

The sources include the parser for the ocsort command language it includes:

USE "USE clause"

GIVE "GIVE clause"

SORT "SORT clause"

MERGE "MERGE clause"
FIELDS "FIELDS instruction"
RECORD "RECORD instruction"
ORG "ORG instruction"
OUTREC "OUTREC clause"

30.54. 5.54 What is ocsort? 403

http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=915&forum=1&post_id=4353#forumpost4353
http://oldsite.add1tocobol.com/tiki-download_file.php?fileId=74

OpenCOBOL FAQ, Release 1.1

SUM "SUM clause"
INCLUDE "INCLUDE clause"
OMIT "OMIT clause"
COND "COND clause"
NONE "NONE clause"
AND "AND clause"

OR "OR clause"

see the source code for all the details.

30.55 5.55 When is Easter?

A short program to display the day of Easter for a given year. [found out later that this calculation is known as the
Computus.

OCOBOL >>SOURCE FORMAT IS FIXED

K>k ok K ok A ok ok ok K ok ok ok o ok Ak

*> Author: Brian Tiffin

*> Date: 17-Nov-2008

*> Purpose: Display Easter Day for any given year, 1580 - 2050
x> Tectonics: cobc —-x easter.cob

*> ./easter [year]

*> Ak ok ok ok b ok ok b ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok b ok ok b ok ok b ok ok ok b ok ok b ok ok b ok ok ok ok ok ok b ok ok b ok ok b ok ok ok ok ok ok o ok
identification division.
program-id. easter.

data division.
working-storage section.
01 a picture 9(8) usage comp-x.

01 b picture 9(8).
01 ¢ picture 9(8).
01 d picture 9(8).
01 z picture 9(8). +> Why z? COBOL has pi for pi and e for e
01 £ picture 9(8).
01 g picture 9(8).
01 h picture 9(8).
01 1 picture 9(8).
01 9 picture 9(8).

01 year picture 9(4).
01 mo picture 9(2).
01 da picture 9(2).
01 args picture x(80).

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A ok

procedure division.

accept args from command-line end-accept
if args not equal spaces
move args to year

else
display "Year: " with no advancing end-display
accept year end-accept
end-if
compute a = function mod(year 19) end-compute
divide vyear by 100 giving b remainder c end-divide
divide b by 4 giving d remainder =z end-divide
compute f = (b + 8) / 25 end-compute

404 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

compute g = (b - £ + 1) / 3 end-compute
compute h = (19 « a) + b - d - g + 15 end-compute
compute h = function mod (h 30) end-compute
divide ¢ by 4 giving i remainder j end-divide
compute ¢ = (z + 1) % 2 + 32 — h -] end-compute
compute ¢ = function mod(c 7) end-compute
compute b = (a + (11 % h) + (22 * c)) / 451 end-compute
compute a = h + ¢ — (7 « b) + 114 end-compute
compute da = function mod(a 31) + 1 end-compute
divide a by 31 giving mo end-divide

display "yyyy/mm/dd: " year "/" mo "/" da end-display
goback.
end program caster.

*> LR g b b b b g b b b b g b b b b b b b g b b b b g g b b b g b b b b b b b b g b b b g b b b b g b b b g b b b b g g g
*> Snagged from a REBOL script, easter-day.r by Didier Cadieu

*> http://www.rebol.org/view-script.r?script=easter-day.r

x>

x> easter—-day: func [

*> {Compute the easter date for the wanted year.}
*> year [integer!] {Year for whitch you want the easter date}
*> /local a b cdz f gh ik

*>]

*> a: year // 19

x> b: to integer! year / 100

*> c: year // 100

x> d: to integer! b / 4

*> z: b // 4

*> f: to integer! b + 8 / 25

*> g: to integer! b - f + 1 / 3

*> h: 19 x a + b -d - g + 15 // 30

x> i: to integer! c / 4

*> k: c // 4

*> c:r z + 1 2 +32-h-%k//7

*> b: to integer! a + (11 * h) + (22 * c) / 451
*> a: h +c - (7 b)) + 114

*> to date! reduce [

*> a// 31 + 1

x> to integer! a / 31

x> year

*>]

x>]

Sample, with and without command line argument.
S cobc -x easter.cob

S ./easter 2011

yyyy/mm/dd: 2011/04/24

S ./easter

Year: 2010

yyyy/mm/dd: 2010/04/04

30.55.1 5.55.1 Easter program critique

What follows is a warning to those people learning COBOL with the help of this document. The variable names used
to implement the algorithm to find Easter day are near to useless as to intent and or reason. It’s not good COBOL style
and I got called on it. Take the critique for what you will, I took it as ‘hey, come on, write better code if you’re going

30.55. 5.55 When is Easter? 405

OpenCOBOL FAQ, Release 1.1

to show it off’. Keep in mind that if you ever are fortunate enough to work with core business COBOL, what I got as a
critique, could well be an embarassing drumming from a boss and threats of firings. And as a side-note, be willing to
take drummings and learn from them before the threats of firings occur. Programmers should never be defensive over
code, but open and willing to better.

I posted a link to the easter.cob source code above as a Christmas post on a Linkedln COBOL group and got this
feedback from Huib Klink; I respect his posts and opinions.

It would have been slightly more appropriate to share a COBOL source that
tells when its Christmas. Let my give it a try (Proc. div. only):

accept args from command-line end-accept
if args not equal spaces
move args to year

else

display "Year: " with no advancing end-display
accept year end-accept

end-if

move 12 to mo

move 25 to da

display "yyyy/mm/dd: " year "/" mo "/" da end-display
goback.

end program xmas.

Hmmmmm. Lot less variables needed so it seems ... should clean up working
storage, but since I copy/pasted this and don’t want (are forbidden) to fix
what ain’t broke I will not change that piece of the program. For sure NOBODY
will ever need to fix this program anymore so NOBODY will be sitting for hours
wondering what a is for. Or b. or c. Or ... whatever, I am a programmer and
thus I am lazy by definition, and I want to turn around that logic so doing no
clean-up proves my professionalism and eases my job. After all if all
programmers are lazy, I must be a very good one and

(5 minutes contemplating on fuzzy lazy logic)

Happy Xmas

So, I looked into it and learned something I find very cool. See http://en.wikipedia.org/wiki/Computus The calculation
has a name and its name is Computus. That’s awesome. Sadly, the Anonymous Gregorian algorithm detailed on
Wikipedia uses the same useless variable names and the sample remains obfuscated, as I think the original sent into a
newspaper in 1876 was intended.

30.55.2 5.55.2 A real COBOL Computus

From Paul Chandler during a discussion on LinkedIn in COBOL Profressionals.

This one is nice folks. Defensible.

000100 IDENTIFICATION DIVISION. 00010025
000200 PROGRAM-ID. RCEASTER. 00020025
000300 AUTHOR. PAUL CHANDLER, MARCH 2013. 00030025
Q004 D0 * # # %k % % ok 5k 5k ok 5k 5k ok 5k 5k ok % 5k ok %k 5k ok ok 5k ok k 00040025
000500+ #+ THIS PROGRAM CALCULATES THE DATE OF EASTER FOR * ok % 00050025
000600#++ YEARS IN THE GREGORIAN CALENDAR. IT’S A PORT OF #%% 00060025
000700#*+ THE DONALD KNUTH ALGORITHM PUBLISHED IN VOLUME 1 *%% 00070025
000800+ #+ OF "THE ART OF COMPUTER PROGRAMMING". * ok K 00080025

406 Chapter 30. 5 Features and extensions

http://en.wikipedia.org/wiki/Computus

OpenCOBOL FAQ, Release 1.1

000900 * * kA 00090025
D01 000 #* o 5 5k sk 5 ok 5k ok A 5k ok ok Ak ko ok ok Ak ok 00100025
001100 ENVIRONMENT DIVISION. 00110025
001200 DATA DIVISION. 00120025
001300 FILE SECTION. 00130025
001400 WORKING-STORAGE SECTION. 00140025
001500 77 ACCEPT-YEAR PIC 9(08). 00150025
001600 01 WORKING-FIELDS COMP . 00160025
001700 05 TGT-YEAR PIC S9(08). 00170025
001800 05 GOLDEN-NUMBER PIC S9(08). 00180025
001900 05 TGT-CENTURY PIC S9(08). 00190025
002000 05 LEAP-YEAR-CRCTN PIC S9(08). 00200025
002100 05 MOON-SYNC-CRCTN PIC S9(08). 00210025
002200 05 FIRST-SUNDAY PIC S9(08). 00220025
002300 05 EPACT PIC S9(08). 00230025
002400 05 FULL-MOON PIC S9(08). 00240025
002500 05 EASTER-SUNDAY PIC S9(08). 00250025
002600 01 DISPLAY-FIELDS. 00260025
002700 05 TGT-YEAR-DSP PIC Z(08)-. 00270025
002800 05 EASTER-MONTH PIC X(06). 00280025
002900 05 EASTER-SUNDAY-DSP PIC z(08)-. 00290025
003000 PROCEDURE DIVISION. 00300025
003100 ACCEPT ACCEPT-YEAR. 00310025
003200 MOVE ACCEPT-YEAR TO TGT-YEAR TGT-YEAR-DSP 00320025
003300 IF TGT-YEAR < 1583 00330025
003400 DISPLAY "YEAR MUST BE 1583 OR GREATER" 00340025
003500 STOP RUN 00350025
003600 ELSE 00360025
003700 DISPLAY "EASTER DATE FOR:" TGT-YEAR-DSP 00370025
003800 END-TIF 00380025
003900 COMPUTE GOLDEN-NUMBER = FUNCTION MOD (TGT-YEAR, 19) + 1 00390025
004000 COMPUTE TGT-CENTURY = (TGT-YEAR / 100) + 1 00400025
004100 COMPUTE LEAP-YEAR-CRCTN = (3 * TGT-CENTURY / 4) - 12 00410025
004200 COMPUTE MOON-SYNC-CRCTN = ((8 = TGT-CENTURY + 5) / 25) - 5 00420025
004300 COMPUTE FIRST-SUNDAY = 00430025
004400 (5 » TGT-YEAR / 4)- LEAP-YEAR-CRCTN - 10 00440025
Q045D D * # % % # 5 ok 5k ok ok 5k ok 5k ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok A ok ok ok ok ok ok ok ok ok ko ko ok ok ok kA 00450025
004600 TO MAKE THE EPACT CALCULATION MORE READABLE, * 00460025
004700+ THE COMPUTATION WILL BE DONE IN STAGES. * 00470025
D04 800 # # # # k5 5k % 5 5 5 * # k sk ok ok 5k 5k 5 5 5 & Ak Kk ok ok ok 5k 5k 5k & & & Ak ok ok ok ok ok ok ok ok ok A Ak ok ok ok ok ok ok A 00480025
004900+ 00490025
005000% STAGE #1: GET THE RAW NUMBER..... * 00500025
005100 % 00510025
005200 COMPUTE EPACT = 00520025
005300 (11 » GOLDEN-NUMBER) 00530025
005400 + 20 00540025
005500 + MOON-SYNC-CRCTN 00550025
005600 - LEAP-YEAR-CRCTN 00560025
005700 00570025
005800% STAGE #2: GET THE MOD 30 VALUE... * 00580025
005900 * 00590025
006000 COMPUTE EPACT = FUNCTION MOD (EPACT, 30) 00600025
006100+ 00610025
006200+ STAGE #3: TO ENSURE THAT EPACT IS A POSITIVE NBR, * 00620025
006300 * ADD 30 AND MOD 30 AGAIN. * 00630025
006400 * 00640025
006500 ADD 30 TO EPACT 00650025
006600 COMPUTE EPACT = FUNCTION MOD (EPACT, 30) 00660025
006700+ 00670025

30.55. 5.55 When is Easter? 407

OpenCOBOL FAQ, Release 1.1

006800+ ADJUST FOR YEARS WHEN ORTHODOX DIFFERS * 00680025
006900 * 00690025
007000 IF (EPACT = 25 AND GOLDEN-NUMBER > 11) 00700025
007100 OR (EPACT = 24) 00710025
007200 ADD 1 TO EPACT 00720025
007300 END-IF 00730025
007400 00740025
007500+ NEXT 2 STATEMENTS FIND FIRST FULL MOON AFTER MAR.Z21x 00750025
007600 00760025
007700 SUBTRACT EPACT FROM 44 GIVING FULL-MOON 00770025
007800 IF EPACT > 23 00780025
007900 ADD 30 TO FULL-MOON 00790025
008000 END-IF 00800025
008100 * 00810025
008200+ ADVANCE SUNDAY TO THE FIRST SUNDAY AFTER FULL MOON x 00820025
008300 00830025
008400 COMPUTE EASTER-SUNDAY = 00840025
008500 FULL-MOON 00850025
008600 + 7 00860025
008700 -~ (FUNCTION MOD ((FIRST-SUNDAY + FULL-MOON), 7)) 00870025
008800 % 00880025
008900+ IF EASTER-SUNDAY > 31, EASTER IS IN APRIL - MOVE THE 00890025
009000+ MONTH TO APRIL AND SUBTRACT 31 FROM THE MONTH. 00900025
009100+ OTHERWISE EASTER IS IN MARCH, USE THE DAY AS IS. 00910025
009200 * 00920025
009300 IF EASTER-SUNDAY > 31 00930025
009400 MOVE ’APRIL’ TO EASTER-MONTH 00940025
009500 SUBTRACT 31 FROM EASTER-SUNDAY 00950025
009600 ELSE 00960025
009700 MOVE ’MARCH’ TO EASTER-MONTH 00970025
009800 END-IF 00980025
009900 MOVE EASTER-SUNDAY TO EASTER-SUNDAY-DSP 00990025
010000 DISPLAY EASTER-MONTH EASTER-SUNDAY-DSP 01000025
010100 STOP RUN. 01010025

Tectonics are a simple cobc -x rceaster.cob. ACCEPTs the year.

$./rceaster

2013

EASTER DATE FOR: 2013
MARCH 31

Thanks Paul.

30.55.3 5.55.3 Another Computus

Thanks to daniel b, who listed a solution and the ensuing discussion on LinkedIn:

daniel b.:
in a moment of madness ... about 20 years later ... compiles and runs
on your OpenCobol 1.1 ... now that I found out that I need gmp not to segfault

i—)

Brian Tiffin:

daniel; Can I steal this for the OpenCOBOL FAQ?

Am I correct in assuming you wrote this Computus solution some 20 years
ago, and this is a recent port to OpenCOBOL?

daniel Db.:
@Brian Tiffin ? daniel; Can I steal this for the OpenCOBOL FAQ?

408 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

Sure

@Brian
some 20

No, I j
wrote i
since I

Tiffin ? Am I correct in assuming you wrote this Computus solution
years ago, and this is a recent port to OpenCOBOL?

ust looked at the table of the Meeus? book citation, in the wiki and
t from scratch. 20 years ago is the last time I touched COBOL, but
used it for 15 years before, it kind like sticks, LOL.

Here is another COBOL solution to the Computus.

OCOBOL *
*
*
*

*

*

*

*

*

*

*

*

2/15/2013 Adapted by daniel for OpenCobol 1.1 Compiler, from:
https://en.wikipedia.org/wiki/Computus#cite_note-otheralgs—-45

From Wikipedia: "Anonymous Gregorian algorithm:

’A New York correspondent’ submitted this algorithm for determining the Gregorian Easter to
It has been reprinted many times, in 1877 by Samuel Butcher in The Ecclesiastical Calendar, [
General Astronomy, [42] in 1977 by the Journal of the British Astronomical Association, [43] il
in 1988 by Peter Duffett-Smith in Practical Astronomy with your Calculator, and in 1991 by J

Because of the Meeus’ book citation, that is also called ’'Meeus/Jones/Butcher’ algorithm"

2/16/2013 Added command line passing parameter, method from Brian Tiffin example, hoping he
http://opencobol.addltocobol.com/#when-is—easter

2/18/2013 Added rejection of years before 1582, on Paul Chandler
suggestion thank you, I missed that part

2/19/2013 Attempt to make more readable, reduced useless operations, needs more work.
Changed names of some variables, based on:

http://www.linuxtopia.org/online_books/programming_books/python_programming/python_ch38.html

2/20/2013 Added comments on formula, eliminated all compute:
http://www. jones0086. freeserve.co.uk/bl23sen.htm

2/22/2013 Added writeout to file complete table of easter occurrences,
selected using year 0000 as passing parameter

2/25/2013 Tried on windows

IDENTIFICATION DIVISION.
PROGRAM-ID. caster.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT OPTIONAL OUT-FILE ASSIGN TO "easter-out.txt"
ORGANIZATION IS LINE SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

I-O—-CONTROL.

DATA DIVISION.

FILE SECTION.

30.55. 5.55 When is Easter? 409

OpenCOBOL FAQ, Release 1.1

FD

05

*

OUT-FILE

LABEL RECORDS ARE STANDARD.

01 OUT-RECORD.

05 RECORD-DATA PIC X(11) VALUE SPACES.
RECORD-END-RET PIC X VALUE X’0d’.

05 RECORD-END-LE PIC X VALUE X’ 0Oa’.

WORKING-STORAGE SECTION.

*
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77

01

77

77

01

*

SELECTED-YEAR PIC 9999 VALUE ZERO.
X PIC 9999 VALUE ZERO.
Y PIC 9999 VALUE ZERO.

METONIC-GOLDEN-NUMBER PIC 99 VALUE ZERO.

CENTURY PIC 99 VALUE ZERO.
YEAR-IN-CENTURY PIC 99 VALUE ZERO.
LEAP-TEST400 PIC 99 VALUE ZERO.
LEAP-TEST40 PIC 99 VALUE ZERO.
MOON-SYNC1 PIC 99 VALUE ZERO.
MOON-SYNC2 PIC 99 VALUE ZERO.
EPACT PIC 99 VALUE ZERO.

LEAP4 PIC 99 VALUE ZERO.
LEAP4-OFFSET PIC 99 VALUE ZERO.
ADVANCE-TO-SUNDAY PIC 99 VALUE ZERO.
M PIC 99 VALUE ZERO.
COMPUTED-MONTH PIC 99 VALUE ZERO.
COMPUTED-DAY PIC 99 VALUE ZERO.

WS—TABLE VALUE 7ZEROS.
03 WS-MONTH PIC XXX
OCCURS 12 TIMES.

ARGS PIC X(80) VALUE SPACES.

LOOP-FLAG PIC 9 VALUE ZERO.

WS—-OUT-RECORD.
05 WS-OUT-DAY PIC XX VALUE SPACES.
05 FILLER PIC X VALUE "-".
05 WS-OUT-MONTH PIC XXX VALUE SPACES.
05 FILLER PIC X VALUE "-".
05 WS-OUT-YEAR PIC XXXX VALUE SPACES.

PROCEDURE DIVISION.

*

000-WS-TABLE-CTL.

MOVE "JAN" TO WS-MONTH
MOVE "FEB" TO WS-MONTH

1)
2)

MOVE "MAR" TO WS-MONTH(3)
MOVE "APR" TO WS-MONTH (4)

(

(

(

(
MOVE "MAY" TO WS-MONTH (5)
MOVE "JUN" TO WS-MONTH (6)
MOVE "JUL" TO WS-MONTH (7)
MOVE "AUG" TO WS-MONTH (8)
MOVE "SEP" TO WS-MONTH (9)
MOVE "OCT" TO WS-MONTH (10)
MOVE "NOV" TO WS-MONTH (11)
MOVE "DEC" TO WS-MONTH(12) .

*

410

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

010-ARGS-CTL.
ACCEPT ARGS FROM COMMAND-LINE.
IF ARGS EQUAL 0000
MOVE 1583 TO SELECTED-YEAR
MOVE 1 TO LOOP-FLAG
OPEN EXTEND OUT-FILE
GO TO 105-METONIC-GOLDEN-NUMBER-CTL.
IF ARGS NOT EQUAL SPACES
MOVE ARGS TO SELECTED-YEAR
GO TO 100-CHECK-YEAR-CTL.
DISPLAY " " END-DISPLAY.
DISPLAY "Gregorian Easter computation from year 1583 to 9999".
*
020-START-CTL.
DISPLAY "Enter Year (YYYY): " WITH NO ADVANCING END-DISPLAY.
ACCEPT SELECTED-YEAR FROM CONSOLE.
*
100-CHECK-YEAR-CTL.
IF SELECTED-YEAR IS LESS THAN 1583
DISPLAY "Invalid year, use year past 1582 " END-DISPLAY
GO TO 020-START-CTL.
*
105-METONIC-GOLDEN-NUMBER-CTL.
DIVIDE SELECTED-YEAR BY 19 GIVING X
REMAINDER METONIC-GOLDEN-NUMBER
ON SIZE ERROR GO TO 020-START-CTL END-DIVIDE.
*
110-CENTURY-CTL.
DIVIDE SELECTED-YEAR BY 100 GIVING CENTURY
REMAINDER YEAR-IN-CENTURY
ON SIZE ERROR GO TO 020-START-CTL END-DIVIDE.
*
120-LEAP-TEST-CTL.
DIVIDE CENTURY BY 4 GIVING LEAP-TEST400 REMAINDER LEAP-TEST40
ON SIZE ERROR GO TO 020-START-CTL END-DIVIDE.
*
125-MOON-SYNC1-CTL.
* formula MOON-SYNC1 = (CENTURY + 8) / 25
ADD 8 TO CENTURY GIVING X
DIVIDE X BY 25 GIVING MOON-SYNC1
ON SIZE ERROR GO TO 020-START-CTL.
*
130-MOON-SYNC2-CTL.
COMPUTE MOON-SYNC2 = (CENTURY - MOON-SYNCI1 + 1) / 3
ON SIZE ERROR GO TO 020-START-CTL.
*
135-EPACT-SYNC-CTL.
* formula EPACT = ((19 x METHONIC-GOLDEN-NUMBER) + CENTURY LEAP-TEST400 MOON-SYNC2 + 15) mo
MULTIPLY 19 BY METONIC-GOLDEN-NUMBER GIVING X
ADD CENTURY TO X GIVING X
SUBTRACT LEAP-TEST400 FROM X GIVING X
SUBTRACT MOON-SYNC2 FROM X GIVING X
ADD 15 TO X GIVING X
DIVIDE X BY 30 GIVING X REMAINDER EPACT
ON SIZE ERROR GO TO 020-START-CTL END-DIVIDE.
*
140-LEAP4-CTL.
DIVIDE YEAR-IN-CENTURY BY 4 GIVING LEAP4
REMAINDER LEAP4-OFFSET

30.55. 5.55 When is Easter? 411

OpenCOBOL FAQ, Release 1.1

ON SIZE ERROR GO TO 020-START-CTIL END-DIVIDE.
*
150-ADVANCE-TO-SUNDAY-CTL.
+ formula ADVANCE-TO-SUNDAY
* / 4) EPACT K) mod 7
MULTIPLY 2 BY LEAP-TEST40 GIVING X
ADD 32 TO X GIVING X
MULTIPLY 2 BY LEAP4 GIVING Y
ADD Y TO X GIVING X
SUBTRACT EPACT FROM X GIVING X
SUBTRACT LEAP4-OFFSET FROM X GIVING X
DIVIDE X BY 7 GIVING X REMAINDER ADVANCE-TO-SUNDAY
ON SIZE ERROR GO TO 020-START-CTL END-DIVIDE.

(32 + 2 % (LEAP-TEST40 + 2) + 2 % (YEAR-IN-CENTURY

*
160-M-CTL.
« formula M = (METONIC-GOLDEN-NUMBER + (11 % EPACT) + (22 % ADVANCE-TO-SUNDAY)) / 451
MULTIPLY 11 BY EPACT GIVING X
ADD METONIC-GOLDEN-NUMBER TO X GIVING X
MULTIPLY 22 BY ADVANCE-TO-SUNDAY GIVING Y
ADD Y TO X GIVING X
DIVIDE X BY 451 GIVING M
ON SIZE ERROR GO TO 020-START-CTI END-DIVIDE.
*
200-COMPUTED-MONTH-CTL.
+ formula COMPUTED-MONTH = ((EPACT + ADVANCE-TO-SUNDAY (7 + M) + 114) / 31)
MULTIPLY 7 BY M GIVING X
ADD EPACT TO ADVANCE-TO-SUNDAY GIVING Y
SUBTRACT ¥ FROM Y GIVING Y
ADD 114 TO Y GIVING X
DIVIDE X BY 31 GIVING COMPUTED-MONTH
ON SIZE ERROR GO TO 020-START-CTI END-DIVIDE.
*
300-COMPUTED-DAY-CTL.
+ formula COMPUTED-DAY = ((EPACT + ADVANCE-TO-SUNDAY (7 % M) + 114) mod 31) + 1
MULTIPLY 7 BY M GIVING X
ADD EPACT TO ADVANCE-TO-SUNDAY GIVING Y
SUBTRACT ¥ FROM Y GIVING Y
ADD 114 TO Y GIVING X
DIVIDE X BY 31 GIVING X REMAINDER Y
ADD 1 TO Y GIVING COMPUTED-DAY
ON SIZE ERROR GO TO 020-START-CTL.
*
400-PRINT-TABLE-CTL.
MOVE COMPUTED-DAY TO WS—OUT-DAY.
MOVE WS—-MONTH (COMPUTED-MONTH) TO WS—OUT-MONTH.
MOVE SELECTED-YEAR TO WS—-OUT-YEAR.
MOVE WS-OUT-RECORD TO OUT-RECORD.
IF LOOP-FLAG EQUAL TO 1 WRITE OUT-RECORD.
IF SELECTED-YEAR EQUAL TO 9999 AND LOOP-FLAG EQUAL TO 1
CLOSE OUT-FILE.
*
500-LOOP-CTL.
IF SELECTED-YEAR EQUAL TO 9999 AND LOOP-FLAG EQUAL TO 1
MOVE 0 TO LOOP-FLAG
GO TO 700-STOP.
IF LOOP-FLAG EQUAL TO 1
ADD 1 TO SELECTED-YEAR GIVING SELECTED-YEAR
GO TO 105-METONIC-GOLDEN-NUMBER-CTL.

412 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

600-EXIT.

*

DISPLAY " " END-DISPLAY.

DISPLAY "Easter day for year " SELECTED-YEAR ": " END-DISPLAY.
DISPLAY CC NTH (COMPUTED-MONTH) "-"

)MPUTED-DAY "-" WS-MO
SELECTED-YEAR END-DISPLAY.
DISPLAY " " END-DISPLAY.

*
700-STOP.
STOP RUN.
*
Tectonics once again, a simple cobc -x dbeaster.cob.
$./dbeaster

Gregorian Easter computation from year 1583 to 9999
Enter Year (YYYY): 2013

Easter day for year 2013:
31-MAR-2013

$./dbeaster

Gregorian Easter computation from year 1583 to 9999
Enter Year (YYYY): 3013

Easter day for year 3013:
18-APR-3013

Thanks to Daniel. Note, I already had easter.cob, so this one is dbeaster.cob for the FAQ.

30.56 5.56 Does Vim support OpenCOBOL?

Very well. See cobol.vim for a syntax highlighter tuned for OpenCOBOL.
Vim’s Visual Block mode can be very handy at reforming COBOL source code.

Author’s choice. ocfaq.rst is edited using Vim, Bram Moolenaar’s vi enhancement. See below for some settings that
can make OpenCOBOL more productive.

30.56.1 5.56.1 vim code completion

For code completion (Ctrl-P while in insert mode) start by creating a reserved word list using your cobe command

S cobc —--list-reserved | tail -n+3 | cut -fl >~/.vim/ocreserved.lis

followed by this change in ~/.vimrc

:set ignorecase
:set infercase
:set complete=k~/.vim/ocreserved.lis

30.56.2 5.56.2 freedom

To free the cursor (allowing the cursor to travel past line endings) use:

:set virtualedit=all

30.56. 5.56 Does Vim support OpenCOBOL? 413

OpenCOBOL FAQ, Release 1.1

30.56.3 5.56.3 autoload a skeleton

For a quick template when starting a new file (in .vimrc, change the filename ~/lang/cobol/headfix.cob to where you
keep your favourite COBOL starter skeleton).

" Auto load COBOL template
autocmd BufNewFile «.cob Or ~/lang/cobol/headfix.cob

30.57 5.57 Whatis w3m?

w3m is a text based web browser. OpenCOBOL can leverage some of the power of this application by directly calling
it with SYSTEM.

OCOBOL >>SOURCE FORMAT IS FIXED

KDk o ok A

*> Author: Brian Tiffin

*> Date: 30-Dec-2008

*> Purpose: Textualize a webpage

*> Tectonics: cobc —-x w3mcaller.cob

*> ./w3mcaller opencobol.org

D Ak Ak A hAA A A A Ak A bk h b b Ak A b b Ak bbb Ak b kb bk bbb bk b h sk h kb h kb kb h ok kb ok Ak ko
identification division.
program-id. w3mcaller.

data division.
working-storage section.

01 args pic x(256) .
01 command pic x(256).
01 result usage binary-long.

KDk o ok ok ok ok ok ok ok ok ok ok o ok ok b ok ok ok ok ok ok ok b ok ok A
procedure division.
accept args from command-line.

string
"w3m —dump " delimited by size
function trim(args) delimited by size
into command
end-string
call "SYSTEM" using command returning result end-call

goback.
end program w3mcaller.

Sample run on 28-Feb-2010:

$./w3mcaller opencobol.org

[logo]
[arrow] HOME [arrow] NEWS [arrow] FORUM [arrow] D [arrow] LINK
OWNLOAD
OpenCOBOL - an open-source COBOL compiler
[arrow] Welcome to the OpenCOBOL Website!
OpenCOBOL is an open-source COBOL compiler.
[arrow] Main OpenCOBOL implements a substantial part of the
Menu COBOL 85 and COBOL 2002 standards, as well as
Home News Wiki many extensions of the existent COBOL
Forum Downloads compilers.
Links [arrow] Search

414 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

*
[arrow]
Download

« OpenCOBOL
1.0

« OpenCOBOL
1.1
pre-release

*
[arrow]
Documentation

« FAQ

- Features

« Install
Guide

« User Manual

*
[arrow]
Development

« SourceForge

« Mailing
List

« Tasks

*

[arrow] Who’s
Online

12 user(s)
online

are

Members: 1
Guests: 11

clemcoll,
more. ..
*
[arrow] Powered
by

SourceForge

Xoops

Creative
Commons

Copyright (C)
Powered by Xoops2 |

OpenCOBOL translates COBOL into C and compiles

the translated code using the native C

compiler.

various platforms,
X, and Microsoft Windows.

You can build your COBOL programs on

including Unix/Linux,

Mac OS

The compiler is licensed under GNU General
Public License.
The run-time library is licensed under GNU

Lesser General Public License.

[arrow]

« OpenCOBOL 1.0 released

[arrow]
Forum

OpenCOBOL

OpenCOBOL

OpenCOBOL

OpenCOBOL

OpenCOBOL

OpenCOBOL

OpenCOBOL

OpenCOBOL

OpenCOBOL

OpenCOBOL

Recent News

Recent Topics

Topic

using gui
interface

SET index-var
TO DISP-FIELD

implementation
of ocsort

select fname
clause,
Variable value
as filename

Benchmarks

Default Colour

OpenCOBOL 1.1
compiler
listing

MOVE loops
when operands
are overlaying
[solved]

OMQ (zeromq),
network
messaging and
OpenCOBOL
Conversion
story from
MicroFocus to
OC, on SUSE
11.2

Visit Forums

(2007/12/217)

18

10

2005 The OpenCOBOL Project.
PHP

ocean—net

Replies Views

733

99

308

426

285

327

451

443

223

768

Last

Post
2010/2/
28 10:12
federico
2010/2/
27 18:53
wmklein
2010/2/
27 5:15
btiffin
2010/2/
26 14:26

shaj

2010/2/
24 23:45
btiffin
2010/2/
21 15:32
jgt
2010/2/
20 21:52
btiffin
2010/2/
20 20:39
human

2010/2/
20 15:12
btiffin

2010/2/
20 12:23
simrw

[]
[Search]
Advanced Search
[arrow] Login
Username:

[1
Password:

[1
[User Login]
Lost Password?

Register now!
[arrow] Recent
Links

« J&C
Migrations
(2008/12/10)

« COBOL Data
Correlation
a... (2006/9
/21)

« COBOL User
Groups
COBU. ..
(2006/1/17)

« The Kasten
COBOL Page
(2005/9/8)

« Die COBOL
Connection
(2005/9/8)

« University
of Limerick
(2005/9/8)

« Stefans
kleiner
COBOL Wo...
(2005/9/8)

« COBOL Web
Development
(2005/6/8)

« Kobol
Kompany
(2005/6/8)

« CoCoLab
(2005/6/8)

All rights reserved.
Apache

30.57. 5.57 What is w3m?

415

OpenCOBOL FAQ, Release 1.1

30.58 5.58 Whatis COB_LIBRARY_PATH?

If the DSO files are not in the current working directory along with the executable, the COB_LIBRARY_PATH can
be set to find them.

On GNU/Linux and bash it could be
export COB_LIBRARY PATH=/home/developer/ocnewstuff:/home/developer/ocstuff

to search for DSO files in directories ocnewstuff then ocstuff, giving your testing versions priority during develop-
ment.

30.59 5.59 Can OpenCOBOL interface with Rexx?

Yes, ooRexx linkage is commented on at http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=456&forum=1#forumpostZ
A Regina Rexx layer can be as simple as

ocrexx.c

/#* OpenCOBOL interface to Regina Rexx Interpreter #*/
/% Requires regina3 and regina3-dev =*/
/* cobc -I/usr/include/regina —c ocrexx.c */

#include <stdio.h>
#include <string.h>
#include <rexxsaa.h>

int ocrexx(char xscript, char xargs, char xresfield, int reslen, short xresult) {
APIRET rexxapiret;
RXSTRING retstr;
RXSTRING arglist([1l];
short rexxret = 0;

int ignore = 0;

/* Initialize the engine, run the script */
retstr.strptr = NULL;

retstr.strlength = 0;

arglist[0].strptr = args;
arglist[0].strlength = strlen(args);

rexxapiret = RexxStart (1, (PRXSTRING)&arglist, script, NULL, NULL,
RXCOMMAND || RXRESTRICTED, NULL, &rexxret, &retstr);

/* set result back to OpenCOBOL x/

memset (resfield, ’ ', reslen);

if (rexxapiret == 0) {
memcpy (resfield, retstr.strptr, (retstr.strlength > reslen) ? reslen : retstr.strlength);
*result = rexxret;

/+ Let Rexx do all the memory alllocation #*/
if (retstr.strptr != NULL) { ignore = RexxFreeMemory (retstr.strptr); }

return (int)rexxapiret;

int ocrexxcmd (char xcmds, char xargs, char xresfield, int reslen, short xresult) {

416 Chapter 30. 5 Features and extensions

http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=456&forum=1#forumpost2408

OpenCOBOL FAQ, Release 1.1

APIRET rexxapiret;
RXSTRING retstr;
RXSTRING arglist([1l];
RXSTRING instorel[2];
short rexxret = 0;

int ignore = 0;

/#* For syntax check, no evaluate, taken from 8.4 of the Regina3.4 pdf */
arglist[0].strptr = "//T";
arglist[0].strlength = 3;

arglist[0].strptr = args;
arglist[0].strlength = strlen(args);

/* Move the command(s) to the instore array =*/
instore[0] .strptr = cmds;

instore[0] .strlength = strlen (cmds) ;
instore[l].strptr = NULL;

instore([l].strlength = 0;

/* Call Rexx. Use argcount 1 and &arglist to call syntax check x/

retstr.strptr = NULL;

retstr.strlength = 0;

rexxapiret = RexxStart (1, (PRXSTRING)&arglist, "FILLER", (PRXSTRING)é&instore, "COMMAND" /x NULL
RXCOMMAND, NULL, &rexxret, &retstr);

/* set result back to OpenCOBOL x/
memset (resfield, ' ', reslen);

if (rexxapiret == 0) {
memcpy (resfield, retstr.strptr, (retstr.strlength > reslen) ? reslen : retstr.strlength);
*result = rexxret;

/+ Let Rexx do all the memory alllocation #*/
if (instore[l].strptr != NULL) { ignore = RexxFreeMemory (instore[l].strptr); }
if (retstr.strptr != NULL) { ignore = RexxFreeMemory (retstr.strptr); }

return (int)rexxapiret;
}
/xx/

with a usage example of

rexxcaller.cob

OCOBOL >>SOURCE FORMAT IS FIXED
*> B e b e e b i i b b b b b b b b b i b b b b b b i b b b b b b b b b b b b b b b b b b
*>< & Kk ok kb ok ok ok b ok ok ok ok b ok ok

*><+ Rexx 1in OpenCOBOL

* >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko

*>< K

*><x :Author: Brian Tiffin

*><#+ :Date: 13-Nov-2008

*><x :Purpose: Very High Level Regina Rexx engine

*><+ :Requires: regina-rexx, regina3, regina3-dev, OC 1.1 pre-rel
*><+ :Tectonics:

*>< | cobc -I/usr/include/regina -c ocrexx.c

*>< A | cobc -x —-lregina rexxcaller.cob ocrexx.o

*>< | ocdoc rexxcaller.cob rexxcaller.rst rexxcaller.html

30.59. 5.59 Can OpenCOBOL interface with Rexx? 417

OpenCOBOL FAQ, Release 1.1

H > ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk kb ok ok b ok ok ok b ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok ok ok A ok
identification division.
program—-id. rexxcaller.

data division.

*A><

A><H =============

*><+ Working Store

*A><k =============

*><

*><

*A><

*>< [

working-storage section.
01l newline constant as x"0Oa".

01 apicode usage binary-long.

01 resultcode usage binary-short.

01 scriptname pic x(12) value ’'verrexx.cmd’ & x’00’.
01 argument pic x(256) wvalue 'OCl.1 args’ & x"00".
01 cmds pic x(1024).

01 rexxstring pic x(1048576) .

*><]

KDk o ok o ok ok ok ok ok ok

procedure division.

*>< *
A><x ===
*><+ APT
A><k ===
*><
A><H ——————
*><4 OCrexx
A< A ——————
*><+ Pass a null-term scriptname, a null-term argument string
*><+ the return value field and length, the return code and
*><+ returning the Rexx apil result code.
*><
*><x Usage::
*><
compute
apicode = function length (function trim(scriptname))
end-compute
display
"CALL Rexx with |" scriptname (l:apicode - 1)
end-display
*>< [
call "ocrexx"
using
by reference scriptname
by reference argument
by reference rexxstring
by wvalue function length (rexxstring)
by reference resultcode
returning apicode
end-call
display "|" apicode "|" resultcode with no advancing end-display
display "|" function trim(rexxstring trailing) "|" end-display
*><]

llln

418 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

*><
A< ——m—mm
*><x ocrexxcmd
A ><H ——mmm————
*><x Usage::
*><
*>< [
move "say ‘Hello World!’; return ’'From Rexx’;" & x'00’
compute
apicode = function length (function trim(cmds))
end-compute
display newline
"CALL Rexx command with |" cmds(l:apicode - 1) "|"
end-display
call "ocrexxcmd"
using
by reference cmds
by reference argument
by reference rexxstring
by value function length (rexxstring)
by reference resultcode
returning apicode
end-call

display "|" apicode "|" resultcode with no advancing end-display

to cmds.

display "|" function trim(rexxstring trailing) "|" end-display

*><]

*><

>< or perhaps::

*>< *

*>< [

move
"parse arg argument; say ‘##’ || argument || "##';
"capture = "/;" & x"0a" &

& x"0a"

"address system ’cat tectonic && cat verrexx.cmd && ls —-1"

" && w3m rexxcaller.html’" &
" with output fifo '7;" & x"0a" &
"DO i=1 WHILE queued() \= 0;" & x"0a" &
" parse pull line;" & x"0a" &
" capture = capture || line || '0a’x;" & x"0a"
"END; " & x’0a’ &
"return capture;" & x’00’ to cmds
compute
apicode = function length (function trim(cmds))
end-compute
display newline
"CALL Rexx command with |" cmds(l:apicode - 1) "|"
end-display
call "ocrexxcmd"
using
by reference cmds
by reference argument
by reference rexxstring
by value function length (rexxstring)
by reference resultcode
returning apicode
end-call
*><]

display "|" apicode "|" resultcode with no advancing end-display

&

&

&

30.59. 5.59 Can OpenCOBOL interface with Rexx?

419

OpenCOBOL FAQ, Release 1.1

display "|" function trim(rexxstring trailing) "|" end-display
goback.

end program rexxcaller.

*A>< K

And as a sample Rexx script

verrexx.cmd

Parse Version ver;
Say ver;
return ver;

With a sample run producing:

$./tectonic

CALL Rexx with
REXX-Regina_3.3 (MT) 5.00 25 Apr 2004
ocrexx.Cc ocrexx.o rexxcaller
|+0000000000|+00000 | REXX-Regina_3.3 (MT)

|verrexx.cmd |

CALL Rexx command with
Hello World!
|+0000000000|+00000|From Rexx|

| say

rexxcaller.cob
5.00 25 Apr 2004

"Hello World!’;

return

CALL Rexx command with |parse arg argument; say
capture = '’;
address system ’‘cat tectonic && cat verrexx.cmd
DO i=1 WHILE queued() \= 0;

parse pull line;

capture = capture || line || ’'0a’x;
END;

return capture; |
##0C1.1 args##

rexxcaller.html rexxcaller.rst

"From Rexx’;

"#4’ || argument ||

I##I;

&& 1ls -1 && w3m rexxcaller.html’

|+0000000000|+00000 | cobc -I/usr/include/regina/ —-c ocrexx.cC

cobc -x -lregina rexxcaller.cob ocrexx.o

../ocdoc rexxcaller.cob rexxcaller.rst rexxcaller.html

./rexxcaller
/* script for OpenCOBOL Regina Rexx =/
Parse Version ver;

Say ver;

address system;

r1ls’;

return ver;

total 68

—rw-r——r—— 1 btiffin btiffin 2469 2008-11-16
—rw-r——r—— 1 btiffin btiffin 2568 2010-05-06
—-rwxr-xr-x 1 btiffin btiffin 18128 2010-05-06
—-rw-r——r—— 1 btiffin btiffin 4477 2008-11-16
—rw-r——r—-— 1 btiffin btiffin 9312 2010-05-06
—-rw-r——r—— 1 btiffin btiffin 3187 2010-05-06
—rw-r——r—— 1 btiffin btiffin 4131 2008-11-16
—rwxr-xr-x 1 btiffin btiffin 162 2008-11-16
—-rw-r——r—— 1 btiffin btiffin 101 2008-11-15

Rexx in OpenCOBOL

11

22
22
11:
22

22

11:
11:
23:

../ocfaqg.css

rexx.output

with output fifo ’’,

:09 ocrexx.c

51 ocrexx.o

51 rexxcaller

28 rexxcaller.cob
51 rexxcaller.html
:51 rexxcaller.rst
30 rexx.output

21 tectonic

24 verrexx.cmd

Author: Brian Tiffin
Date: 13-Nov-2008
Purpose: Very High Level Regina Rexx engine
Requires: regina-rexx, regina3, regina3-dev, OC 1.1 pre-rel
cobc -I/usr/include/regina -c ocrexx.cC
420 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

Tectonics: cobc -x -lregina rexxcaller.cob ocrexx.o
ocdoc rexxcaller.cob rexxcaller.rst rexxcaller.html

Working Store

working-storage section.
01 newline constant as x"0a".

01 apicode usage binary-long.

01 resultcode usage binary-short.

01 scriptname pic x(12) value ’'verrexx.cmd’ & x"00’.
01 argument pic x(256) value 'OCl.1 args’ & x"0O".
01 cmds pic x(1024).

01 rexxstring pic x(1048576) .

APT

ocrexx

Pass a null-term scriptname, a null-term argument string the return value field
and length, the return code and returning the Rexx api result code.

Usage:

call "ocrexx"

using
by reference scriptname
by reference argument
by reference rexxstring
by value function length(rexxstring)
by reference resultcode

returning apicode

end-call

display "|" apicode "|" resultcode with no advancing end-display
display "|" function trim(rexxstring trailing) "|" end-display
ocrexxcmd

Usage:

move "say ’'Hello World!’; return ’'From Rexx’;" & x’00’ to cmds.
compute
apicode = function length (function trim(cmds))
end-compute
display newline
"CALL Rexx command with |" cmds(l:apicode - 1) "|"
end-display
call "ocrexxcmd"
using
by reference cmds
by reference argument
by reference rexxstring
by value function length(rexxstring)
by reference resultcode
returning apicode

end-call
display "|" apicode "|" resultcode with no advancing end-display
display "|" function trim(rexxstring trailing) "|" end-display

or perhaps:

30.59. 5.59 Can OpenCOBOL interface with Rexx? 421

OpenCOBOL FAQ, Release 1.1

move
"parse arg argument; say '##’ || argument || ‘##';" & x"Oa" &
"capture = ;" & x"0a" &
"address system ’cat tectonic && cat verrexx.cmd && ls -1" &
" && w3m rexxcaller.html’" &
" with output fifo ’’;" & x"0a" &
"DO i=1 WHILE queued() \= 0;" & x"0a" &
" parse pull line;" & x"0a" &
" capture = capture || line || '0a’x;" & x"0a" &
"END; " & x’'0a’ &
"return capture;" & x’00’ to cmds
compute
apicode = function length(function trim(cmds))
end-compute
display newline
"CALL Rexx command with |" cmds(l:apicode - 1) "|"
end-display
call "ocrexxcmd"
using
by reference cmds
by reference argument
by reference rexxstring
by value function length (rexxstring)
by reference resultcode
returning apicode
end-call

and the ocdoc output at rexxcaller.html

30.60 5.60 Does OpenCOBOL support table SEARCH and SORT?

Yep.

This is a two part example. A small tax table search, and a dictionary sort and lookup.

30.60.1 5.60.1 Linear SEARCH

OCOBOL >>SOURCE FORMAT IS FIXED

KDk o ok ok ok ok ok ok ok ok ok ok b ok ok A

x> Author: Brian Tiffin, with some suggestions from human
*> Date: 30-Nov-2008, 02-Dec-2008
*> Purpose: Demonstration of the SEARCH verb

x> Tectonics: cobc —-x searchlinear.cob

D> kA kA kA A A A Ak Ak A kb Ak bbb Ak bbb Ak bbb Ak b h b Ak b h bk bk b h sk kb h ok kb h ok kb ok Ak ko
identification division.

program-id. searchlinear.

data division.

working-storage section.
01 taxinfo.
05 tax-table occurs 4 times indexed by tt-index.
10 province pic x(2).

422 Chapter 30. 5 Features and extensions

http://opencobol.add1tocobol.com/rexxcaller.html

OpenCOBOL FAQ, Release 1.1

10 taxrate pic 999v9999.
10 federal pic 999v9999.
01 prov pic x(2).
01 percent pic 999v9999.
01 percentage pic zz9.99.

*> LR g b b b g b b b b g b b b b b b b b b b b g g b b b b b b b g b b b b g b b b b b b b b b b b b g b b b b g g
procedure division.
begin.

D> ok k Ak A A A A A A A h A kb Ak bbb Ak A b b Ak bbb Ak bbb Ak bk b h kb h bk h kb h bk ok ok h ok ok ok kA ok ko
x> Sample for linear SEARCH, requires INDEXED BY table

*> populate the provincial tax tabler; not really, only a couple
*> populate Ontario and then PEI using different field loaders
move ’'AB’ to province(l)

move 'ON’ to province (2)

move 0.08 to taxrate(2)

move 0.05 to federal (2)

move ’'PE00014000000000" to tax-table(3)

move ‘YT’ to province (4)

*> Find Ontario tax rate
move "ON" to prov
perform scarch-for-taxrate

*> Setup for Prince Edward Island
move ’'PE’ to prov
perform search-for-taxrate

*> Setup for failure
move ‘727’ to prov
perform search-for-taxrate

goback.

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A

search-for-taxrate.
set tt-index to 1
search tax-table
at end display "no province: " prov end-display
when province (tt-index) = prov
perform display-taxrate
end-search

display-taxrate.
compute percent = taxrate(tt-index) = 100
move percent to percentage
display
"found: " prov " at " taxrate(tt-index)
"," percentage "%, federal rate of " federal (tt-index)
end-display

end program searchlinear.

A sample run producing:

$ cobc -x searchlinear.cob && ./searchlinear
found: ON at 000.0800, 8.00%, federal rate of 000.0500

30.60. 5.60 Does OpenCOBOL support table SEARCH and SORT?

423

OpenCOBOL FAQ, Release 1.1

found: PE at 000.1400, 14.00%, federal rate of 000.0000
no province: ZZ

30.60.2 5.60.2 SORT and binary SEARCH ALL

OCOBOL >>SOURCE FORMAT IS FIXED

KDk o ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok b ok ok A

x> Author: Brian Tiffin, with some suggestions from human
*> Date: 30-Nov-2008, 02-Dec-2008
*> Purpose: Demonstration of the SEARCH ALL verb and table SORT

*> Tectonics: cobc —-x —-fdebugging-line searchbinary.cob

D> kA kA kA A A A Ak A h A b b Ak A b b Ak bbb Ak bbb Ak b bk A bk b h b bk b h bk bk b h kb bk h ok kb ok Aok ko
identification division.

program-id. searchbinary.

environment division.
input-output section.
file—-control.
select optional wordfile
assign to infile
organization is line sequential.

data division.
file section.
fd wordfile.
01 wordrec pic x(20).

working-storage section.

01 infile pic x(256) value spaces.
88 defaultfile value ' /usr/share/dict/words’.
01 arguments pic x(256).

x> Note the based clause, this memory 1is initially unallocated
78 maxwords value 100000.
01 wordlist based.
05 word-table ocecurs maxwords times
depending on wordcount
descending key is wordstr
indexed by wl-index.

10 wordstr pic x(20).
10 wordline usage binary-long.
01 wordcount usage binary-long.
01 file-eof pic 9 value low-value.
88 at-eof value high-values.
01 word pic x(20).

KDk ok ok ko k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok K ok K ok ok ok ok ok Ak
procedure division.
begin.

*> Get the word file filename
accept arguments from command-line end-accept
if arguments not equal spaces
move arguments to infile
else
set defaultfile to true

424 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

end-if

D> kA kA Ak kA kA hk Ak ok kA kbbb Ak bbb Ak bbb A h b h bk Ak b h bk kb h bk kb h ok ok kb ok ok ok ok ok A ok ko
*> Try playing with the words file and binary SEARCH ALL
*> requires KEY IS and INDEXED BY table description

*> Point wordlist to valid memory
allocate wordlist initialized

open input wordfile

move low-value to file-eof
read wordfile

at end set at-eof to true
end-read

perform
with test before
until at-eof or (wordcount >= maxwords)
add 1 to wordcount
move wordrec to wordstr (wordcount)
move wordcount to wordline (wordcount)
read wordfile
at end set at-eof to true
end-read
end-perform

close wordfile

*> ensure a non-zero length table when allowing optional file
evaluate true also file-eof
when wordcount = 0 also any
move 1 to wordcount
display "No words loaded" end-display
when wordcount >= maxwords also low-value
display "Word list truncated to " maxwords end-display
end-evaluate

>>D display "Count: " wordcount ": " wordstr (wordcount) end-display

*> Sort the words from z to a
sort word-table on descending key wordstr

x> fetch a word to search for
display "word to find: " with no advancing end-display
accept word end-accept

*> binary search the words for word typed in and display
*> the original line number 1if/when a match is found

set wl-index to 1

search all word-table

at end
display
word " not a word of " function trim(infile)
end-display
when wordstr (wl-index) = word
display
word " sorted to " wl-index ", originally "
wordline (wl-index) " of " function trim(infile)

30.60. 5.60 Does OpenCOBOL support table SEARCH and SORT? 425

OpenCOBOL FAQ, Release 1.1

end-display

end-search

*>

Release memory ownership

free address of wordlist

goback.
end program searchbinary.

with some sample words and a Debian 5.0.4 system:

$ cobc -x
$./searc
word to f
zygote

$./searc
word to f
abacus

searchbinary.cob
hbinary
ind: zygote
sorted to +000000018, originally +0000098552 of /usr/share/dict/words
hbinary
ind: abacus
sorted to +000080466, originally +0000018104 of /usr/share/dict/words

See SORT for other examples.

30.61 5.61 Can OpenCOBOL handle named pipes?

Yes. Here is a sample, using a tongue-in-cheek corncob filename.

OCOBOL >>
*>
x>
x>
*>
x>
x>
*>
x>

SOURCE FORMAT IS FIXED

R b g b b b e b b b b b b b b b b b S b b g g b b i b g b b e b b e S b e b b b b b b b g e b g g b g i b g b

Author: Brian Tiffin

Date: 10-Apr-2010
Purpose: playing with the corncob pipe
Tectonics: mkfifo corncob

cobc —-x popcorn.cob
ls >corncob & ./popcorn

AAAAA A AL A AL AL A A A A A A A A A

identification division.

program—-id. popcorn.

environment division.
configuration section.

input-output section.

fi

le-control.
select corncob
assign to ’corncob’
organization is line sequential

data division.

fi

le section.

fd corncob.

01 tobacco pic x(32768).

working-storage section.

01

01
01
01
01

filestat pic x value low
88 done value high

liner pic 99999.

looper pic 99999.

atmost constant as 32768.
bowl.

426

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

02 popcorn occurs atmost times depending on liner
ascending key kernel.
03 kernel piec x(132).

KDk oA ok

procedure division.

*> Read from the pipe into a table
open input corncob
move to liner
perform until done or (liner greater than or equal to atmost)
read corncob
at end
set done to true
not at end
add 1 to liner end-add
move tobacco to kernel (liner)
end-read
end-perform
close corncob

*> Sort it descending and display
sort popcorn on descending key kernel

perform varying looper from 1 by 1 until looper > liner
display
"OpenCOBOL: " function trim(kernel (looper) trailing)
end-display
end-perform

goback.
end program popcorn.

With a sample run producing:

$ rm corncob

$ mkfifo corncob

$ 1s -d nx >corncob & ./popcorn
[1] 5033

OpenCOBOL: nums.cob

OpenCOBOL: nums

OpenCOBOL: network

[11+ Done ls -d n* > corncob
$ 1s —-d nx*

network nums nums.cob

$ date >corncob & ./popcorn

[1] 5037
OpenCOBOL: Sun Apr 11 08:04:48 EDT 2010
[11+ Done date > corncob

30.62 5.62 Can OpenCOBOL interface with ROOT/CINT?

Yes. The Feburary 2009 pre-release generates C code that can be loaded by the ROOT/CINT framework. ROOT is a
high energy physics data analysis framework released by CERN. ROOT/CINT embeds the CINT C/C++ interactive
interpreter.

See http://root.cern.ch/drupal/content/cint for details.

30.62. 5.62 Can OpenCOBOL interface with ROOT/CINT? 427

http://root.cern.ch/drupal/content/cint

OpenCOBOL FAQ, Release 1.1

OpenCOBOL programmers can use ROOT/CINT for interactive testing of COBOL subprograms.

Given

OCOBOL >>SOURCE FORMAT IS FIXED

*>
x>
*>
*>
x>
*>

Kk ko ok ok ok ko b ok b ok ok ok ok ok b ok ok ok b ok ok ok ok bk ok ok ok b ok ok ok b ok ok ok b ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok ok A
Author: Brian Tiffin

Date: 20101119

Purpose: Pass arguments to ROOT/CINT invoked subprograms
Tectonics: cobc —-fimplicit-init -C cobparams.cob

LR g b b b g b g b b b b g b b b b b b b b b b b b b b b g b b b b g g g

identification division.
program-id. cobparams.

data division.
linkage section.
01 a-number usage binary-long.

*>

AAAAA A AL A AL A A A A A A AL A AA A AL AL A AL A A A A A A A A A

procedure division using by reference a-number.
display a number end-display

move a-number to return-code

goback.

end program cobparams.

and the command line

S cobc —fimplicit-init -C cobparams.cob

gives a set of C source code output for cobparams.

ROOT/CINT can then be used to play with the program.

$ cobc —fimplicit-init -C cobparams.cob

S root -1

root [0] gSystem->Load("/usr/local/lib/libcob.so");
root [1] .L cobparams.c+

root [2] int a = 0;

root [3] int d = 42;

root [4] a = cobparams ((unsigned charx)&d);
+0000000042

root [5] printf ("$d\n", a);

42

root [6]

There is some magic in the above snippet. ROOT preloads the runtime libcob.so. Then its .. command is used with

the plus + option to interpret and link load the cobc generated cobparams.c file.

The ROOT/CINT console now has access to the cobparams “function”, defined by OpenCOBOL to have an unsigned
char pointer as its BY REFERENCE access; A cast of the integer d’s address allows CINT to call up the COBOL
subprogram, passing the 42 for DISPLAY and then returning the same value as the result. The interactively defined

integer a, gets this 42 from OpenCOBOL’s RETURN-CODE.

30.62.1 5.62.1 Graphing sample

ROOT/CINT is built for analysis. So, plotting and graphing are built-in.

Given

OCOBOL >>SOURCE FORMAT IS FIXED

B R e R R R S
*> Author: Brian Tiffin
*> Date: 20101119

428

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

*> Purpose: Pass arguments to ROOT/CINT invoked subprograms
x> Tectonics: cobc —-fimplicit-init -C cobparams.cob

kD> kkkkkkhkhkhkhhkhkhkhkkhkhkkkhkkhhkkhhkkhhkkhkhkkkhkkkhkkhkkhkhkkhkhkkhkhkkkhkkkkkxk k%
REPLACE ==ARRAYSIZE== BY ==450==.

identification division.
program-id. cobfloats.

data division.
working-storage section.
01 cnt pic 999.
01 val usage float-long.
01 xes.
02 an-x usage float-long occurs ARRAYSIZE times.
01 vyes.
02 an-y usage float-long occurs ARRAYSIZE times.

linkage section.
01 vxes.

02 an—-x usage float-long occurs ARRAYSIZE times.
01 vyes.

02 an-y usage float-long occurs ARRAYSIZE times.

D R ek B e I b Ik b I
procedure division using by reference vxes, vyes.
perform varying cnt from 1 by 1 until cnt >= ARRAYSIZE
compute val = cnt x function random() end-compute
move cnt to an—-x in xes (cnt)
move val to an-y in yes(cnt)

end-perform

move xes to vxes

move yes to vyes

move cnt to return-code

goback.

end program cobfloats.

And then a console session of:

$ cobc -fimplicit-init -C cobparams.cob
$ vi cobparams.c

add a single line

#pragma K&R

to lighten up CINT’s type safety for ease of use at the console
$ root -1
root [0] gSystem->Load("/usr/local/lib/libcob.so");
root [1] .L cobparams.ct
root [2] int a = 0; double x[450]; double y[450];
root [3] = cobfloats (&x, &y);
root [4]
(int) 450
root [5] printf ("$f $f\n", x[42], y[42]);
43.000000 8.232543
root [6] TGraph xgraphl = new TGraph (450, x, Vy);
root [7] graphl->Draw ("Ax");
root [8] TGraphPolar *polarl = new TGraphPolar (450, x, vy);
root [9] polarl->SetLineColor(2);
root [10] polarl->Draw ("AOL");

produces the following graphs; some constrained random numbers, and a circular view of those random numbers. Nerd

30.62. 5.62 Can OpenCOBOL interface with ROOT/CINT? 429

OpenCOBOL FAQ, Release 1.1

heaven.
A trials and tribulations thread can be read at http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=1165&forum=1

.

&

cl BER| =

S Help | Eile
crepn Gra
450F
4001
- *?fe %
350
- .)
* T H
300_— = s #* ﬂ';*
£ *
- £ ¥ ¥
250 L LK *
E %% ok * F *ﬁe 7
u #
ZDD__ %** ** e
- #
[#* ¥ g B -
- e

g 11

| 5[] 1Dﬂ 150 200 250 300 350 400 450

30.63 5.63 Can OpenCOBOL be used to serve HTTP?

Not directly, COBOL preceding the World Wide Web by some 35 years, but yes.

430

Chapter 30. 5 Features and extensions

http://opencobol.org/
http://opencobol.org/
http://www.opencobol.org/modules/newbb/viewtopic.php?topic_id=1165&forum=1

OpenCOBOL FAQ, Release 1.1

30.63.1 5.63.1 libsoup HTTP server

Vala and libsoup is one way.

Given soupserver.vala

// vala .10 specific. .11 changes string to uint8 array
// valac —-c —--pkg libsoup-2.4 —--thread soupserver.vala

// Give the server a default
void default_handler (Soup.Server server, Soup.Message msg, string path,
GLib.HashTable? query, Soup.ClientContext client)

string response_text = """
<html>
<body>
<p>Current location: %s</p>
<p>Test XML</p>
<p>Test COBOL</p>
<p>Tell server to exit</p>
</body>
</html>""" _ printf (path);

msg.set_response ("text/html", Soup.MemoryUse.COPY,
response_text, response_text.size ());
msg.set_status (Soup.KnownStatusCode.OK) ;

void xml_handler (Soup.Server server, Soup.Message msg, string path,
GLib.HashTable? query, Soup.ClientContext client)

string response_text = "<node><subnode>test</subnode></node>";
msg.set_response ("text/xml", Soup.MemoryUse.COPY,
response_text, response_text.size ());

void cobol_handler (Soup.Server server, Soup.Message msg, string path,
GLib.HashTable? query, Soup.ClientContext client)

string response_text = """
<html>
<body>
<p>Current location: %s</p>
<p>Test XML</p>
<p>Home</p>
<p>Tell server to exit</p>
</body>
</html>"""_printf (path);

msg.set_response ("text/html", Soup.MemoryUse.COPY,

response_text, response_text.size ());
msg.set_status (Soup.KnownStatusCode.OK) ;

void exit_handler (Soup.Server server, Soup.Message msg, string path,
GLib.HashTable? query, Soup.ClientContext client)

server.quit () ;

30.63. 5.63 Can OpenCOBOL be used to serve HTTP? 431

OpenCOBOL FAQ, Release 1.1

int CBL_OC_SOUPSERVER (ref Soup.Serverx ss, int port) {
var server = new Soup.Server (Soup.SERVER_PORT, port);

server.add_handler ("/", default_handler);
server.add_handler ("/xml", xml_handler);
server.add_handler ("/cobol", cobol_handler);
server.add_handler ("/exit", exit_handler);
ss = (owned) server;

stdout.printf ("ss: %xX\n", (uint)ss);

return 0;

int CBL_OC_SOUPRUN (Soup.Server ss) {
ss.run();
return 0O;

}

and ocsoup.cob
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok A

*> Author: Brian Tiffin

*> Date: 20101205

*> Purpose: An HTTP server with libsoup

*> Tectonics: valac —-c —--pkg libsoup-2.4 —--thread soupserver.vala
*> cobc -x ocsoup.cob soupserver.vala.o —-1glib-2.0

*> —lsoup-2.4 —-lgobject-2.0

Kk ok K ok ok ok ok ok ok K ok ok ok K ok ok ok ok ok A ok ok ok ok ok A ok ok ok K ok ok ok ok ok ok Ak
identification division.
program-id. ocsoup.

data division.

working-storage section.

01 soup-server usage pointer.

01 port usage binary-long value 38088.
01 result usage binary-long.

F Dk h ok ok ok ko k ok ok ok ok ok k ok ok h ok k ko ok ok Kk k kA ok Ak k k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok h k ok ok kA kK
procedure division.
call "g_type_init" end-call
display "Initialize soup HTTP server on port " port end-display
call "CBL_OC_SOUPSERVER" using
by reference soup-server
by value port
returning result
end-call
display "Result: " result " Server at: " soup-server end-display

display "About to run server, "“C to terminate" end-display
call "CBL_OC_SOUPRUN" using

by value soup-server

returning result
end-call

goback.
end program ocsoup.

and a little bash

S valac -c —--pkg libsoup-2.4 --thread soupserver.vala
S ... some warnings about unused methods

432 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

S cobc -x ocsoup.cob soupserver.vala.o -1glib-2.0 -lsoup-2.4 -lgobject-2.0
S ./ocsoup

Initialize soup HTTP server on port +0000008088

ss: 21CF060

Result: +0000000000 Server at: 0x00000000021cf060

About to run server, “C to terminate

File Edit View History Bookmarks Tools Help

o

| [@] http://localhost:8088/ |+

Current location: /

Test XML

Test COBOL

Tell server to exit

You get RESTful screen shots like...
The next steps are getting the add_handler callbacks into COBOL, and then play with the template and replace model.

30.64 5.64 Is there a good SCM tool for OpenCOBOL?

In this author’s opinion, yes. Fossil.

Where SCM is Software Configuration Management, and not simply Source Code Management, which Fossil does
quite well.

See the Fossil site, snag a tar ball, make, and move the binary to /usr/bin.

Then, to start up your next OpenCOBOL COBOL project:

Create the fossil distributed repository
S mkdir ~/fossils

S cd ~/fossils

S fossil new nextbigthing.fossil

Serve it up on the localhost port 8080
S fossil server . &

browse to the admin panel and do a little nicey nice config
S opera http://localhost:8080/nextbigthing

set up the working copy
cd ~/projects
$ mkdir nextbigthing

Ur

30.64. 5.64 Is there a good SCM tool for OpenCOBOL? 433

http://opencobol.org/
http://opencobol.org/
http://opencobol.org/
http://en.wikipedia.org/wiki/Software_configuration_management
http://www.fossil-scm.org

OpenCOBOL FAQ, Release 1.1

$ cd nextbigthing
fossil clone http://localhost:8080/nextbigthing nbt.fossil

now look at the shiny copy of nextbig
1s

vi nextbigthing.cob

fossil add nextbigthing.cob

fossil ci -m "On to the next big thing"

W v AN %%

browse to the repo and create some wiki pages for morale boosting
S opera http://localhost:8080/nextbigthing

compile and run the next big thing
S cobc —-x nextbigthing.cob
$./nextbigthing

browse again, and create the bug tickets
S opera http://localhost:8080/nextbigthing/tktnew

P : i
W BZ 0penCOBOL - For... x || [E OpenCOBOL: New... UT| &)

Enter a detailed description of the problem. For code defects, be sure to provide details on
exactly how the problem can be reproduced. Provide as much detail as possible.

- | E @/ E |@ Web | localhost:8080/opencobol/tktnew v :-flv Search with -30-5@
'
OpenCOBOL

- 2]
New Tlc ket Logged in as btiffin 1

Home Timeline Files Branches Tags Tickets Wiki Admin Logout
&
Enter A New Ticket g
[85)
Enter a one-line summary of the ticket: P
|Ths_I nextbigthing is breken | 1
Type: What type of ticket is this? »
Version: l:l In what version or build number do you observe the i
problem? o

L T How debilitating is the problem? How badly does the

Severity: problem affect the operation of the product? ©
EMail: Not publicly visible. Used by developers to contact you with i
[| questions. Q
+

Preview |
r After filling in the information above, press this button to
create the new ticket
Abandon and forget this ticket v

L | ©~ - @ - http://www.opencobol.org/modules/newbbjviewtopic.php?topic_id=1237&forum=1&post... & view (100%) ~

Ahh, morale boosting bugs. :)
The fans of OpenCOBOL have posted a few Fossils at

http://fossile.plpwebs.com/ocweb.cgi for an experimental build of OpenCOBOL with support for ACCEPT var FROM
HTTP-POST identifier and http://fossile.plpwebs.com/ocsamples.cgi where there is a stash of short OpenCOBOL
source code samples. Access with:

$ fossil clone http://user:password@fossile.plpwebs.com/ocsamples.cgi my.fossil

$ fossil open my.fossil

434 Chapter 30. 5 Features and extensions

http://www.fossil-scm.org
http://fossile.plpwebs.com/ocweb.cgi
http://fossile.plpwebs.com/ocsamples.cgi

OpenCOBOL FAQ, Release 1.1

If you don’t have a username and password it’ll simply be:

$ fossil clone http://fossile.plpwebs.com/ocsamples.cgi my.fossil

30.65 5.65 Does OpenCOBOL interface with FORTRAN?

Yes. Quite well in the GNU land.
Snuggled away at http://fortranwiki.org/fortran/show/jucolor is a color unit coverter; RGB to HLS, HSV to RGB, etc...

And with a simple Makefile ala
all: rgbcobol

libcolors.so: colors.for
gfortran —-ffree-form -shared -fPIC -o libcolors.so colors.for

rgbcobol: rgbcobol.cob libcolors.so
cobc —-g —-debug -x rgbcobol.cob -lcolors -L

and some COBOL
OCOBOL >>SOURCE FORMAT IS FIXED

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A

*> Author: Brian Tiffin

*> Date: 20110411

*> Purpose: Call a FORTRAN color unit converter, rgb, hsv,
x> Tectonics: gfortran —-ffree-form -shared —-fPIC

*> -0 libcolors.so colors.for

*> cobc —-x rgbcobol.cob —-lcolors -L

D> kA kA kA A A A Ak Ak A h b Ak bbb Ak bbb Ak bbb Ak h kb A bk b h b A bk b h kA bk h kb b h ok kb ok Ak ok F
identification division.
program-id. rgbcobol.

data division.
working-storage section.
01 r usage float-short.
01 g usage float-short.
01 b usage float-short.

01 h usage float-short value 12.21.
01 1 usage float-short value 21.12.
01 usage float-short value 23.32.

9]

01 st usage binary-long.

*> LR i g b b b b g b g b b b b g b b b b b b b b b b b b b b b g b b b b g g
procedure division.

move 000.0 to h

move 050.0 to 1

move 100.0 to s

display "Calling FORTRAN with " h si e 1 space s end-display
call "jucolor_ " wusing 'hls’, h, 1, s, "rgb’, r, g, b, st end-call
display "Returned " r space g space b end-display
display "Status of " st end-display

call "showit " end-call

goback.

end program rgbcobol.

which produces:

30.65. 5.65 Does OpenCOBOL interface with FORTRAN? 435

http://fortranwiki.org/fortran/show/jucolor

OpenCOBOL FAQ, Release 1.1

[btiffin@home fortran]$./rgbcobol
Calling FORTRAN with 0.000000000000000000 50.000000000000000000 100.000000000000000000

inside jucolor_: 0.0000000 0.0000000 50.000000 0.0000000 100.00000
Returned 100.000000000000000000 0.000000000000000000 0.000000000000000000
Status of +0000000000
inside jucolor_: 0.0000000 0.0000000 50.000000 595.19684 100.00000
INPUT HLS PURE RED ==> OUTPUT RGB values are 100.00000 0.0000000 0.0000000
inside jucolor_: 120.00000 100.00000 50.000000 0.0000000 100.00000
INPUT HLS PURE GREEN OUTPUT RGB values are 0.0000000 100.00000 0.0000000
inside jucolor_: 240.00000 0.0000000 50.000000 100.00000 100.00000
INPUT HLS PURE BLUE OUTPUT RGB values are 0.0000000 0.0000000 100.00000
inside jucolor_: 100.00000 0.0000000 0.0000000 0.0000000 0.0000000
INPUT RGB PURE RED OUTPUT HLS values are 0.0000000 50.000000 100.00000
inside jucolor_: 0.0000000 0.0000000 100.00000 50.000000 0.0000000
INPUT RGB PURE GREEN OUTPUT HLS values are 120.00000 50.000000 100.00000
inside jucolor_: 0.0000000 120.00000 0.0000000 50.000000 100.00000
INPUT RGB PURE BLUE OUTPUT HLS values are 240.00000 50.000000 100.00000
values are 240.00000 50.000000 100.00000

b}

The weird numbers on the second “inside jucolor_
great, but safe enough for a one off.

” are uninitialzed gfortran variables, displayed before being set, not

30.66 5.66 Does OpenCOBOL interface with APL?

See Does OpenCOBOL interface with J?

30.67 5.67 Does OpenCOBOL interface with J?

Yes, kinda. Jsoftware recently posted GPL 3 licensed source code for the J programming language. J is designed in
part by one of the creators of APL, Eric Iverson. Initial tests have proven successful but there is more work before
integration with libj in OpenCOBOL is ready for prime-time.

OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk o ok ok ok ok ok ok ok ok ok ok ok ok ok A

x> Author: Brian Tiffin
x> Date: 20110711
*> Purpose: Attempt calling a J sentence. APL in COBOL.

*> Tectonics: cobc -x callj.cob -17j

*> LR g b b b g b b b b g b b b g b b b g g b b b b g b b b g b b b b g b b b b g b b b g b b b b b g b b b g b b b b g g g
identification division.

program-id. call’.

data division.
working-storage section.

77 Jptr usage pointer.

77 result usage binary-long.

KDk o ok ok ok ok ok ok ok ok ok ok ok ok ok A ok

procedure division.

436 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

call "JInit" returning jptr end-call
display Jjptr end-display

call "Jbo"
using by value Jjptr
by content z"a =. 1 + 1"
returning result
end-call

display result end-display

call "JDbo"
using by value jptr
by content z"2 + 2"
returning result
end-call
display result end-display

call "JDbo"
using by value Jjptr
by content z" (’Test Data’,CR,LF) 1!:2 <'temp.dat’"
returning result

end-call

display result end-display

call "Jbo"
using
by value Jptr
by content z"load ’jgplsrc/test/test.ijs’"
returning result
end-call
display result end-display

call "JDbo"
using
by value Jjptr
by content z"bad=: TEST ddall"
returning result
end-call
display result end-display

call "Jbo"
using
by value Jjptr
by content z"BAD ddall"
returning result
end-call
display result end-display
goback.
end program callj.

produces:

$ cobc -x callj.cob -17
$./callj
0x00007£3b6ead7010
+0000000000

+0000000000

+0000000003

+0000000021

+0000000000

30.67. 5.67 Does OpenCOBOL interface with J? 437

OpenCOBOL FAQ, Release 1.1

+0000000000

So libj inits, and can JDo J sentences, but there is a little more background effort to properly set J I/O and PATH
settings into an array of callbacks. Doable, just have to ask the good folk at Jsoftware for a little assistance. More
coming soon.

The GPL 3 J version 7.01b source code can be found at http://www.jsoftware.com/ Compiling the sources took a little
reading, but built clean on 64bit Fedora 14 after a quick edit of jgplsrc/bin/jconfig. Needed to set BITS to 64 and added
readline support, as command line recall is more fun than no command line recall when running jconsole. After that
bin/build_libj bin/build_jconsole all went smooth as silk. libj.so was copied to /usr/lib64 and the above code compiled
and linked just fine.

As did:

$ bin/build_defs
$ bin/build_tsdll

A test suite validates a J system. Read test/test.ijs and test/tsu.ijs for
more info.

$ j/bin/jconsole
load "test/test.ijs’
bad=: TEST ddall NB. run all tests
BAD ddall NB. report tests that failed

with a full test suite pass, all successful. Once the callbacks are properly installed in the sample OpenCOBOL above,
I’'m sure the error 3 will be resolved for 1:!2 write to file as well as running the test suite from within JDo, which
currently reports error 21. The above OpenCOBOL listing is the poor man’s 10 minute guide to integrating J.

30.68 5.68 What is COBOLUnit?

A well documented, full featured Unit testing framework for COBOL, written in OpenCOBOL with a GPL license.
http://sites.google.com/site/cobolunit/

* Tutorials

¢ Installation instructions, with videos

* Open sources

Test suite configuration files look like:

<INIT>
<SETNAME> SUITE-DELIVERY-COST
<SETDESC> Tests Suite for delivery costs
<ADDSUITE>
* Add a test
<SETNAME> FRANCE-TO-ITALY
<SETPROG> TS000011
<SETDESC> IF FROM='FR’ and TO='"IT’ then TAXES=120€
<ADDTEST>
<RUN>

and with the scaffolding in place, a success report looking like:
kA hkkhhkhkhhkhk Ak khk Ak hkhhhhhkhhk kA bk hkhhk Ak kA hkhkhkhkhkhkhk Ak hkhkhkhkhkhkhkrhkhkhkhkhkhkkhkhkrhkkhkhkhkhkhhkrhkhkxkx*

COBOL UNIT : A COBOL FRAMEWORK FOR UNIT TESTS.

KA AR R A AR A A A A A A A A A A A A A AR A KR AR A AR AR A A A AR AR A AA A A A AR AR A A A AR A A AR A AR A A AR AR A KA KK

COBOL UNIT Current release : REL 1.00

438 Chapter 30. 5 Features and extensions

http://www.jsoftware.com/
http://sites.google.com/site/cobolunit/

OpenCOBOL FAQ, Release 1.1

COBOL UNIT Release date : 2009-10-31
Language used for Logging : EN
Verbosity Level of Log 1

End of the ’'Testing Strategy Set up’ Phase
Starting the ’'Test Execution’ Phase

|-—— SUITE ’ SUITE-DELIVERY-COST ’ Running
|-—— | TEST ’ FRANCE-TO-ITALY ’ Running

| |- Assert ’ FR => IT:TAX=120 ’ success

| |==> Test ’ FRANCE-TO-ITALY ’ *x SUCCESS * (000000001 Assertions, 000000000 Failures,

0 errors)

|==> SUITE ’ SUITE-DELIVERY-COST ’ SUCCESS (000000000 test cases, 000000001 success, 000000000 failr

R i i I i i I b b e b b I I I b b I b b b b b b b e I b b b I b b b I e b b b b b b b I b b b b b b b b b b b b b b b b b b ab b b g
* SUCCESS % (000000001 Suites run, 000000001 succeed, 000000000 failed)
KA Ak A A Ak Ak Ak Ak A Ak kA Ak Ak Ak Ak kA kkkh*

(00 min: 00 sec: 00 ms)

30.69 5.69 Can OpenCOBOL interface with Gambas?

Yes. See http://code.google.com/p/gambascobolgui/downloads/list for a working sample.

As a taster, the Gambas (http://gambas.sourceforge.net/en/main.html) sample calls OpenCOBOL coded as
OCOBOL

ENTRY "startGrid".

MOVE FCHIUSO TO GRID-FILE-STATE.

ACCEPT SOLODATA FROM DATE YYYYMMDD.

ACCEPT ORA FROM TIME.

MOVE DATAEORA TO STARTINGPOINT, PRMR-KEY-OF-LIGNE (GAP),

DATAEORA-KR.

PERFORM RIDWN .

MOVE 0 TO RETURN-CODE.

GOBACK.

ENTRY "fillrow" USING BY REFERENCE pRiga,
BY VALUE numRiga.

ADD 1 TO numRiga.

MOVE SUPER-LIGNE-PMP (numRiga) TO ROW-OUT.

SET pRiga TO ADDRESS OF ROW-OUT.

MOVE 0 TO RETURN-CODE.

GOBACK.

which this author found to be a pretty neat way of packaging OpenCOBOL other language callables.

The Gambeas is nicely clean. Below being a snippet from the sample.

Extern cob_init (argc As Integer, argv As Integer) As Integer In "libcob"
Extern startGrid() As Integer In "SCONTO:69"

30.70 5.70 Does OpenCOBOL work with LLVM?

Yes. Almost first try for the February 2009 pre-release of 1.1. The compiler sources has a conditional use of a -
fno-gcse switch that tripped warnings in clang causing some unit test failure reports. One change to compile out the
-fno-gcse in cobce/cobce.c, and a simple:

&

S sudo yum install 1llvm clang clang-analyzer clang-devel
$ export CC=clang

$./configure

OpenCOBOL Configuration:

30.69. 5.69 Can OpenCOBOL interface with Gambas? 439

http://code.google.com/p/gambascobolgui/downloads/list
http://gambas.sourceforge.net/en/main.html

OpenCOBOL FAQ, Release 1.1

]

cc clang

COB_CC clang

CFLAGS -02

COB_CFLAGS —I/usr/local/include

COB_EXTRA_FLAGS
LDFLAGS
COB_LDFLAGS
COB_LIBS
COB_CONFIG_DIR
COB_COPY_DIR
COB_LIBRARY PATH

-L${exec_prefix}/lib —-lcob -1lm —-lgmp -lncurses -1db
${prefix}/share/open-cobol/config
${prefix}/share/open-cobol/copy
${exec_prefix}/lib/open—-cobol

COB_MODULE_EXT so
COB_SHARED_OPT —-shared

COB_PIC_FLAGS -fPIC -DPIC
COB_EXPORT_DYN -Wl, -—export-dynamic
COB_STRIP_CMD strip —--strip-unneeded
Dynamic loading System

scan-build make

scan-build: Removing directory ’/tmp/scan-build-2012-05-23-2"

because it contains no reports.

make check

I had to make one change to cobc/cobc.c to remove -fno-gcse to avoid a
bunch of make check ’failures’ due to a warning about unused —-fno-gcse
S sudo make install

S sudo ldconfig

cobc is built with clang, and uses clang when compiling

the .c generated from the .cob.

[btiffinRcobol]$
scan-build:

scan-build: Using ’clang’

"clang’

scan-build cobc -v -x hello.cob
executable not found in

" /usr/lib64/clang—analyzer/scan-build/bin’ .

from path: /usr/bin/clang

preprocessing hello.cob into /tmp/cobl8158_0.cob

translating /tmp/cobl18158_0.cob into /tmp/cobl8158_0.c

clang -pipe -c¢ -I/usr/local/include -Wno-unused -fsigned-char
-Wno-pointer-sign -o /tmp/cobl8158_0.0 /tmp/cobl8158_0.c

clang -pipe -Wl,-—-export-dynamic -o hello /tmp/cobl8158_0.0
-L/usr/local/lib -lcob -1lm -lgmp -lncurses -1db

scan-build: Removing directory ’/tmp/scan-build-2012-05-23-2"
because it contains no reports.

[btiffin@cobol]$./hello

Hello

[btiffinRcobol]$ 1s —-la hello

—rwxrwxr-x. 1 btiffin btiffin 9630 May 23 12:37 hello

And OpenCOBOL is good to go with clang and the LLVM universe. The above compiles OpenCOBOL with clang,
and the installed cobc will use clang as the compiler after processing the COBOL sources. This is grand news in terms
of anyone worried about OpenCOBOL viability into the future. The existant C ABI space and now the growing LLVM
software pool. Nice.

440 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

30.71 5.71 Does OpenCOBOL interface with Python?

Yes. Embedding Python can be accomplished using only COBOL sources. Extending Python to allow calling COBOL
modules, will usually require a small amount of glue code written in C.

Very high level Python embedding is pretty straight forward, been there, done that.
OCOBOL >>SOURCE FORMAT IS FIXED

Kk ok ok ok ok ok ok A ok ok ok ok ok ok A ok ok ok ok ok ok A ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok A ok ok ok ok ok ok A ok ok A

x> Author: Brian Tiffin
*> Date: 20130126
*> Purpose: Embed Python

*> Tectonics: cobc —-x cobpy.cob —lpythonZ2.6

D> kA khh ok Ak Ak kA h bk Ak bk bk bk bk bk sk h kb kb ok sk h h bk kb kb ok ok ok ok ok ok ok ok ok ok
identification division.

program-id. cobpy.

procedure division.
call "Py_Initialize"
on exception
display "link cobpy with —-lpython2.6" end-display
end-call
call "PyRun_SimpleString" using
by reference
"from time import time,ctime" & x"0a" &
"print (' Today is’, ctime(time()))" & x"0a" & x"00"
on exception continue
end-call
call "Py Finalize" end-call
goback.
end program cobpy.

Giving:
$ cobc -x cobpy.cob -lpython2.6

$./cobpy
(" Today is’, ’Sat Jan 26 20:01:41 20137")

Python dutifully displayed the tuple. But what fun is Python if it is just for high level script side effects? Lots, but still.

Pure embedding.
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok K ok A ok ok A

*> Author: Brian Tiffin

*> Date: 20130126

*> Purpose: Embed Python

*> Tectonics: cobc —-x cobkat.cob —-lpythonZ2.6

*> NOTES : leaks, no Py DECREF macros called.

*> %k ok ok ok b ok ok b ok ok ok ok ok ok ok ok ok b ok ok b ok ok b ok ok ok b ok ok b ok ok b ok ok b ok ok b ok ok ok b ok ok b ok ok ok ok ok A ok
identification division.
program-id. cobkat.

data division.
working-storage section.

77 python-name usage pointer.
77 python-module usage pointer.
77 python-dict usage pointer.
77 python-func usage pointer.
77 python-stringer usage pointer.
77 python—-args usage pointer.
77 python-value usage pointer.

30.71. 5.71 Does OpenCOBOL interface with Python? 441

OpenCOBOL FAQ, Release 1.1

01 cobol-buffer-pointer usage pointer.

01 cobol-buffer pic x(80) based.
01 cobol-string pic x(80).

01 cobol-integer usage binary-long.

01 command-line-args pic x(80).

*> Kk k ok ok ok ok ok ok ok b ok b ok b ok ok ok ok ok ok
procedure division.
call "Py_Initialize"
on exception
display "link cobpy with —-lpython" end-display
end-call

x> Python likes module names in Unicode
call "PyUnicodeUCS4_FromString" using
by reference "pythonfile" & x"00"
returning python-name
on exception
display "unicode problem" end-display
end-call

*> import the module, using PYTHONPATH
call "PyImport_Import" using
by value python-name
returning python-module
on exception
display "this would be borked" end-display
end-call

if python-module equal null
display "no pythonfile.py in PYTHONPATH" end-display
end-if

x> within the module, an attribute is "pythonfunction"
call "PyObject_GetAttrString" using

by value python-module

by reference "pythonfunction" & x"00"

returning python-func

on exception continue
end-call

*>
x> error handling now skimped out on
*>

*> pythonfunction takes a single argument
call "PyTuple_New" using

by value 1

returning python-args
end-call

x> of type long, hard coded to the ultimate answer
call "PyLong_FromLong" using

by value 42

returning python-value
end-call

442 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

x> set first (only) element of the argument tuple
call "PyTuple_SetItem" using

by value python-args

by value 0

by value python-value
end-call

x> call the function, arguments marshalled for Python
call "PyObject_CallObject" using

by value python-func

by value python-args

returning python-value
end-call

*> we know we get a long back, hopefully 1764
call "PyLong_ AsLong" using
by value python-value
returning cobol-integer
end-call
display "Python returned: " cobol-integer end-display

D> kA kA kA A A A A A A A A h bk A b b Ak A bbbk A bbbk A bbbk A bbbk bbbk bk r bkt *<
*> a function taking string and returning string
call "PyObject_GetAttrString" using
by value python-module
by reference "pythonstringer" & x"00"
returning python-stringer
end-call

call "PyTuple_New" using
by value 1
returning python-args
end-call

x> Use the OpenCOBOL command argument
accept command-line-args from command-line end-accept
call "PyString FromString" using
by reference
function concatenate (
function trim(command-line-args)
x"00")
returning python-value
end-call

x> Set the function argument tuple to the cli args
call "PyTuple_SetItem" using

by value python-args

by value 0

by value python-value
end-call

x> call the "pythonstringer" function
call "PyObject_CallObject" using

by value python-stringer

by value python-args

returning python-value
end-call

30.71. 5.71 Does OpenCOBOL interface with Python? 443

OpenCOBOL FAQ, Release 1.1

*> return as String (with the MD5 hex digest tacked on)
call "PyString AsString" using

by wvalue python-value

returning cobol-buffer-pointer
end-call

*> one way of removing null while pulling data out of C
set address of cobol-buffer to cobol-buffer-pointer
string

cobol-buffer delimited by x"00"

into cobol-string
end-string
display "Python returned: " cobol-string end-display

> and clear out <x
call "Py Finalize" end-call

goback.
end program cobkat.
with pythonfile.py
#
Simple Python sample for OpenCOBOL embedding trial
#

def pythonfunction(i):
return i * i

import hashlib
def pythonstringer(s):
sum = hashlib.md5 ()
sum.update (s)
return s + ": " + sum.hexdigest ()

Giving:
$./cobkat Python will use this for MD5 hash
no pythonfile.py in PYTHONPATH

Attempt to reference unallocated memory (Signal SIGSEGV)
Abnormal termination - File contents may be incorrect

Oops:

$ export PYTHONPATH=.

$./cobkat Python will use this for MD5 hash

Python returned: +0000001764

Python returned: Python will use this for MD5 hash: c¢c5577e3ab8dealladede20al949b5fb3

Oh, in case you're reading along, 1764 is the ultimate answer, squared.

An OpenCOBOL source line like
set environment "PYTHONPATH" to "."

before Py_Initialize saves on the oops when you need to find current working directory Python scripts.

30.72 5.72 Can OpenCOBOL interface with Forth?

Yes, ficl, Forth Inspired Command Language embeds nicely.

Ok, I said, easy, I meant almost easy, as I had to hunt down a sysdep.h file and could not get 4.10 to go, but 4.0.31
works the beauty, once the sysdep.h was put in place.

First, the license compliance.

444 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

/***

#+ £ 1 ¢ 1 . h

*+ Forth Inspired Command Language

*% Author: John Sadler (john_sadler@alum.mit.edu)

*+ Created: 19 July 1997

*+ Dedicated to RHS, in loving memory

*+ SId: //depot/gamejones/ficl/ficl.h#33 S

LR R S R R S S R R R S R S S S

* *

*% Copyright (c) 1997-2001 John Sadler (john_sadler@alum.mit.edu)

*% All rights reserved.

* *

** Get the latest Ficl release at http://ficl.sourceforge.net

* *

*+ I am interested in hearing from anyone who uses Ficl. If you have
** a problem, a success story, a defect, an enhancement request, or
*% 1f you would like to contribute to the Ficl release, please

** contact me by email at the address above.

* Kk

* L,] CENSE and DI SCLAIMETR

* *

** Redistribution and use in source and binary forms, with or without
*+ modification, are permitted provided that the following conditions
** are met:

** 1. Redistributions of source code must retain the above copyright

* % notice, this 1list of conditions and the following disclaimer.

*% 2. Redistributions in binary form must reproduce the above copyright

* ok notice, this 1list of conditions and the following disclaimer in the
* % documentation and/or other materials provided with the distribution.

* *

*+ THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS '‘‘AS IS’’ AND

*% ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

*% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
*+ ARFE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

*#% FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
*+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

*+ OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

** HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
#+ LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
** OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

*+ SUCH DAMAGE.

*/

And then the COBOL, callficl.cob
OCOBOL >>SOURCE FORMAT IS FIXED

h D>k o

*> Author: Brian Tiffin

*> Date: 20130220

*> Purpose: Embed ficl

*> Tectonics: cobc —-x callficl.cob —-1ficl —L.
*> LD _LIBRARY PATH=. ./callficl

A ok kA kA kA Ak A kA Ak A kb h kbbb h bk bbbk bbb bk bbbk b h kb d bk h ok d bk h ok *
identification division.
program-id. callficl.

data division.

working-storage section.

01l ficl-result usage binary-long.
01 ficl-system usage pointer.

30.72. 5.72 Can OpenCOBOL interface with Forth?

445

OpenCOBOL FAQ, Release 1.1

01 ficl-vm usage pointer.

KDk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk o ok ok
procedure division.
call "ficlSystemCreate" using
by value 0
returning ficl-system
end-call

display ficl-system end-display

call "ficlSystemCompileExtras" using
by value ficl-system
end-call

call "ficlSystemCreateVm" using
by value ficl-system
returning ficl-vm

end-call

display ficl-vm end-display

call "ficlVmEvaluate" using
by value ficl-vm
by reference ".ver cr quit" & x"00"
returning ficl-result

end-call

display ficl-result end-display

call "ficlVmEvaluate" using
by value ficl-vm
by reference
".(loading ooptest.fr) cr load ooptest.fr" &
=x"0a" & " cr" & x"0OO"
returning ficl-result
end-call

display ficl-result end-display

goback.
end program callficl.

and the test file ooptest.fr
\ OOP test stuff

only
also oop definitions

object subclass c-aggregate
c-byte obj: m0

c-byte obj: ml

c—-4byte obj: m2

c-2byte obj: m3

end-class

object —--> sub classl

cell: .a

446 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

cell: .b
init
locals| class inst |
0 inst class —-—> .a !
1 inst class —-—> .b !
7
end-class

classl —-—> new clinst
classl —--> sub class2
cell: .c
cell: .d
init
locals| class inst |
inst class —--> super --> init
2 inst class —-—> .c !
3 inst class ——> .d !

’
end-class

class2 —--> new c2inst

object subclass c-list
c-list ref: link

c-ref obj: payload
end-class

\ test stuff from ficl.html
. (metaclass methods) cr

metaclass ——-> methods
cr .(c—-foo class) cr
object —--> sub c-foo

cell: m_celll
4 chars: m_chars
init (inst class —-)
locals| class inst |

0 inst class ——> m_celll !
inst class ——> m_chars 4 0 fill
." initializing an instance of c_foo at " inst x. cr

’
end-class

.(c—foo instance methods...) cr
c-foo —-—> new foo-instance
cr
foo-instance —--> methods
foo-instance —--> pedigree
cr
foo-instance 2dup
—-—> methods
—-—> pedigree

cr
c-foo —-—> see init

cr

foo—-instance --> class —--> see init

30.72. 5.72 Can OpenCOBOL interface with Forth? 447

OpenCOBOL FAQ, Release 1.1

and finally, the run. The first two commands building up ficl and the libficl shared library, the next two for COBOL.:

$ make —-f Makefile.linux
$ make —-f Makefile.linux main

$ cobc -g -debug -x callficl.cob -1ficl -L
$ LD_LIBRARY_PATH=. ./callficl
loading CORE EXT words

loading SEARCH & SEARCH-EXT words
loading Johns—-Hopkins locals
loading MARKER

loading ficl 0O-O extensions
loading ficl utility classes
loading ficl string class
0x080569c0

0x08057928

Ficl version 4.0.31

-0000000056
loading ooptest.fr
metaclass methods
metaclassmethods:

debug see pedigree methods id offset-of
resume-class ref allot-array allot alloc—-array
new—array new array instance get—-super
get-size .size .wid .super .do-instance

Dictionary: 24 words, 7786 cells used of 12288 total

c-foo class
c-foo instance methods...
initializing an instance of c_foo at 806043C

c—foomethods:
init m_chars m_celll .do-instance
Dictionary: 4 words, 7893 cells used of 12288 total

objectmethods:
debug prev next index methods size pedigree
free array-init init class .do-instance

Dictionary: 13 words, 7893 cells used of 12288 total

c-foo object

c—foomethods:
init m_chars m_celll .do-instance
Dictionary: 4 words, 7893 cells used of 12288 total

objectmethods:
debug prev next index methods size pedigree
free array-init init class .do-instance

Dictionary: 13 words, 7893 cells used of 12288 total

c-foo object

init
0 (link) (instruction 136)

sub
alloc
get-wid

super

super

448 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

1 2 (instruction 2)
2 (toLocal) (instruction 140), with argument 0 (0)
4 (toLocal) (instruction 140), with argument 1 (0x1)
9 0 (instruction 17)
7 (@locall) (instruction 146)
8 (Qlocall) (instruction 142)
9 s" m celll"
13 exec-method
14 ! (instruction 57)
15 (Qlocall) (instruction 146)
16 (@locall) (instruction 142)
17 s" m_chars"
21 exec-method
22 4 (instruction 4)

23 0 (instruction 17)
24 fill (instruction 111)

25 s" initializing an instance of c_foo at "
36 type
37 (Qlocall) (instruction 146)
38 X.
39 cr
40 (unlink) (instruction 137)
init
0 (link) (instruction 136)
1 2 (instruction 2)
2 (toLocal) (instruction 140), with argument 0 (0)
4 (toLocal) (instruction 140), with argument 1 (0x1)
6 0 (instruction 17)
7 (Qlocall) (instruction 146)
8 (@locall) (instruction 142)
9 s" m celll"
13 exec-method
14 ! (instruction 57)
15 (Qlocall) (instruction 146)
16 (@locall) (instruction 142)
17 s" m_chars"
21 exec—-method
22 4 (instruction 4)
23 0 (instruction 17)
24 fill (instruction 111)
25 s" initializing an instance of c_foo at "
36 type
37 (Qlocall) (instruction 146)
38 X.
39 cr
40 (unlink) (instruction 137)
4
-0000000257

Turns out that return codes -56 and -257 are ok codes, (from ficl.h):

#define FICL VM _STATUS _QUIT (-56) /* like FICI_VM STATUS_ERROR_EXIT, but leave dataStack
#define FICI_VM STATUS _OUT_OF TEXT (-257) /#* hungry — normal exit #*/
OpenCOBOL does Forth.

http://ficl.sourceforge.net/

30.72. 5.72 Can OpenCOBOL interface with Forth? 449

http://ficl.sourceforge.net/

OpenCOBOL FAQ, Release 1.1

p.s. One small note. The ficl load word, load ooptest.fr needed a newline after the filename. Normally Forth uses a
straight up space delimited word parser, but ficl accounts for filenames with spaces in them. Nice feature.

30.73 5.73 Can OpenCOBOL interface with Shakespeare?

Yes. The reference implementation of the Shakespeare Programming Language builds into OpenCOBOL applications
that can CALL SPL modules.

Technicals: I downloaded Marlowe which fixes the reference implementation problem with Roman Numerals.
https://bitbucket.org/kcartmell/marlowe/downloads

Then inside a working dir (/lang/cobol/cobill/ for instance) create spl, untar, and make SPL. I assume the spl/ sub
directory in the Makefile listed below.

What is happening here isn’t runtime link loading, it is simply building the SPL engine into COBOL, and then CALL
the result of spl2c.

This first cut lacks art. Lacks. Sad, so verily verily sad.

cobill.cob
OCOBOL 4> sk k sk sk sk sk k sk ks ks ko k k& Kk k ok ok ok ok ok sk ok sk ok sk sk 5k 5k 5k 5k 5k ok ok o o & ok o ok A k& ok ok ok ok ok ok ok
*> Author: Brian Tiffin
*> Date: 20130224
*> Purpose: COBOL meets Shakespeare
*> Tectonics: cobc —-x —-Ispl cobill.cob ocshake.c
*> spl/libspl.c spl/strutils.c

*> pre-req: spl2c ocshake.spl and an spl/ distribution
*> Kk kb b ok b ok ok ok ok ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok b ok ok ok ok b ok ok
identification division.

program—-id. cobill.

procedure division.

call "ocshake" end-call

goback.

end program cobill.

Then some cowardly SPL, ocshake.spl
The derp in SPL from OpenCOBOL.

Ajax, the loud mouth.

Dorcas, the d.

Escalus, the e.

Rosalind, the r.

Prospero, the p.

The Archbishop of Canterbury, the new line.

Act I: derping.
Scene I: derp.
[Enter Ajax and Dorcas]
Ajax:
You amazing beautiful fine charming gentle delicious door.

You are as honest as the sum of a bold brave hard proud noble stone wall and thyself.
You are as trustworthy as the sum of a proud rich tree and thyself.

450 Chapter 30. 5 Features and extensions

https://bitbucket.org/kcartmell/marlowe/downloads

OpenCOBOL FAQ, Release 1.1

Speak your mind.

[Exit Dorcas]
[Enter Escalus]

Ajax:
You
You
You
You

bluest peaceful smooth lovely warm embroidered summer’s day.

are as beautiful as the sum of a fine honest fair sweet gentle wind and thyself.
are as lovely as the sum of a reddest sunny flower and thyself.

are as mighty as the sum of the sky and thyself.

Speak your mind.

[Exit Escalus]
[Enter Rosalind]

Ajax:
You
You
You
You

fair reddest sweet
are as rich as the
are as rich as the
are as rich as the

Speak your mind.

[Exit Rosalind]
[Enter Prospero]

Ajax:

rich smooth blossoming red
difference between thyself
difference between thyself
difference between thyself

You proud prompt pretty loving gentle warm purple
You are as bold as the difference between thyself
Speak your mind.

[Exeunt]

[Enter Ajax

Ajax:
You
You
You

[Exeunt]

Scene II: a new line.

are nothing.

and The Archbishop of Canterbury]

are a bold beautiful blossoming wind.
are as cunning as the sum of thyself and a tiny thing.
Speak your mind!

A Makefile of:

cobill:

ocshake.spl cobill.

cob

spl/spl2c <ocshake.spl >ocshake.c

sed

-i ’s/int main(void)/int ocshake (void) /'’

rose.

and a golden gentle clearest wind.
and a proud white lantern.

and a honest morning.

pony.
and an amazing cute delicious pretty purse.

ocshake.c

cobc —-x —-Ispl cobill.cob ocshake.c spl/libspl.c spl/strutils.c

Then a run of:

S make

spl/spl2c <ocshake.spl >ocshake.c

sed —-i ’"s/int main(void) /int ocshake (void) /'’

ocshake.c

cobc -x -Ispl cobill.cob ocshake.c spl/libspl.c spl/strutils.c

$./cobill
derp
$

30.73. 5.73 Can OpenCOBOL interface with Shakespeare?

451

OpenCOBOL FAQ, Release 1.1

derp, in a 20K binary, from 2K of source.

I am kinda proud of Scene II, that one reads well. The rest needs some Fahrenheit 451

30.74 5.74 Can OpenCOBOL interface with Ruby?

Yes. Ruby 1.8 links without issue.

This example is only calling Ruby for side effect, without data exchange.

OCOBOL >>SOURCE FORMAT IS FIXED

LR g b b b b g g b b b g b b b b g b b b b b b b b g g b b b g b b b b g b b b b b b b b g b b b b g g b b b g b b b b g g g

no data exchange yet

x>

x> Author: Brian Tiffin

*> Date: 20130226

x> Purpose: Embed Ruby for effect,

*> Tectonics: cobc —-x callruby.cob —-lrubyl.§8
*>

identification division.

program—-id. callruby.

procedure division.

display "OpenCOBOL:

call "ruby_init"

on exception

display "hint: link with -lrubyl
stop run giving 1

end-call

display "OpenCOBOL:
call "rb_eval_string" using

by content "puts ’Hello,
end-call

world”"

display "OpenCOBOL: evaluate ruby script

call "ruby_init_loadpath" end-call
call "rb_load_file" using

by content "script.rb" & x"00"
end-call
call "ruby_exec" end-call

call "ruby_finalize" end-call
display "OpenCOBOL:

goback.
end program callruby.

and script.rb

puts ’"Hello, script’
puts 6%7
puts ’Goodbye, script’

and a run test of:

$ cobc -x callruby.cob

$./callruby
OpenCOBOL: initialize ruby
hint: link with -lrubyl.8

$ cobc -x callruby.cob —-lrubyl.8

R i b e e b b e b b b b g b b b b b e b b e b b b e e b i e b e b b b b b e b b g b b e b i e b b e b b e b g g b

initialize ruby" end-display

.8" end-display

evaluate ruby string" end-display

& x"ooO"

.rb" end-display

finalized ruby" end-display

452

Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

$./callruby

OpenCOBOL: initialize ruby
OpenCOBOL: evaluate ruby string
Hello, world

OpenCOBOL: evaluate ruby script.rb
Hello, script

42

Goodbye, script

OpenCOBOL: finalized ruby

30.75 5.75 Can OpenCOBOL interface with Pure?

Yes. Yes it can.

Pure is a term rewriting functional programming language by Albert Graef. Influenced by Haskell, the system gener-
ates C code as part of the just in time compiler. The successor of Q.

Given a Fedora with LLVM installed, and a:

$ sudo yum install pure pure-devel pure-gen pure-doc
Below is a little test program, to see if pure can call OpenCOBOL

hellooc.pure

#!/usr/bin/pure -x
using system;
puts "Hello, world";

using "lib:hellocobol";
extern int hellocobol () ;

hellocobol;
And a little snippet of COBOL introduction

hellocobol.cob
OCOBOL >>SOURCE FORMAT IS FIXED

KDk o ok ok A ok ok ok ok ok ok

x> Author: Brian Tiffin

x> Date: 20130612

*> Purpose: Call this COBOL program from pure
x> Tectonics: cobc —fimplicit—-init hellocobol.cob
*> pure —-L. hellooc.pure

*> R b g
identification division.
program-id. hellocobol.

procedure division.
display "S’up?" end-display

goback.
end program hellocobol.

With a first try of:

$ cobc hellocobol.cob

$ pure -L. hellooc.pure
Hello, world
Segmentation fault

30.75. 5.75 Can OpenCOBOL interface with Pure? 453

OpenCOBOL FAQ, Release 1.1

Oops. Kept the error above in, to show the fix. The object code needs to initialize OpenCOBOL.:

$ cobc -fimplicit-init hellocobol.cob
$ pure -L. hellooc.pure

Hello, world

S’up?

Yayy, success one. Pure can call OpenCOBOL.

And then to leverage Pure power from OpenCOBOL, as things should be, power balance wise.
OCOBOL >>SOURCE FORMAT IS FIXED

KDk ok

x> Author: Brian Tiffin

*> Date: 20130612

*> Purpose: Call pure. Nice.

x> Tectonics: pure -o hello.o -c -x hello.pure 8

* cobc -x callpurefact.cob hello.o —-lpure

F Dk hk ok kb ok kA ok
identification division.
program-id. callpurefact.

data division.
working-storage section.

01 pure-arg-pointer usage pointer.

01 fact-function-pointer usage program—pointer.
01 fact-result-pointer usage pointer.

01 pure-result usage binary-long.

01 fact-answer usage binary-long.

F Dk h ok b ok ok ok ok b ok ok ok ok b ok ok ok ok kA A
procedure division.

x> Initialize pure, with empty argc argv.
call "__pure_main__ " using

by value 0 by value 0
end-call

*> convert a 9 to a pure expression pointer argument
call "pure_int" using

by value 9

returning pure-arg-pointer
end-call

*> resolve the link address to the function, "fact"
set fact-function-pointer to entry "fact"

x> call the pure function "fact"

*> using the program pointer

*> 1 as the number of argumments

*> the address of the argument expression
*> returing a result expression pointer

call "pure_funcall" using
by value fact-function-pointer
by value 1
by value pure-arg-pointer
returning fact-result-pointer
end-call

*> convert the result expression back to integer

454 Chapter 30. 5 Features and extensions

OpenCOBOL FAQ, Release 1.1

call "pure_is_int" using
by value fact-result-pointer

by reference fact-ans

returning pure-result
end-call
display "fact 9 should be 362880" end-display
display "fact 9 result is " fact-answer end-display
goback.
end program callpurefact.
*><

Below is the tutorial hello program for Pure. pure is used to compile this, and in this example, is passed an initial
argument of 8§ for the ubiquitous factorial functional hello.

OpenCOBOL will call this main, mapping out 8 factorial results, then will call the defined fact function with an
argument of 9.

hello.pure

using system;

fact n = if n>0 then n+fact (n-1) else 1;

main n = do puts ["Hello, world!", str (map fact (l1..n))];
const n = if argc>1 then sscanf (argv!l) "%d" else 10;

if compiling then () else main nj;

And then:

$ pure -o hello.o -c -x hello.pure 8

$ cobc -g -debug -W -x callpurefact.cob -lpure hello.o
$./callpurefact

Hello, world!

[1,2,6,24,120,720,5040,40320]

fact 9 should be 362880

fact 9 result is +0000362880

So, yayy, success. OpenCOBOL can handle Pure integration. Pure looks pretty sweet.

Pure at Wikipedia

30.75. 5.75 Can OpenCOBOL interface with Pure? 455

http://en.wikipedia.org/wiki/Pure_(programming_language)

OpenCOBOL FAQ, Release 1.1

456 Chapter 30. 5 Features and extensions

CHAPTER
THIRTYONE

6 NOTES

Notes

* 6.1 big-endian

* 6.2 little-endian

* 6.3 ASCIH

* 6.4 currency symbol

* 6.5 DSO

* 6.6 errno

* 6.7 gdb

* 6.8 GMP

* 69 ISAM

* 6.10 line sequential

* 6.11 APT

* 6.12 ROBODoc Support
* 6.13 cobol.vim

* 6.14 make check listing
* 6.15 ABI

* 6.16 Tectonics

* 6.17 Setting Locale

* 6.18 GNU

* 6.19 Performing FOREVER?
* 6.20 POSIX

* 6.21 BITWISE

Notes

31.1 6.1 big-endian

Binary values stored with the most significant byte at the lowest memory address.
Big End First.
See http://en.wikipedia.org/wiki/Endianness for more details.

The OpenCOBOL compiler default storage format for USAGE BINARY and COMP.

457

http://en.wikipedia.org/wiki/Endianness

OpenCOBOL FAQ, Release 1.1

31.2 6.2 little-endian

Binary values stored with the most significant byte at the highest memory address.
Little End First.
http://en.wikipedia.org/wiki/Endianness for more details.

This is the common Intel architecture form, and USAGE clauses of COMPUTATIONAL-5, BINARY-CHAR,
BINARY-SHORT, BINARY-LONG, BINARY-DOUBLE are a true performance boost on this hardware. See
http://www.opencobol.org/modules/bwiki/index.php?cmd=read&page=UserManual %2F4#content_1_0 for some de-
tails.

31.3 6.3 ASCII

American Symbolic Code for Information Interchange.

The character encoding common to personal computers and the early Internet Age, therefore OpenCOBOL. Open-
COBOL also supports the EBCDIC character encoding so some data transfers and keyboard handling or console
display programs may need programmer attention to detail. Although this is a rare case as OpenCOBOL operates
using an intelligent choice of encoding for each platform build.

See http://en.wikipedia.org/wiki/American_Standard_Code_for_Information_Interchange for more info.

Note: Unicode? OpenCOBOL supports PIC N, a two-byte character field.

314 6.4 currency symbol

COBOL allows a SPECIAL-NAMES clause that determines the currency symbol. This effects both source codes and
input/output PICTURE definitions.

CONFIGURATION SECTION.
SPECIAL-NAMES.
CURRENCY SIGN IS "#".

31.5 6.5 DSO

Dynamic Shared Objects.

Similar to but subtly different from share libraries.

31.6 6.6 errno

OpenCOBOL and C are fairly closely related as OpenCOBOL produces intermediate C source code and passes this
off to another compiler.

Some C functions had no easy way to report out-of-bound errors so a global int errno is defined in the standard C
library as a thread safe variable. Conscientious programmers will reset and test this variable for any and all functions
documented as setting errno.

This is not straight forward for OpenCOBOL, but a small wrapper along the lines of

458 Chapter 31. 6 Notes

http://en.wikipedia.org/wiki/Endianness
http://www.opencobol.org/modules/bwiki/index.php?cmd=read&page=UserManual%2F4#content_1_0
http://en.wikipedia.org/wiki/American_Standard_Code_for_Information_Interchange

OpenCOBOL FAQ, Release 1.1

/+ set/get errno */
#include <errno.h>

int reset_errno() {
errno = 0;
return errno;

}

int get_errno() {
return errno;

}

/Hxx/

exposes this critical run-time variable.

Usage:

$ cobc -c geterrno.c
$ cobc -x program.cob geterrno.o

and then something like

CALL "reset_errno" END-CALL
MOVE FUNCTION SQRT(-1) TO root
CALL "get_errno" RETURNING result END-CALL
IF result NOT EQUAL

CALL "perror" USING NULL END-CALL
END-IF

Outputs:

Numerical argument out of domain

31.7 6.7 gdb

The GNU symbolic debugger. Big, deep, wide.
$ info gdb for the details.

or visit http://www.gnu.org/software/gdb/documentation/

31.8 6.8 GMP

GNU MP libgmp. GNU Library for decimal arithmetic. See http://gmplib.org/ for complete details on the library
advertised as Arithmetic without limitations.

319 6.9 ISAM

Indexed Sequential Access Method. A system to allow a variety of access methods for data records in file storage.

See http://en.wikipedia.org/wiki/ISAM for more details.

31.9.1 6.9.1 OpenCOBOL FILE STATUS codes

From http://oldsite.add 1tocobol.com/tiki-list_file_gallery.php?galleryld=1 statcodes.cpy courtesy of John Ellis.

31.7. 6.7 gdb 459

http://www.gnu.org/software/gdb/documentation/
http://gmplib.org/
http://en.wikipedia.org/wiki/ISAM
http://oldsite.add1tocobol.com/tiki-list_file_gallery.php?galleryId=1

OpenCOBOL FAQ, Release 1.1

01 status-code pic x(2) value
88 SUCCESS value ’"00’.
88 SUCCESS_DUPLICATE value ’'02'.
88 SUCCESS_INCOMPLETE value ’'04'.
88 SUCCESS_OPTIONAL value ’05’.
88 SUCCESS_NO_UNIT value '07'.
88 END_OF_FILE value "10’.
88 OUT_OF_KEY_RANGE value ’14'.
88 KEY_INVALID value ’'21'.
88 KEY_EXISTS value ’"22'.
88 KEY_NOT_EXISTS value ’23'.
88 PERMANENT_ERROR value ’'30’.
88 INCONSISTENT_FILENAME value ’'31'.
88 BOUNDARY_VIOLATION value ’34’.
88 NOT_EXISTS value ’'35'.
88 PERMISSION_DENIED value ’'37'".
88 CLOSED_WITH_LOCK value ’38’.
88 CONFLICT_ATTRIBUTE value ’'39'.
88 ALREADY_OPEN value ’41'.
88 NOT_OPEN value ’42'.
88 READ_NOT_DONE value 43’ .
88 RECORD_OVERFLOW value ’44'.
88 READ_ERROR value ’46'.
88 INPUT_DENIED value ’"47'.
88 OUTPUT_DENIED value ’48’.
88 I_O_DENIED value "49'.
88 RECORD_LOCKED value ’'51'.
88 END_OF_PAGE value ’'52'.
88 I_O_LINAGE value ’'57'.
88 FILE_SHARING value ’"61'.
88 NOT_AVAILABLE value ’"91'.

Download and then in your WORKING-STORAGE SECTION use
COPY *“statcodes.cpy”.

31.10 6.10 line sequential

An access method for newline terminated files. OpenCOBOL reads each line and strips off carriage returns and line
feeds. Filling the record buffer with the current line and padding with spaces.

31.11 6.11 APT

Advanced Package Tool. One of the strengths of the Debian GNU/Linux system. Allows for dependency checked
binary packages.

31.12 6.12 ROBODoc Support

Below is a sample of a configuration file for using ROBODoc with OpenCOBOL programs.

robodoc.rc for OpenCOBOL
#
items:

NAME

460 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

AUTHOR
DATE
PURPOSE
TECTONICS
SYNOPSIS
INPUTS
OUTPUTS
SIDE EFFECTS
HISTORY
BUGS
EXAMPLE
SOURCE

ignore items:
HISTORY
BUGS

item order:
PURPOSE
SYNOPSIS
INPUTS
OUTPUTS

source items:
SYNOPSIS

preformatted items:
INPUTS
OUTPUTS

format items:
PURPOSE
SIDE EFFECTS

options:

--src ./

-—doc ./doc
——html
—-—syntaxcolors

--singledoc

-—-multidoc

—-—index

-—tabsize 4

headertypes:

J "Projects"
F "Files"
e "Makefile Entries"
x "System Tests"
d Queries
ignore files:
README
CVs
*.bak

* ~

ETS

"a test_«"

accept files:
*.cob

.COB

.cbl

.CBL

-CpPYy
*.CPY

header markers:

* D>k kK k

% ok X

remark markers:

robo_projects
robo_files
robo_mk_entries
robo_syst_tests
robo_queries

31.12. 6.12 ROBODoc Support

461

OpenCOBOL FAQ, Release 1.1

* >
end markers:

K>k ok ok k

header separate characters:

’

header ignore characters:

[

remark begin markers:

* >+
remark end markers:
*>—

source line comments:

*>
OpenCOBOL keywords
keywords:
accept
access
active-class
add
address
advancing
after
aligned
all
allocate
alphabet
alphabetic
alphabetic-lower
alphabetic—upper
alphanumeric

*>< %

alphanumeric-edited

also

alter
alternate

and

any

anycase

are

area

areas
argument-—number
argument-value
arithmetic

as

ascending
assign

at

attribute

auto

auto-skip
automatic
autoterminate
b-and

b-not

b-or

b-xor
background-color
based

beep

462

Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

before

bell

binary
binary-c-long
binary-char
binary-double
binary-long
binary-short
bit

blank

blink

block

boolean

bottom

by

byte-length
call

cancel

cd

center

cf

ch

chain

chaining
character
characters
class

class-id
classification
close

code

code-set

col

collating

cols

column

columns

comma
command-1line
commit

common
communication
comp

comp-1

comp—2

comp-3

comp—4

comp—5

comp—x
computational
computational-1
computational-2
computational-3
computational-4
computational-5
computational-x
compute
condition
configuration

31.12. 6.12 ROBODoc Support 463

OpenCOBOL FAQ, Release 1.1

constant
contains
content
continue
control
controls
converting
copy

corr
corresponding
count

crt

currency
cursor

cycle

data
data-pointer
date

day
day-of-week
de

debugging
decimal-point
declaratives
default
delete
delimited
delimiter
depending
descending
destination
detail
disable

disk

display
divide
division
down
duplicates
dynamic
ebcdic

ec

egi

else

emi

enable

end
end—-accept
end-add
end-call
end-compute
end-delete
end-display
end-divide
end-evaluate
end-if
end-multiply
end-of-page
end-perform

464

Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

end-read
end-receive
end-return
end-rewrite
end-search
end-start
end-string
end-subtract
end-unstring
end-write
entry
entry-convention
environment
environment-name
environment-value
eo

eol

eop

eos

equal

equals

erase

error

escape

esi

evaluate
exception
exception-object
exclusive

exit

expands

extend
external
factory

false

fd

file
file-control
file—-id

filler

final

first
float-extended
float-long
float-short
footing

for
foreground-color
forever

format

free

from

full

function
function-id
generate

get

giving

global

31.12. 6.12 ROBODoc Support 465

OpenCOBOL FAQ, Release 1.1

go
goback
greater
group
group-usage
heading
high-value
high-values
highlight
i-o
i-o-control
id
identification
if

ignoring
implements
in

index
indexed
indicate
inherits
initial
initialize
initialized
initiate
input
input-output
inspect
interface
interface-id
into
intrinsic
invalid
invoke

is

just
justified
key

label

last

lc_all
lc_collate
lc_ctype
lc_messages
lc_monetary
lc_numeric
lc_time
leading

left

length

less

limit

limits
linage
linage-counter
line
line-counter
lines
linkage

466

Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

local-storage
locale

lock
low-value
low-values
lowlight
manual

memory

merge

message
method
method-id
minus

mode

move

multiple
multiply
national
national-edited
native
negative
nested

next

no

none

normal

not

null

nulls

number
numbers
numeric
numeric-edited
object
object-computer
object-reference
occurs

of

off

omitted

on

only

open

optional
options

or

order
organization
other

output
overflow
overline
override
packed-decimal
padding

page
page-counter
paragraph
perform

31.12. 6.12 ROBODoc Support 467

OpenCOBOL FAQ, Release 1.1

pf

ph

pic
picture
plus
pointer
position
positive
present
previous
printer
printing
procedure
procedure-pointer
procedures
proceed
program
program-id
program-pointer
prompt
property
prototype
purge
queue
quote
quotes
raise
raising
random

rd

read
receive
record
recording
records
recursive
redefines
reel
reference
relation
relative
release
remainder
removal
renames
replace
replacing
report
reporting
reports
repository
required
reserve
reset
resume
retry
return
returning
reverse-video

468

Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

rewind
rewrite

rf

rh

right
rollback
rounded

run

same

screen

sd

search
seconds
section
secure
segment
select

self

send
sentence
separate
sequence
sequential
set

sharing
sign

signed
signed-int
signed-long
signed-short
size

sort
sort-merge
source
source—computer
sources
space
spaces
special-names
standard
standard-1
standard-2
start
statement
status

step

stop

string
strong
sub-queue-1
sub-queue-2
sub-queue-3
subtract
sum

super
suppress
symbol
symbolic
sync

31.12. 6.12 ROBODoc Support 469

OpenCOBOL FAQ, Release 1.1

synchronized
system—default
table
tallying
tape
terminal
terminate
test

text

than

then

through

thru

time

times

to

top

trailing
true

type

typedef
ucs—4
underline
unit
universal
unlock
unsigned
unsigned-int
unsigned-long
unsigned-short
unstring
until

up

update

upon

usage

use
user—-default
using

utf-16

utf-8
val-status
valid
validate
validate-status
value

values
varying

when

with
working-storage
write
yyyyddd

yyyymmdd
zZero

zeroes
Zeros

To be used with

470 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

$ robodoc —-—-src program.cob —--doc program --singlefile —--rc robocob.rc

Producing a nice HTML file documenting the program using embedded ROBODoc comment line directives. See
ROBODoc for more information.

31.13 6.13

cobol.vim

Many thanks to the good people at www.vim.org:

" Language:

Maintainers:

Vim syntax file

COBOL

" James Mitchell

Last change:

For version 5.x:
For version 6.x:

" Stephen Gennard
" - added keywords - AS,
" - added extra cobolCall bits

if version < 600
syntax clear
elseif exists ("b:current_syntax")

finish
endif

2001 Sep 02

Davyd Ondrejko
(formerly Sitaram Chamarty

REPOSITORY

Clear all syntax items
Quit when a syntax file was already loaded

" MOST important - else most of the keywords wont work!
if version < 600
set isk=@,48-57, -

else

setlocal isk=@,48-57,—
endif

syn case ignore

if exists ("cobol_legacy_code")

syn match cobolKeys
else
syn match cobolKeys

endif

syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn

keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword

cobolReserved
cobolReserved
cobolReserved
cobolReserved
cobolReserved
cobolReserved
cobolReserved
cobolReserved
cobolReserved
cobolReserved
cobolReserved
cobolReserved
cobolReserved
cobolReserved

"Na\{1l,6\}"

contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained
contained

contains=cobolReserved

contains=cobolReserved

ACCEPT ACCESS ADD ADDRESS ADVANCING AFTER ALPHABET ALPHABETIC

ALPHABETIC-LOWER ALPHABETIC-UPPER ALPHANUMERIC ALPHANUMERIC-EDITI
ALTERNATE AND ANY ARE AREA AREAS ASCENDING ASSIGN AT AUTHOR BEFOI
BLANK BLOCK BOTTOM BY CANCEL CBLL CD CF CH CHARACTER CHARACTERS (
CLOCK-UNITS CLOSE COBOL CODE CODE-SET COLLATING COLUMN COMMA COM
COMMUNICATIONS COMPUTATIONAL COMPUTE CONFIGURATION CONTENT CONTII
CONTROL CONVERTING CORR CORRESPONDING COUNT CURRENCY DATA DATE D:
DATE-WRITTEN DAY DAY-OF-WEEK DE DEBUG-CONTENTS DEBUG-ITEM DEBUG-I
DEBUG-NAME DEBUG-SUB-1 DEBUG-SUB-2 DEBUG-SUB-3 DEBUGGING DECIMAL-
DELARATIVES DELETE DELIMITED DELIMITER DEPENDING DESCENDING DEST
DETAIL DISABLE DISPLAY DIVIDE DIVISION DOWN DUPLICATES DYNAMIC E(
ENABLE END-ADD END-COMPUTE END-DELETE END-DIVIDE END-EVALUATE ENI
END-MULTIPLY END-OF-PAGE END-PERFORM END-READ END-RECEIVE END-RE’
END-REWRITE END-SEARCH END-START END-STRING END-SUBTRACT END-UNS-

31.13. 6.13 cobol.vim

471

http://www.xs4all.nl/~rfsber/Robo/robodoc.html

OpenCOBOL FAQ, Release 1.1

syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn

keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained

" new

syn

keyword cobolReserved contained

" new - btiffin

syn

keyword cobolReserved contained

" new

syn
syn

syn

"
syn
syn
syn
syn
syn

keyword cobolReserved contained
keyword cobolReserved contained

keyword cobolReserved contained

new ——- oo stuff

keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained
keyword cobolReserved contained

" new - new types
match cobolTypes "condition-value"hs=s, he=e
match cobolTypes "binary-char"hs=s, he=e

match cobolTypes "binary-c-long"hs=s, he=e
match cobolTypes "binary-long"hs=s, he=e

match cobolTypes "binary-short"hs=s, he=e
match cobolTypes "binary-double"hs=s, he=e
match cobolTypes "procedure-pointer"hs=s, he=e
match cobolTypes "object reference"hs=s, he=e

syn
syn
syn
syn
syn
syn
syn
syn

END-WRITE ENVIRONMENT EQUAL ERROR ESI EVALUATE EVERY EXCEPTION
EXTEND EXTERNAL FALSE FD FILE FILE-CONTROL FILLER FINAL FIRST FO(
GENERATE GIVING GLOBAL GREATER GROUP HEADING HIGH-VALUE HIGH-VALI
I-O-CONTROL IDENTIFICATION IN INDEX INDEXED INDICATE INITIAL INI-
INITIATE INPUT INPUT-OUTPUT INSPECT INSTALLATION INTO IS JUST
JUSTIFIED KEY LABEL LAST LEADING LEFT LENGTH LOCK MEMORY

MERGE MESSAGE MODE MODULES MOVE MULTIPLE MULTIPLY NATIVE NEGATIVI
NUMBER NUMERIC NUMERIC-EDITED OBJECT-COMPUTER OCCURS OF OFF OMIT’
OPTIONAL OR ORDER ORGANIZATION OTHER OUTPUT OVERFLOW PACKED-DECII
PAGE PAGE-COUNTER PERFORM PF PH PIC PICTURE PLUS POSITION POSITIM
PRINTING PROCEDURE PROCEDURES PROCEDD PROGRAM PROGRAM-ID PURGE QI
RANDOM RD READ RECEIVE RECORD RECORDS REDEFINES REEL REFERENCE RI
RELATIVE RELEASE REMAINDER REMOVAL REPLACE REPLACING REPORT REPOI
REPORTS RERUN RESERVE RESET RETURN RETURNING REVERSED REWIND REW]
RIGHT ROUNDED SAME SD SEARCH SECTION SECURITY SEGMENT SEGMENT-LII
SELECT SEND SENTENCE SEPARATE SEQUENCE SEQUENTIAL SET SIGN SIZE !
SORT-MERGE SOURCE SOURCE-COMPUTER SPECIAL-NAMES STANDARD
STANDARD-1 STANDARD-2 START STATUS STRING SUB-QUEUE-1 SUB-QUEUE-:
SUB-QUEUE-3 SUBTRACT SUM SUPPRESS SYMBOLIC SYNC SYNCHRONIZED TABI
TAPE TERMINAL TERMINATE TEST TEXT THAN THEN THROUGH THRU TIME TII
TRAILING TRUE TYPE UNIT UNSTRING UNTIL UP UPON USAGE USE USING V:
VARYING WHEN WITH WORDS WORKING-STORAGE WRITE

AS LOCAL-STORAGE LINKAGE SCREEN ENTRY

END-ACCEPT END-DISPLAY

environment-name environment-value argument-number
call-convention identified pointer

external-form division wait national

repository object class method-id method object static
class—id class-control private inherits object-storage
class—-object protected delegate

try catch raise end-try super property
override instance equals

syn match cobolReserved contained "\<CONTAINS\>"

syn match cobolReserved contained "\<\ (IF\|ELSE|INVALID\|END\ |EOP\)\>"

syn match cobolReserved contained "\<ALL\>"

syn keyword cobolConstant SPACE SPACES NULL ZERO ZEROES ZEROS LOW-VALUE LOW-VALUES

syn keyword cobolReserved contained fold folder

472 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

if exists ("cobol_legacy_code")
syn match cobolMarker "~.\{6\}"
syn match cobolBadLine "~.\{6\}[" D\-x$/].+x"hs=s+6
" If comment mark somehow gets into column past Column 7.
syn match cobolBadLine "7~ .\{6\}\s\+\%.%"

endif

syn match cobolNumber "\<-\=\dx\.\=\d\+\>" contains=cobolMarker, cobolComment
syn match cobolPic "\<Sx9\+\>" contains=cobolMarker, cobolComment

syn match cobolPic "\<$x\.\=9\+\>" contains=cobolMarker, cobolComment

syn match cobolPic "\<Zx\.\=9\+\>" contains=cobolMarker, cobolComment

syn match cobolPic "\<VI9\+\>" contains=cobolMarker, cobolComment

syn match cobolPic "\<9\+V\>" contains=cobolMarker, cobolComment

syn match cobolPic "\<-\+[Z9]\+\>" contains=cobolMarker, cobolComment

syn match cobolTodo "todo" contained

if exists("cobol_mf_syntax")
syn region cobolComment start="+>" end="$" contains=cobolTodo,cobolMarker
endif

cobolGoTo GO GOTO
cobolCopy COPY

syn keyword
syn keyword

" cobolBAD:
syn keyword

things that are BAD NEWS!
cobolBAD ALTER ENTER RENAMES

" cobolWatch: things that are important when trying to understand a program
syn keyword cobolWatch OCCURS DEPENDING VARYING BINARY COMP REDEFINES

syn keyword cobolWatch REPLACING THROW

syn match cobolWatch "COMP-[123456XN]"

added

" new - btiffin, Intrinsics

syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn
syn

syn

syn

syn
syn

keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword
keyword

region cobolEXECs contains=cobollLine start="EXEC "

cobolWatch
cobolWatch
cobolWatch
cobolWatch
cobolWatch
cobolWatch
cobolWatch
cobolWatch
cobolWatch
cobolWatch
cobolWatch
cobolWatch
cobolwatch
cobolWatch
cobolWatch

match cobolComment
match cobolComment
match cobolComment

ABS ACOS ANNUITY ASIN ATAN BYTE-LENGTH CHAR

COS CURRENT-DATE DATE-OF-INTEGER DATE-TO-YYYYMMDD
DAY-OF-INTEGER DAY-TO-YYYYDDD E EXCEPTION-FILE
EXCEPTION-LOCATION EXCEPTION-STATEMENT
EXCEPTION-STATUS EXP EXP10 FACTORIAL FRACTION-PART
INTEGER INTEGER-OF-DATE INTEGER-OF-DAY INTEGER-PART
LENGTH LOCALE-DATE LOCALE-TIME LOG LOG10 LOWER-CASE
MAX MEAN MEDIAN MIDRANGE MIN MOD NUMVAL NUMVAL-C
ORD ORD-MAX ORD-MIN PI PRESENT-VALUE RANDOM RANGE
REM REVERSE SECONDS-FROM-FORMATTED-TIME
SECONDS-PAST-MIDNIGHT SIGN SIN SQRT
STANDARD-DEVIATION STORED-CHAR-LENGTH SUM TAN
SUBSTITUTE SUBSTITUTE-CASE

TEST-DATE-YYMMDD TEST-DAY-YYYYDDD TRIM UPPER-CASE
VARIANCE WHEN-COMPILED YEAR-TO-YYYY

end="END-EXEC"
"~ \{6\}*.x"hs=s+6 contains=cobolTodo, cobolMarker

"~ \{6\}/.x"hs=s+6 contains=cobolTodo, cobolMarker
"~ \{6\}C.+"hs=s+6 contains=cobolTodo, cobolMarker

if exists ("cobol_legacy_code")

match cobolCompiler ""~.\{6\}$.x"hs=s+6
match cobolDecl "~.\{6} \{1,8}\(0\=1\|77\|78\) "hs=s+7,he=e-1 contains=cobolMarker
match cobolDecl "~.\{6} \+[1-8]\d "hs=s+7,he=e-1 contains=cobolMarker

syn
syn
syn

31.13. 6.13 cobol.vim 473

OpenCOBOL FAQ, Release 1.1

syn match cobolDecl ""~.\{6} \+0\=[2-9] "hs=s+7,he=e-1 contains=cobolMarker

syn match cobolDecl ""~.\{6} \+66 "hs=s+7,he=e-1 contains=cobolMarker

syn match cobolWatch "~.\{6} \+88 "hs=s+7,he=e-1 contains=cobolMarker
else

syn match cobolWhiteSpace "7**[\t]"

syn match cobolCompiler "$.x"hs=s,he=e contains=cobolWhiteSpace,cobolTypes

syn match cobolDecl "0\=[1-9] x$"hs=s,he=e-1 contains=cobolWhiteSpace, cobolTypes

syn match cobolDecl "66 x$"hs=s,he=e-1 contains=cobolWhiteSpace, cobolTypes

syn match cobolWatch "88 %$"hs=s,he=e-1 contains=cobolWhiteSpace, cobolTypes
endif

syn match cobolBadID "\k\+-\($\|[*-A-Z0-9]\)"

syn keyword cobolCALLs CALL CANCEL GOBACK INVOKE PERFORM END-PERFORM END-CALL RUN
syn match cobolCALLs "STOP \+RUN"

syn match cobolCALLs "EXIT \+PROGRAM"

syn match cobolCALLs "EXIT \+PROGRAM \+RETURNING"

syn match cobolCALLs "EXIT \+PERFORM"

syn match cobolCALLs "EXIT \+METHOD"

syn match cobolCALLs "EXIT \+SECTION"

syn match cobolCALLs "STOP " contains=cobolString

syn match cobolExtras /\<VALUE \+\d\+\./hs=s+6,he=e-1

" zero terminated strings eg: pic x(10) value z"My C String"”
if exists ("cobol_mf_syntax")

syn match cobolString /z"[*"]1*\("\[S$\)/
endif

syn match cobolString /"["*"1*\("\|$\)/
syn match cobolString // [~ 1*x\("\|S$\)/

" new - btiffin, added libcob calls
syn match cobolWatch /\(["”]1\)SYSTEM\1/

syn match cobolWatch /["’]CBL_ERROR_PROC["']/
syn match cobolWatch /["’]CBL_EXIT_PROC["’]/
syn match cobolWatch /["’]CBL_OPEN_FILE["']/
syn match cobolWatch /["’]CBL_CREATE_FILE["’]/
syn match cobolWatch /["’]CBL_READ_FILE["’]/
syn match cobolWatch /["’]CBL_WRITE_FILE["']/
syn match cobolWatch /["’]CBL_CLOSE_FILE["']/
syn match cobolWatch /["’]CBL_FLUSH FILE["']/
syn match cobolWatch /["’]CBL_DELETE_FILE["’]/
syn match cobolWatch /["’]CBL_COPY_FILE["']/
syn match cobolWatch /["’]CBL_CHECK_FILE_EXIST["']/
syn match cobolWatch /["’]CBL_RENAME_FILE["’]/
syn match cobolWatch /["’]CBL_GET_CURRENT_DIR["']/
syn match cobolWatch /["’]CBL_CHANGE_DIR["']/
syn match cobolWatch /["’]CBL_CREATE_DIR["']/
syn match cobolWatch /["’]CBL_DELETE_DIR["']/
syn match cobolWatch /["/]CBL_AND["']/

syn match cobolWatch /["/]CBL_OR["']1/

syn match cobolWatch /["/]CBL_NOR["']/

syn match cobolWatch /["’]CBL_XOR["']1/

syn match cobolWatch /["/]CBL_IMP["']/

syn match cobolWatch /["/]CBL_NIMP["’]/

syn match cobolWatch /["/]JCBL_EQ[""]/

syn match cobolWatch /["/]CBL_NOT["']1/

syn match cobolWatch /["’]CBL_TOUPPER["']/

474 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

wr

CBL_TOLOWER["’]/
\\364[""]/
\\365["" 1/
\\221[""1/
CSNARG["’]/
CSPARAMSIZE["' 1/

syn match cobolWatch /["']
syn match cobolWatch /["']
syn match cobolWatch /["']
syn match cobolWatch /["']
syn match cobolWatch /["']
syn match cobolWatch /["']
syn match cobolWatch /["’]JC$MAKEDIR["']1/
syn match cobolWatch /["’]JC$SCHDIR["']/
syn match cobolWatch /["’]C$SSLEEP["']/
/1"
/"]
/1"
/1"
/1"
/1"
/1"

nwrs
wrs
wrs
nwrs
wrs
wrs

nwrs

syn match cobolWatch "rJC$SCOPY[""]/

syn match cobolWatch CSFILEINFO["']/
syn match cobolWatch CSDELETE["']/
syn match cobolWatch CSTOUPPER["' 1/

syn match cobolWatch CSTOLOWER["' 1/

syn match cobolWatch C$JUSTIFY["' 1/

syn match cobolWatch CBL_OC_NANOSLEEP[""]/

wrs
wrs
wrs
wrs
wrs

wrs

if exists("cobol_legacy_code")
syn region cobolCondFlow contains=ALLBUT, cobolLine start="\<\ (IF\|INVALID\|END\ |EOP\)\>"
skip=/\NCNI"\) [M"INA=IN ("N N I$\) / end="\." keepend
syn region cobolLine start="".\{6} " end="$" contains=ALL
endif

if exists("cobol_legacy_code")
" catch junk in columns 1-6 for modern code
syn match cobolBAD "~ \{O0,5\} [~].x"

endif

" many legacy sources have junk in columns 1-6: must be before others
" Stuff after column 72 is in error - must be after all other "match" entries
if exists ("cobol_legacy_code")
syn match cobolBadLine "~.\{6}["*/].\{66,\}"
endif

" Define the default highlighting.
" For version 5.7 and earlier: only when not done already
" For version 5.8 and later: only when an item doesn’t have highlighting yet
if version >= 508 || !exists("did_cobol_syntax_inits")
if version < 508
let did_cobol_syntax_inits =1
command -nargs=+ HiLink hi link <args>
else
command -nargs=+ HiLink hi def link <args>
endif
HiLink cobolBAD Error
HiLink cobolBadID Error
HiLink cobolBadLine Error
HiLink cobolMarker Comment
HiLink cobolCALLs Function
HiLink cobolComment Comment
HiLink cobolKeys Comment
HiLink cobolCompiler PreProc
HiLink cobolEXECs PreProc
HiLink cobolCondFlow Special
HiLink cobolCopy PreProc
HiLink cobolDecl Type
HiLink cobolTypes Type
HiLink cobolExtras Special
HiLink cobolGoTo Special

31.13. 6.13 cobol.vim 475

OpenCOBOL FAQ, Release 1.1

HiLink cobolConstant Constant
HiLink cobolNumber Constant
HiLink cobolPic Constant
HiLink cobolReserved Statement
HiLink cobolString Constant
HiLink cobolTodo Todo
HiLink cobolWatch Special
delcommand HiLink

endif

let b:current_syntax = "cobol"

" vim: ts=6 nowrap

31.14 6.14 make check listing

A make check from February 2009:

- #4
OpenCOBOL 1.1 test suite: Syntax Tests.
-
1: COPY: file not found ok
2: COPY: replacement order ok
3: COPY: separators ok
4: COPY: partial replacement ok
5: COPY: recursive replacement ok
6: Invalid PROGRAM-ID ok
7: Invalid PROGRAM-ID type clause (1) ok
8: Invalid PROGRAM-ID type clause (2) ok
9: Undefined data name ok
10: Undefined group name ok
11: Undefined data name in group ok
12: Reference not a group name ok
13: Incomplete 01 definition ok
14: Same labels in different sections ok
15: Redefinition of 01 items ok
16: Redefinition of 01 and 02 items ok
17: Redefinition of 02 items ok
18: Redefinition of 77 items ok
19: Redefinition of 01 and 77 items ok
20: Redefinition of 88 items ok
21: Ambiguous reference to 02 items ok
22: Ambiguous reference to 02 and 03 items ok
23: Ambiguous reference with qualification ok
24: Unique reference with ambiguous qualifiers ok
25: Undefined procedure name ok
26: Redefinition of section names ok
27: Redefinition of section and paragraph names ok
28: Redefinition of paragraph names ok
29: Ambiguous reference to paragraph name ok
30: Non-matching level numbers (extension) ok
31: Ambiguous AND/OR ok
32: START on SEQUENTIAL file ok
33: Subscripted item requires OCCURS clause ok
34: The number of subscripts ok
35: OCCURS with level 01, 66, 77, and 88 ok
36: OCCURS with variable-occurrence data item ok
476 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

37: Nested OCCURS clause

38: OCCURS DEPENDING followed by another field

39: OCCURS DEPENDING without TO clause
40: REDEFINES: not following entry-name
41: REDEFINES: level 02 by 01

42: REDEFINES: level 03 by 02

43: REDEFINES: level 66

44: REDEFINES: level 88

45: REDEFINES: lower level number

46: REDEFINES: with OCCURS

47: REDEFINES: with subscript

48: REDEFINES: with variable occurrence
49: REDEFINES: with qualification

50: REDEFINES: multiple redefinition
51: REDEFINES: size exceeds

52: REDEFINES: with VALUE

53: REDEFINES: with intervention

54: REDEFINES: within REDEFINES

55: Numeric item (integer)

56: Numeric item (non-integer)

57: Numeric item with picture P

58: Signed numeric literal

59: Alphabetic item

60: Alphanumeric item

61: Alphanumeric group item

62: Numeric-edited item

63: Alphanumeric-edited item

64: MOVE SPACE TO numeric or numeric-edited item

65: MOVE ZERO TO alphabetic item
66: MOVE alphabetic TO x

67: MOVE alphanumeric TO x

68: MOVE alphanumeric-edited TO x
69: MOVE numeric (integer) TO x
70: MOVE numeric (non-integer) TO x
71: MOVE numeric-edited TO x

72: Operands must be groups

73: MOVE: misc

74: Category check of Format 1
75: Category check of Format 2
76: Category check of literals
77: SET: misc

-
Test results.
- #4

All 77 tests were successful.
PASS: ./syntax

- #4
OpenCOBOL 1.1 test suite: Run Tests.
#tH ——— #4
1: DISPLAY literals
2: DISPLAY literals, DECIMAL-POINT is COMMA
3: Hexadecimal literal
4: DISPLAY data items with VALUE clause
5: DISPLAY data items with MOVE statement
6: GLOBAL at same level
7: GLOBAL at lower level
8: non-numeric subscript

ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok

ok
ok
ok
ok
ok
ok
ok
ok

31.14. 6.14 make check listing

477

OpenCOBOL FAQ, Release 1.1

9: The range of subscripts ok
10: Subscript out of bounds (1) ok
11: Subscript out of bounds (2) ok
12: Value of DEPENDING ON N out of bounds (lower)ok
13: Value of DEPENDING ON N out of bounds (upper)ok
14: Subscript bounds with ODO (lower) ok
15: Subscript bounds with ODO (upper) ok
16: Subscript bounds with ODO ok
17: Subscript by arithmetic expression ok
18: Separate sign positions ok
19: Static reference modification ok
20: Dynamic reference modification ok
21: Static out of bounds ok
22: Offset underflow ok
23: Offset overflow ok
24: Length underflow ok
25: Length overflow ok
26: ACCEPT ok
27: INITIALIZE group entry with OCCURS ok
28: INITIALIZE OCCURS with numeric edited ok
29: INITIALIZE complex group (1) ok
30: INITIALIZE complex group (2) ok
31: INITIALIZE with REDEFINES ok
32: Source file not found ok
33: Comma separator without space ok
34: LOCAL-STORAGE ok
35: EXTERNAL data item ok
36: EXTERNAL AS data item ok
37: cobcrun validation ok
38: MOVE to itself ok
39: MOVE with refmod ok
40: MOVE with refmod (variable) ok
41: MOVE with group refmod ok
42: MOVE indexes ok
43: MOVE X' 00’ ok
44: Level 01 subscripts ok
45: Class check with reference modification ok
46: Index and parenthesized expression ok
47: Alphanumeric and binary numeric ok
48: Dynamic call with static linking ok
49: CALL ml. CALL m2. CALL ml. ok
50: CALL binary literal parameter/LENGTH OF ok
51: INSPECT REPLACING LEADING ZEROS BY SPACES ok
52: INSPECT: No repeat conversion check ok
53: INSPECT: REPLACING figurative constant ok
54: INSPECT: TALLYING BEFORE ok
55: INSPECT: TALLYING AFTER ok
56: INSPECT REPLACING TRAILING ZEROS BY SPACES ok
57: INSPECT REPLACING complex ok
58: SWITCHES ok
59: Nested PERFORM ok
60: EXIT PERFORM ok
61: EXIT PERFORM CYCLE ok
62: EXIT PARAGRAPH ok
63: EXIT SECTION ok
64: 88 with FILLER ok
65: Non-overflow after overflow ok
66: PERFORM ... CONTINUE ok
67: STRING with subscript reference ok

478 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

68:
69:
70:
71:
72
73:
74 :
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94 :
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:

UNSTRING DELIMITED ALL LOW-VALUE

READ INTO AT-END sequence

First READ on empty SEQUENTIAL INDEXED file
REWRITE a RELATIVE file with RANDOM access

SORT: table sort

SORT: EBCDIC table sort

SORT nonexistent file

PIC z27ZZ-, ZZ7Z+

Larger REDEFINES lengths
PERFORM type OSVS

Sticky LINKAGE

COB_PRE_LOAD test
COB_LOAD_CASE=UPPER test

88 level with FALSE IS clause
ALLOCATE/FREE with BASED item

INITIZIALIZE with reference modification

CALL with OMITTED parameter
ANY LENGTH

BASED item non-ALLOCATED (debug)

COMP-5

Hexadecimal numeric literal

Semi-parenthesized condition
ADDRESS OF

LENGTH OF

WHEN-COMPILED

Complex OCCURS DEPENDING ON

MOVE NON-INTEGER TO ALPHA-NUMERIC

CALL USING file-name

CALL unusual PROGRAM-ID.
Case independent PROGRAM-ID
PROGRAM-ID AS clause

Quoted PROGRAM-ID

ASSIGN MF

ASSIGN IBM

ASSIGN mapping

ASSIGN expansion

ASSIGN with COB_FILE_PATH
NUMBER-OF-CALL-PARAMETERS
PROCEDURE DIVISION USING BY
PROCEDURE DIVISION CHAINING
STOP RUN RETURNING

ENTRY

LINE SEQUENTIAL write

LINE SEQUENTIAL read

ASSIGN to KEYBOARD/DISPLAY
Environment /Argument variable
DECIMAL-POINT is COMMA (1)

DECIMAL-POINT is COMMA (2)
DECIMAL-POINT is COMMA (3)
DECIMAL-POINT is COMMA (4)
DECIMAL-POINT is COMMA (5)

78 Level (1)

78 Level (2)

78 Level (3)
Unreachable statement
RETURN-CODE moving
RETURN-CODE passing
RETURN-CODE nested
FUNCTION ABS

ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok

31.14. 6.14 make check listing

479

OpenCOBOL FAQ, Release 1.1

127: FUNCTION ACOS ok
128: FUNCTION ANNUITY ok
129: FUNCTION ASIN ok
130: FUNCTION ATAN ok
131: FUNCTION CHAR ok
132: FUNCTION COMBINED-DATETIME ok
133: FUNCTION CONCATENATE ok
134: FUNCTION CONCATENATE with reference modding ok
135: FUNCTION COS ok
136: FUNCTION DATE-OF-INTEGER ok
137: FUNCTION DATE-TO-YYYYMMDD ok
138: FUNCTION DAY-OF-INTEGER ok
139: FUNCTION DAY-TO-YYYYDDD ok
140: FUNCTION E ok
141: FUNCTION EXCEPTION-FILE ok
142: FUNCTION EXCEPTION-LOCATION ok
143: FUNCTION EXCEPTION-STATEMENT ok
144: FUNCTION EXCEPTION-STATUS ok
145: FUNCTION EXP ok
146: FUNCTION FACTORIAL ok
147: FUNCTION FRACTION-PART ok
148: FUNCTION INTEGER ok
149: FUNCTION INTEGER-OF-DATE ok
150: FUNCTION INTEGER-OF-DAY ok
151: FUNCTION INTEGER-PART ok
152: FUNCTION LENGTH ok
153: FUNCTION LOCALE-DATE ok
154: FUNCTION LOCALE-TIME ok
155: FUNCTION LOCALE-TIME-FROM-SECONDS ok
156: FUNCTION LOG ok
157: FUNCTION LOG10 ok
158: FUNCTION LOWER-CASE ok
159: FUNCTION LOWER-CASE with reference modding ok
160: FUNCTION MAX ok
161: FUNCTION MEAN ok
162: FUNCTION MEDIAN ok
163: FUNCTION MIDRANGE ok
164: FUNCTION MIN ok
165: FUNCTION MOD ok
166: FUNCTION NUMVAL ok
167: FUNCTION NUMVAL-C ok
168: FUNCTION ORD ok
169: FUNCTION ORD-MAX ok
170: FUNCTION ORD-MIN ok
171: FUNCTION PI ok
172: FUNCTION PRESENT-VALUE ok
173: FUNCTION RANGE ok
174: FUNCTION REM ok
175: FUNCTION REVERSE ok
176: FUNCTION REVERSE with reference modding ok
177: FUNCTION SECONDS-FROM-FORMATTED-TIME ok
178: FUNCTION SECONDS-PAST-MIDNIGHT ok
179: FUNCTION SIGN ok
180: FUNCTION SIN ok
181: FUNCTION SQRT ok
182: FUNCTION STANDARD-DEVIATION ok
183: FUNCTION STORED-CHAR-LENGTH ok
184: FUNCTION SUBSTITUTE ok
185: FUNCTION SUBSTITUTE with reference modding ok
480 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

186: FUNCTION SUBSTITUTE-CASE

187: FUNCTION SUBSTITUTE-CASE with reference mod

188: FUNCTION TAN

189: FUNCTION TRIM

190: FUNCTION TRIM with reference modding
191: FUNCTION UPPER-CASE

192: FUNCTION UPPER-CASE with reference modding

193: FUNCTION VARIANCE
194: FUNCTION WHEN-COMPILED

-
Test results.
- #4

All 194 tests were successful.
PASS: ./run

Run time tests with -O option

ok
ok
ok
ok
ok
ok
ok
ok
ok

ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok

ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok

- #4
OpenCOBOL 1.1 test suite: Run Tests.
-
1: DISPLAY literals
2: DISPLAY literals, DECIMAL-POINT is COMMA
3: Hexadecimal literal
4: DISPLAY data items with VALUE clause
5: DISPLAY data items with MOVE statement
6: GLOBAL at same level
7: GLOBAL at lower level
8: non-numeric subscript
9: The range of subscripts
10: Subscript out of bounds (1)
11: Subscript out of bounds (2)
12: Value of DEPENDING ON N out of bounds (lower)ok
13: Value of DEPENDING ON N out of bounds (upper)ok
14: Subscript bounds with ODO (lower)
15: Subscript bounds with ODO (upper)
16: Subscript bounds with ODO
17: Subscript by arithmetic expression
18: Separate sign positions
19: Static reference modification
20: Dynamic reference modification
21: Static out of bounds
22: Offset underflow
23: Offset overflow
24: Length underflow
25: Length overflow
26: ACCEPT
27: INITIALIZE group entry with OCCURS
28: INITIALIZE OCCURS with numeric edited
29: INITIALIZE complex group (1)
30: INITIALIZE complex group (2)
31: INITIALIZE with REDEFINES
32: Source file not found
33: Comma separator without space
34: LOCAL-STORAGE
35: EXTERNAL data item
36: EXTERNAL AS data item
37: cobcrun validation

ok

31.14. 6.14 make check listing

481

OpenCOBOL FAQ, Release 1.1

38: MOVE to itself ok
39: MOVE with refmod ok
40: MOVE with refmod (variable) ok
41: MOVE with group refmod ok
42: MOVE indexes ok
43: MOVE X’00' ok
44: Level 01 subscripts ok
45: Class check with reference modification ok
46: Index and parenthesized expression ok
47: Alphanumeric and binary numeric ok
48: Dynamic call with static linking ok
49: CALL ml. CALL m2. CALL ml. ok
50: CALL binary literal parameter/LENGTH OF ok
51: INSPECT REPLACING LEADING ZEROS BY SPACES ok
52: INSPECT: No repeat conversion check ok
53: INSPECT: REPLACING figurative constant ok
54: INSPECT: TALLYING BEFORE ok
55: INSPECT: TALLYING AFTER ok
56: INSPECT REPLACING TRAILING ZEROS BY SPACES ok
57: INSPECT REPLACING complex ok
58: SWITCHES ok
59: Nested PERFORM ok
60: EXIT PERFORM ok
61l: EXIT PERFORM CYCLE ok
62: EXIT PARAGRAPH ok
63: EXIT SECTION ok
64: 88 with FILLER ok
65: Non-overflow after overflow ok
66: PERFORM ... CONTINUE ok
67: STRING with subscript reference ok
68: UNSTRING DELIMITED ALL LOW-VALUE ok
69: READ INTO AT-END sequence ok
70: First READ on empty SEQUENTIAL INDEXED file ok
71: REWRITE a RELATIVE file with RANDOM access ok
72: SORT: table sort ok
73: SORT: EBCDIC table sort ok
74: SORT nonexistent file ok
75: PIC ZZZ-, ZZZ+ ok
76: Larger REDEFINES lengths ok
77: PERFORM type OSVS ok
78: Sticky LINKAGE ok
79: COB_PRE_LOAD test ok
80: COB_LOAD_CASE=UPPER test ok
8l: 88 level with FALSE IS clause ok
82: ALLOCATE/FREE with BASED item ok
83: INITIZIALIZE with reference modification ok
84: CALL with OMITTED parameter ok
85: ANY LENGTH ok
86: BASED item non-ALLOCATED (debug) ok
87: COMP-5 ok
88: Hexadecimal numeric literal ok
89: Semi-parenthesized condition ok
90: ADDRESS OF ok
91: LENGTH OF ok
92: WHEN-COMPILED ok
93: Complex OCCURS DEPENDING ON ok
94: MOVE NON-INTEGER TO ALPHA-NUMERIC ok
95: CALL USING file-name ok
96: CALL unusual PROGRAM-ID. ok
482 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

97: Case independent PROGRAM-ID
98: PROGRAM-ID AS clause
99: Quoted PROGRAM-ID
100: ASSIGN MF
101: ASSIGN IBM
102: ASSIGN mapping
103: ASSIGN expansion
104: ASSIGN with COB_FILE_PATH
105: NUMBER-OF-CALL-PARAMETERS
106: PROCEDURE DIVISION USING BY
107: PROCEDURE DIVISION CHAINING
108: STOP RUN RETURNING
109: ENTRY
110: LINE SEQUENTIAL write
111: LINE SEQUENTIAL read
112: ASSIGN to KEYBOARD/DISPLAY
113: Environment/Argument variable
114: DECIMAL-POINT is COMMA (1)

115: DECIMAL-POINT is COMMA (2)
116: DECIMAL-POINT is COMMA (3)
117: DECIMAL-POINT is COMMA (4)
118: DECIMAL-POINT is COMMA (5)

119: 78 Level (1)

120: 78 Level (2)

121: 78 Level (3)

122: Unreachable statement

123: RETURN-CODE moving

124: RETURN-CODE passing

125: RETURN-CODE nested

126: FUNCTION ABS

127: FUNCTION ACOS

128: FUNCTION ANNUITY

129: FUNCTION ASIN

130: FUNCTION ATAN

131: FUNCTION CHAR

132: FUNCTION COMBINED-DATETIME
133: FUNCTION CONCATENATE

134: FUNCTION CONCATENATE with reference modding
135: FUNCTION COS

136: FUNCTION DATE-OF-INTEGER
137: FUNCTION DATE-TO-YYYYMMDD
138: FUNCTION DAY-OF-INTEGER
139: FUNCTION DAY-TO-YYYYDDD
140: FUNCTION E

141: FUNCTION EXCEPTION-FILE
142: FUNCTION EXCEPTION-LOCATION
143: FUNCTION EXCEPTION-STATEMENT
144: FUNCTION EXCEPTION-STATUS
145: FUNCTION EXP

146: FUNCTION FACTORIAL

147: FUNCTION FRACTION-PART

148: FUNCTION INTEGER

149: FUNCTION INTEGER-OF-DATE
150: FUNCTION INTEGER-OF-DAY
151: FUNCTION INTEGER-PART

152: FUNCTION LENGTH

153: FUNCTION LOCALE-DATE

154: FUNCTION LOCALE-TIME

155: FUNCTION LOCALE-TIME-FROM-SECONDS

ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok

ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok

31.14. 6.14 make check listing

483

OpenCOBOL FAQ, Release 1.1

156: FUNCTION LOG ok
157: FUNCTION LOG10 ok
158: FUNCTION LOWER-CASE ok
159: FUNCTION LOWER-CASE with reference modding ok
160: FUNCTION MAX ok
161: FUNCTION MEAN ok
162: FUNCTION MEDIAN ok
163: FUNCTION MIDRANGE ok
164: FUNCTION MIN ok
165: FUNCTION MOD ok
166: FUNCTION NUMVAL ok
167: FUNCTION NUMVAL-C ok
168: FUNCTION ORD ok
169: FUNCTION ORD-MAX ok
170: FUNCTION ORD-MIN ok
171: FUNCTION PI ok
172: FUNCTION PRESENT-VALUE ok
173: FUNCTION RANGE ok
174: FUNCTION REM ok
175: FUNCTION REVERSE ok
176: FUNCTION REVERSE with reference modding ok
177: FUNCTION SECONDS-FROM-FORMATTED-TIME ok
178: FUNCTION SECONDS-PAST-MIDNIGHT ok
179: FUNCTION SIGN ok
180: FUNCTION SIN ok
181: FUNCTION SQRT ok
182: FUNCTION STANDARD-DEVIATION ok
183: FUNCTION STORED-CHAR-LENGTH ok
184: FUNCTION SUBSTITUTE ok
185: FUNCTION SUBSTITUTE with reference modding ok
186: FUNCTION SUBSTITUTE-CASE ok
187: FUNCTION SUBSTITUTE-CASE with reference mod ok
188: FUNCTION TAN ok
189: FUNCTION TRIM ok
190: FUNCTION TRIM with reference modding ok
191: FUNCTION UPPER-CASE ok
192: FUNCTION UPPER-CASE with reference modding ok
193: FUNCTION VARIANCE ok
194: FUNCTION WHEN-COMPILED ok
##
Test results.
- #4#
All 194 tests were successful.
PASS: ./run-O
##
OpenCOBOL 1.1 test suite: Data Representation.
-
1: BINARY: 2-4-8 big-endian ok
2: BINARY: 2-4-8 native ok
3: BINARY: 1-2-4-8 big-endian ok
4: BINARY: 1-2-4-8 native ok
5: BINARY: 1--8 big-endian ok
6: BINARY: 1--8 native ok
7: BINARY: full-print ok
8: DISPLAY: Sign ASCII ok
9: DISPLAY: Sign ASCII (2) ok
10: DISPLAY: Sign EBCDIC ok
484 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

11: PACKED-DECIMAL dump ok
12: PACKED-DECIMAL display ok
13: PACKED-DECIMAL move ok
14: PACKED-DECIMAL arithmetic (1) ok
15: PACKED-DECIMAL arithmetic (2) ok
16: PACKED-DECIMAL numeric test ok
17: POINTER: display ok
-
#4# Test results. ##
-
All 17 tests were successful.
PASS: ./data-rep
Data representation tests with -0 option
-
OpenCOBOL 1.1 test suite: Data Representation.
- #4#
1: BINARY: 2-4-8 big-endian ok
2: BINARY: 2-4-8 native ok
3: BINARY: 1-2-4-8 big-endian ok
4: BINARY: 1-2-4-8 native ok
5: BINARY: 1--8 big-endian ok
6: BINARY: 1--8 native ok
7: BINARY: full-print ok
8: DISPLAY: Sign ASCII ok
9: DISPLAY: Sign ASCII (2) ok
10: DISPLAY: Sign EBCDIC ok
11: PACKED-DECIMAL dump ok
12: PACKED-DECIMAL display ok
13: PACKED-DECIMAL move ok
14: PACKED-DECIMAL arithmetic (1) ok
15: PACKED-DECIMAL arithmetic (2) ok
16: PACKED-DECIMAL numeric test ok
17: POINTER: display ok
—————
Test results.
-

All 17 tests were successful.
PASS: ./data-rep-0O

All 5 tests passed

31.15 6.15 ABI

Application Binary Interface. An acronym that covers the way object code is managed and the expectations of the
run-time system. OpenCOBOL is at home in the “C” ABI.

» Link names are as expected.
* CALL arguments are stacked as expected for C programming.

* etc...

31.15. 6.15 ABI 485

OpenCOBOL FAQ, Release 1.1

The C application binary interface allows OpenCOBOL to link with many existant libraries, more than enough, but
does mean that small wrapper access code may be required for access to C++ runtimes.

31.16 6.16 Tectonics

I use the expression tectonics using the definition below as a basis for the nerd slang describing the code building
process. Using a lookup from the dict:// protocol bank of open servers:

"Tectonics" gcide "The Collaborative International Dictionary of English v.0.48"
Tectonics \Tecxton"ics\, n.

1. The science, or the art, by which implements, vessels,

dwellings, or other edifices, are constructed, both

agreeably to the end for which they are designed, and in

conformity with artistic sentiments and ideas.

[1913 Webster]

Trying to infer that building with OpenCOBOL is rock solid and artistically pleasing. Ok fine, I mean wicked cool!.

31.17 6.17 Setting Locale

OpenCOBOL supports LC_ locale settings, during builds and with generated programs.

31.18 6.18 GNU

GNU is Not Unix, one of the original recursive acronyms. GNU software leads the Free Software movement, and with
the Linux kernel is a critical piece in the GNU/Linux operating system. See http://www.gnu.org/ for more details.

The developers of OpenCOBOL follow, as closely as possible, the GNU coding standards.
http://www.gnu.org/prep/standards/

31.19 6.19 Performing FOREVER?

I asked on opencobol.org for some input, and an interesting conversation ensued. I've included most of the forum
thread archive, to give a sense of various programmer styles and group thought processing. See FOREVER.

Subject: FOREVER and a small request for involvement

I just updated the FAQ and was wondering if anyone could come up with a
better/different short sample program than the one I use in

http://opencobol.addltocobol.com/#forever

The one I have also demonstrates the CYCLE clause of EXIT PERFORM, but reading
it, it seems a little, umm, lame for what is a pretty powerful program flow
construct.

[1]Plus I'd like to show off a little more community involvement and spread
some credit around.[/i]

Cheers,
Brian

486 Chapter 31. 6 Notes

http://www.gnu.org/
http://www.gnu.org/prep/standards/

OpenCOBOL FAQ, Release 1.1

I think it’s fine and think you should leave it as it is...

I know it’s "fine", kinda, but I'm also trying to get some of the lurkers out
into the open. 1)

Hoping that some small steps will lead to bigger bolder steps.

Plus, the post was a thinly veiled self promotion and the, [ilas always[/i],
greater desire to inform that OpenCOBOL supports FOREVER along with EXIT
PERFORM CYCLE.

As I add reserved words to the FAQ in the future, I may post up more of these
challenges [i]in a thinly veiled disguise to highlight the feature[/i].

Cheers,
Brian

As one of the "lurkers", may I offer an excuse. I think that many of us who do
not make a contribution, are ordinary cobol people who know nothing of C or web
based extensions or GUI or database extensions. Much of the discussion here
seems pretty esoteric. There is no place where one feels that it would be
appropriate to post ordinary basic cobol programs or even tips. I think this is
a pity, but I don’t have any solutions. Going way back to the computer language
cobol group in the pre YK2 years, it was apparent that cobol programmers were a
most ungenerous lot. "Do your own homework", and "I do this for money not for
free" were common responses with a few exceptions like WM Klein and J McLendon.
Perhaps the decline of cobol might have made people more open. Even though
cobol is the accounting language, you can’t I think find books with debtors,
creditors, stock payroll and general ledger. You can find them in basic, but
not cobol. I think that if there was a place where low level people could
contribute, perhaps they might. It is not approprate to clutter up this forum,
but it would need to be a place which is just as simple to write to, else most
of us would be unable to join in.

John.

Thanks for the post John.

Exactly the catch-22 I wanted to break here. OpenCOBOL is for sharing. And
yes, old school COBOL is/was very much "top-secret, tight lipped programming".
We can change that.

No need to feel you have to talk C bindings, or GUI or highfalutin issues.

A nice challenge on a short sample of

PERFORM FOREVER
do some thing
now get me outta here
do some other thing
END-PERFORM

was what I wanted to start up.

A sample on a neat INSPECT trick, or a blurb on preferred section/paragraph
naming. Anything. OpenCOBOL doesn’t have to be closed like the olden days.
[1]And to be honest, it is to great credit that most COBOLers kept their tight

31.19. 6.19 Performing FOREVER? 487

OpenCOBOL FAQ, Release 1.1

lips, when I just know that some of them wanted to help, or point out mistakes,
or show off, but couldn’t, due to the nature of the work they were/are
doing.[/1] We can, and we should, flap some loose lips.)

Do that here on opencobol.org. 1I’d read the posts, and feel better for the
reading, and the learning, of all the old and new techniques.

I blather on with samples and bindings to show what OpenCOBOL is capable of,
but a pure COBOL discussion would be more than welcome. It’d be appreciated.

Unless it sounds like actual homework and it’d hurt more than help, there won’t

be many "Do your own homework" remarks...umm, I hope ([i]no, I'm pretty
sure[/1]) .
[b]To everyone[/b]; Jjoin in, the water’s fine. ;i)

In the FAQ as it stands, there are over 500 reserved words in section 4 and
only a mere hundred or so have code samples. I’d gladly read submissions here,
get permission and then include them (with or without credit at author’s
desire) for everyone’s benefit.

If we start to overwhelm the forum and people want to direct compiler questions
to Roger, we can work out a way to keep his perception of the signal to noise
ratio high enough for productive usage of time.

Cheers,
Brian

Did not know that existed.

>>SOURCE FORMAT IS FREE
id division.
program-id. read_forever.
environment division.
input-output section.
file-control.
select my-file
organization line sequential
assign to "myfile".

data division.

file section.

fd my-file.

01 my-record pic x(80).

procedure division.
open input my-file
perform forever
read my-file

at end
exit perform
end-read

display my-record
end-perform
close my-file
goback.

Cool. No need for a goto, a file status, or any working-storage at all.

Too bad it’s apparently not standard.

488 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

Yep, no standard - but a real nice extension.

If you want to do this the standard way do [code]
[...]

perform until 0 =1
read my-file
at end
exit perform
end-read

display my-record
end-display
end-perform

[...]

OpenCOBOL may supports PERFORM UNTIL EXIT, too (this is a MF extension, 1if I
remember this correct).

OK Brian here is how we did this in the original dialects of COBOL.

In an effort to show how the language has changed, I offer the
following version of Brian’s program. While many styles can be effectively
used in COBOL programming, this program is an example of the style used in
programming shops where I worked.

The first six colums of each source line were reserved for the source
code sequence number (usually page and line number). We generally used the

first three columns to represent the ascending page number and the last three

for the line number on the page. Skipping ten numbers between each original
line allowed us to insert additional lines when needed. You can see that an
insertion was made at 001045. These sequence numbers were desirable in that
the program was punched on cards with one card for each line. If the source
card deck was accidently dropped the sequence numbers allowed us to get the
source deck back into order.

You will also notice that the code is all in uppercase. Quite simply,
early line printers could not print lowercase. Take a look at line 001080.
While even early compilers would have allowed us to write "VALUE 0" we
would spell out the word zero since the difference in appearance between
an alphabetic letter O and a numeric zero was easy to miss when reading
the program.

All of the environment division has been left out of this program,
although it was almost always necessary. The numbers after "FOREVERLOOP"
on line 001070 were the version number of the program. It was our habit
to keep a journal (in comment lines) at the beginning of the program
describing modifications that were made to the program.

The variable names start with "WS-". This allowed the reader of the
program to understand that the variable in question was in the WORKING-
STORAGE instead of being part of a file descriptor, thus making it easier
to find.

Numeric fields were almost always signed, both for efficiency
at run-time and to allow for the possibility of a value going negative even
if it should not. COMP asked the compiler to use the most efficient method

31.19. 6.19 Performing FOREVER?

489

OpenCOBOL FAQ, Release 1.1

to store the value on the architecture on which the program was going to run.

You will see that the display statements start their display with "I) ".
We used this to make reading console output easier. "I)" was for normal
information, "W)" was for warnings, and "T)" was for terminal conditions.

From a syntactical standpoint this code was written to the COBOL-68
standard. Structured programming constructs were not available.

Paragraphs were numbered in ascending sequence in order to make
finding a paragraph easier.

Sentences were kept short and periods were used as often as we could use them.

001010 IDENTIFICATION DIVISION.
001020 PROGRAM-ID. FOREVERLOOP.
001030 %

001040 DATA DIVISION.

001050 WORKING-STORAGE SECTION.

001060 01 WS-PROGRAM-NAME PIC X(16)

001070 VALUE "FOREVERLOOP 001".
001080 01 WS-COBOL PIC S9 COMP VALUE ZERO.
001090 01 Ws-C PIC S9 COMP VALUE 1.
001100 01 WS—-FORTRAN PIC S9 COMP VALUE 2.
001110 01 WS-EDI1S PIC Z-.

001110

001010 PROCEDURE DIVISION.

001020 DISPLAY "I) PROGRAM ", WS-PROGRAM-NAME, " BEGINNING".
001030 0100-LOOP.

001040 ADD 1 TO WS-COBOL.

001045 MOVE WS-COBOL TO WS-EDIS.

001050 DISPLAY "I) COBOL AT ", WS-EDIS.

001060 IF WS—-COBOL IS GREATER THAN WS-FORTRAN

001070 THEN GO TO 0800-ENDER.

001080 IF WS-COBOL IS EQUAL TO 1

001090 THEN DISPLAY "I) COBOL STILL CREEPING UP ON C".
001100 GO TO 0100-LOOP.

001110%*

001120 0800-ENDER.

001130 DISPLAY "I) COBOL SURPASSED C AND FORTRAN".

001140 DISPLAY "I) PROGRAM ", WS-PROGRAM-NAME, " TERMINATED".
001150

001160 STOP RUN.

The run-time output is below:

[code]

I) PROGRAM FOREVERLOOP 001 BEGINNING
) COBOL AT 1

) COBOL STILL CREEPING UP ON C

) COBOL AT 2

) COBOL AT 3

) COBOL SURPASSED C AND FORTRAN

I) PROGRAM FOREVERLOOP 001 TERMINATED
[/code]

Please note that I am not advocating this style. However it is a good example
of traditional methods.

490 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

You made one "syntax" error for duplicating "old-style" (required for Standard
conformance) programming.

You hae DISPLAY statement immediately following the PROCEDURE DIVISON header.
Up until "more recent" Standards, you were required to have either a section or
paragraph header and could NOT have statements "outside" of a named procedure.

P.S. In the days of "numbered lines" and all upper-case, you probably would
have also had a REMARKS paragraph, but that was optional.

As is usually the case, Mr. Klein is correct. :-)
Chalk it up to CRS (Can’t Remember Stuff).

Yes the "old-style" relied a lot more on the environment division, including
the ability to specify both a source computer and an object computer. This
would allow the compilers that supported it to output different object code
depending on the object computer specified.

A compile of a simple listing program done on a four tape 1401 would take about
15 minutes and then you had to run the result through the Autocoder macro
assembler.

The 360’s would generally compile directly (without the Autocoder step) and
would get the job done in a few minutes but if you were not authorized to be in
the computer room you had to wait until someone in production saw fit to run
your compile for you.

Like OMG! I learned COBOL on the 1401. And I remember pops letting me
practice on the week ends on the 360.

Good times... But the PC is so much more convenient!

Now thats what I'm talking about.

John, Jim, Frank, Bill, human; If you don’t mind, I'd like to include nearly
this entire thread in the FAQ, (under what heading I'm not sure, but this is
some wicked good COBOL technical [i]and cultural[/i] wisdom) .

Damon; not to worry, I plan on including as many of your snippets as the future
will bear. ;=)

More of this please...[i]he said, hinting towards the anonymous readers[/i].

Cheers,

Brian

I added a more contemporary method of doing the same thing for the COBOL
newbies.

001010 IDENTIFICATION DIVISION.

001020 PROGRAM-ID. OREVERLOOP.

001030~

021611 EE i b b b e b e e b b b b b g b b b b i b b e i b e e b e g b b b b e e b b b i b b b b b e g b b e b
021611 % *
021611% This program will demonstrate various techniques and *
021611+ coding styles. *
021611 % *
021611% Version 001--Shows a COBOL68 technique *

31.19. 6.19 Performing FOREVER?

491

OpenCOBOL FAQ, Release 1.1

021611 02/15/2011--J C Currey

021611~

021611% Version 002--Shows an OpenCOBOL 1.1 technique *
021611~ 02/16/2011--J C Currey *
021611 % *

021 611 #** sk sk sk ok ok ko A& & Kk ok ok ok ok ok 5k 5k 5 & & Kk ok ok ok ok ok ok ok & & ok ok ok ok ok ok ok ok ok ok & &k ok ok ok ok ok ok ok ok ok A A Kk ok
001040 DATA DIVISION.
001050 WORKING-STORAGE SECTION.

001060 01 WS—-PROGRAM-NAME PIC X (16)

021611 VALUE "FOREVERLOOP 002".
001080 01 WS-COBOL PIC S9 COMP VALUE 7/ERO.
001090 01 wWs-C PIC S9 COMP VALUE 1.
001100 01 WS—-FORTRAN PIC S9 COMP VALUE 2.
001110 01 WS-ED1S PIC Z-.

001110~

001010 PROCEDURE DIVISION.

001020 DISPLAY "I) PROGRAM ", WS-PROGRAM-NAME, " BEGINNING".
021611~

021611+ THIS CODE SHOWS HOW WE WOULD DO IT WITH COBOL68
021611 %

001030 0100-LOOP.

001040 ADD 1 TO WS-COROL.

001045 MOVE WS—-COBOL TO WS—-EDILS.

001050 DISPLAY "I) COBOL AT ", WS-EDIS.

001060 IF WS-COBOL IS GREATER THAN WS-FORTRAN

001070 THEN GO TO 0800-ENDER.

001080 IF WS—-COBOL IS EQUAL TO 1

001090 THEN DISPLAY "I) COBOL STILL CREEPING UP ON C".
001100 GO TO 0100-LOOP.

001110%*

001120 0800-ENDER.

001130 DISPLAY "I) COBOL SURPASSED C AND FORTRAN".

021611 DISPLAY " ".

021611 %

021611% Now we will do the same thing a newer way

021611~

021611 perform with test after

021611 varying ws-cobol from 1 by 1

021611 until ws-cobol is greater than ws-fortran

021611 move ws—cobol to ws—edls

021611 display "I) COBOL at ", ws-—edls

021611 evaluate ws-cobol

021611 when 1

021611 display "I) COBOL still creeping up on C"
021611 when 3

021611 display "I) COBOL surpassed C and FORTRAN"
021611 end-evaluate

021611 end-perform.

021611 %

001140 DISPLAY "I) PROGRAM ", WS-PROGRAM-NAME, " TERMINATED".
001150+

001160 STOP RUN.

The explanation was then updated

In an effort to show how the language has changed, I offer the
following version of Brian’s program. While many styles can be effectively
used in COBOL programming, this program is an example of the style used in
programming shops where I worked.

492 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

The first six colums of each source line were reserved for the source
code sequence number (usually page and line number). We generally used the
first three columns to represent the ascending page number and the last three
for the line number on the page. Skipping ten numbers between each original
line allowed us to insert additional lines when needed. You can see that an
insertion was made at 001045. These sequence numbers were desirable in that
the program was punched on cards with one card for each line. If the source
card deck was accidently dropped the sequence numbers allowed us to get the
source deck back into order.

You will also notice that the code is all in uppercase. Quite simply,
early line printers could not print lowercase. Take a look at line 001080.
While even early compilers would have allowed us to write "VALUE O" we
would spell out the word zero since the difference in appearance between
an alphabetic letter O and a numeric zero was easy to miss when reading
the program.

All of the environment division has been left out of this program,
although it was almost always necessary. The numbers after "FOREVERLOOP"
on line 001070 were the version number of the program. It was our habit
to keep a journal (in comment lines) at the beginning of the program
describing modifications that were made to the program.

The variable names start with "WS-". This allowed the reader of the
program to understand that the variable in question was in the WORKING-—
STORAGE instead of being part of a file descriptor, thus making it easier
to find.

Numeric fields were almost always signed, both for efficiency
at run-time and to allow for the possibility of a value going negative even
if it should not. COMP asked the compiler to use the most efficient method
to store the value on the architecture on which the program was going to run.

You will see that the display statements start their display with "I) ".
We used this to make reading console output easier. "I)" was for normal

information, "W)" was for warnings, and "T)" was for terminal conditions.

From a syntactical standpoint this code was written to the COBOL-68
standard. Structured programming constructs were not available.

Paragraphs were numbered in ascending sequence in order to make
finding a paragraph easier.

khkhkkhhkhrkkhkkhkhkhkhkkhkhkrhkkhhkhrhkhkhxhk*k
Version 002 shows how one might code the application with OpenCOBOL 1.1.

A modification log has been added via comments at the beginning of
the program.

Note that the sequence numbers are now being used to store the
date that the new or changed code was made. By looking at the modification
date and then referring to the modification log, one can determine what
changed from version to version.

Structured programming constructs have been used.

I expect that there may be some discussion as to which method is easier to
read and understand.

31.19. 6.19 Performing FOREVER? 493

OpenCOBOL FAQ, Release 1.1

This is a variation of the ’'perform forever’ program.

>>SOURCE FORMAT IS FREE
program-id. "readForever".

*>

*>

*> Author. rkeane

*> Written: 16 Feb 2011

*> Purpose: A variation of submitted "read-forever"
*>

environment division.
input-output section.
file-control.
select my-file assign to "myFile"
organization line sequential.

data division.
file section.
fd myFile.
01 myRecord pic x(80).
working-storage section.
*>
procedure division.
main.
open input myFile

perform forever
read myfile
not at end
display myRecord

at end
perform finish
goback *>Program exit
end-read *>End read myFile
end-perform *>End perform forever
exit.
finish.
close my-file
exit.

Using non-structured statements:

procedure division.
main.

open input myFile.
0100-1loop.

read myFile next record

at end close myFile
stop run.

display myRecord.

go to 0100-loop.
I don’t know if anyone else is getting this sensation, but is COBOL becoming
cool enough for the internet generation now? Thanks to open folk and OpenCOBOL?
[i]Or did I just Jjinx the tide?[/i] i)

494 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

Cheers,
Brian

I found the thread a nice read. And to top it off, for me, Roger added a nice idiom in a separate thread for avoiding
paragraphs and sections. Not FOREVER related, but a nice use for an “empty” inline PERFORM.

Yepl

One thing that I saw on earlier posts to
the newsgroup cobol was -

What is the need/justification for an
empty inline perform group.

ie.

PERFORM

END-PERFORM

None of the discussions then realized that
there is a -
EXIT PERFORM [CYCLE]

Therefore, it is a method to to
define an exit condition without having paragraphs.

ie. (very simply)
PERFORM
READ xxx
AT END
EXIT PERFORM
END-READ
MOVE something TO somewhere
END-PERFORM

test xxx status and somewhere
There are, of course, other variations.
Basically, it means that you code without
using section/paragraphs.
(Recommended, if only from performance point of view)

Note that the CYCLE option offers interesting possibilities.

Roger

31.20 6.20 POSIX

An acronymn first suggested by Richard Stallman for the IEEE specification for maintaining compatibility between
operating systems. IEEE Std 1003.1-1988.

POSIX Portable Operating System Interface

31.21 6.21 BITWISE

A COBOL source code solution to bit operations.

BITWISE.chbl

31.20. 6.20 POSIX 495

OpenCOBOL FAQ, Release 1.1

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. BITWISE.
000300 AUTHOR. PAUL CHANDLER.

Q00400 % 5 * % 5k # sk 5k % sk 5k % sk 5k 5k 5k 5k Kk 5k 5k ok ok 5k & ok 5k Ak ok 5k ok Kk ok Kk ok

000500 % **
000600 ***
000700 #**
000800 % **
000900 * **
001000 % **
001100%%*%*
001200 ***
001300 %*%*
001400 % *%*
001500 ***
001600 %*%*
001700 %%*%*
001800 ***
001900 % **
002000 % **
002100 ***
002200 %+ *
002300 % **
002400 * **
002500 % **
002600 % **
002700 ***
002800 % **
002900 % * *
003000 ***
003100 %**
003200 % **
003300 * **
003400 % **
003500 % % *
003600 ***
003700 % **
003800 % **
003900 * **
004000 % **
004100 %*%*
004200 * %
004300 % **
004400 % **
004500 # %
004600 % **
004700 % **
004800 ***
004900 % **
005000 % % *
005100 %+ #*
005200 % **
005300 % % *
005400 % **
005500 % % *
005600 % **
005700 % *

* kA

COPYRIGHT PAUL CHANDLER 1976, 1994, 2012. * kA

* kA
THIS PROGRAM IS FREE SOFTWARE: YOU CAN ok ok
REDISTRIBUTE IT AND/OR MODIFY IT UNDER THE TERMS *#**
OF THE GNU LESSER GENERAL PUBLIC LICENSE AS * kA

PUBLISHED BY THE FREE SOFTWARE FOUNDATION, EITHER**x*
VERSION 3 OF THE LICENSE, OR (AT YOUR OPTION) ANYs*xx*
LATER VERSION. * ok A

ok ok
THIS PROGRAM IS DISTRIBUTED IN THE HOPE THAT IT #*%
WILL BE USEFUL,BUT WITHOUT ANY WARRANTY; WITHOUT **%*
EVEN THE IMPLIED WARRANTY OF MERCHANTABILITY OR ##*x*
FITNESS FOR A PARTICULAR PURPOSE.SEE THE GNU * ok A
LESSER GENERAL PUBLIC LICENSE FOR MORE DETAILS. * k&

ok ok
YOU SHOULD HAVE RECEIVED A COPY OF THE GNU LESSERx***
GENERAL PUBLIC LICENSE ALONG WITH THIS PROGRAM. * k%

IFF NOT, A COPY MAY BE OBTAINED AT: ok ok
HTTP://WWW.GNU.ORG/LICENSES/ * kA

* kA

===== BITWISE VERSION 1.0 ===== ok ok

* ok A

INITIAL VERSION: JULY 1974. * kA
LAST UPDATED...: APRIL 2013 ok ok

* A KA

THIS PROGRAM PERFORMS BITWISE OPERATIONS ON AN * k%

INPUT BYTE, USING THE PRINCIPLE OF ’INVERSE * K K
BINARY WEIGHTING’ . * ok ok
* ok ok

THE PROCESS IS: * ok ok
(A) THE CONTENTS OF THE LINKAGE SECTION * ok ok
(BITWISE-PARMS) ARE SYNTAX-CHECKED. IF ERRORSx*#**

ARE ENCOUNTERED, A CODE IDENTIFYING THE * o K
ERROR IS RETURNED TO THE CALLING PROGRAM IN **x*
FIELD BWP—-RETURN-CODE. * ok ok

(B) THE UNARY OPERAND (AND THE BINARY OPERAND IF %%
Op IS 'AND’, ’'OR’, OR ’"XOR’) ARE CONVERTED #%*%

TO AN 8-CHARACTER PATTERN OF THE VALUE’S * Kk
BINARY EQUIVALENT (EG. ’A’ IS CONVERTED TO * ok
7010000017 IN THE ASCII CHARACTER SET. * kA

* ok
(C) THE OP SPECIFIED IN FLD BWP—-OP IS PERFORMED *x*x*
USING THE OPERANDS AS APPROPRIATE. THE RESULT#**x*

IS TEMPORARILY STORED AS AN 8-CHARACTER ok ok
PATTERN IN FIELD BWP-RESULT. * ok K

* kA

(D) BWP—-RESULT IS CONVERTED TO THE FORMAT SET BY *x*x*
THE CALLING PROGRAM IN FIELD BWP—-FMT—-RESULT %%

AND CONTROL IS RETURNED TO THE CALLER. * kA

* kK

ADDITIONAL DETAIL FOR THE USE OF THIS PROGRAM * ok
IS PROVIDED IN THE ACCOMPANYING DOCUMENTATION. * % &

D05 800 # # # sk k5 5 5 5 5 & # K sk ok ok ok 5k 5k 5 5% & & Kk ok ok ok ok ok 5k 5k 5k & Ak ok ok ok ok ok ok ok ok ok ok A Ak ok ok ok ok ok kA

005900 ENVIRONMENT DIVISION.

496

Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

006000 DATA DIVISION.

006100 FILE SECTION.

006200 WORKING-STORAGE SECTION.
006300 01 WORKBENCH-FLDS.

006400 05 WBF-FLAGS.

006500 10 WBF-FLAG-VALIDATE PIC X(01).

006600 88 WBF-INPUT-VALID VALUE 'Y’.
006700 05 WBF-BINARIES BINARY.

006800 10 WRBF-STARTING-WEIGHT PIC S9(04)

006900 VALUE +128.
007000 10 WBF-SCALE PIC S9(04).

007100 10 WBF-CURRENT-BIT PIC S9(04).

007200 10 WBF-CHK-PTN-CNT PIC S9(04).

007300 88 WBF-CHK-PTN-ERR VALUE 0 THRU 7.
007400 05 WBF-CHAR.

007500 10 WBF-UNARY PIC X(08).

007600 10 WBF-BINARY PIC X(08).

007700 10 WBF-CHK PIC X(08).

007800 10 WBF-CHK-PTN-RDF REDEFINES WBF-CHK.
007900 15 WBF-CHK-PTN PIC X(08).

008000 10 WRBF-CHK-BIN-RDF REDEFINES WBF-CHK.
008100 15 WBF-CHK-BIN PIC 9(04) BINARY.
008200 88 WBF-CHK-BIN-OK VALUE 0 THRU 255.
008300 15 FILLER PIC X(06).

008400 05 WBF-INPT-VAL.

008500 10 WBF-INPT-AREA-CHR.

008600 15 FILLER PIC X(01)

008700 VALUE LOW-VALUES.
008800 15 WBF-INPT-VAL-CHR PIC X(01).

008900 10 WBF-INPT-AREA-BIN REDEFINES WBF-INPT-AREA-CHR.
009000 15 WBF-INPT-VAL-BIN PIC 9(04) BINARY.
009100 05 WBF-PACK-FMT PIC X(01).

009200 88 WBF-PACK-FMT-PTRN VALUE 'P’.
009300 88 WBF-PACK-FMT-BNRY VALUE 'B’.
009400 88 WBF-PACK-FMT-CHAR VALUE 'C’.
009500 05 WBF-PACK PIC X(08).

009600 05 WBF-PACK-RDF-BIN REDEFINES WBF-PACK.

009700 10 WBF-PACK-BIN PIC 9(04) BINARY.
009800 10 WFILLER PIC X (06).

009900 05 WBF-PACK-RDF-CHR REDEFINES WBF-PACK.

010000 10 FILLER PIC X(01).

010100 10 WBF-PACK-CHR PIC X(01).

010200 10 FILLER PIC X(06).

010300 LINKAGE SECTION.
010400 COPY BWPARMS.
010500 PROCEDURE DIVISION USING BITWISE-PARMS.

010600 PERFORM 10000-VALIDATE

010700 IF BWP-NO-ERRORS

010800 IF BWP-OP-XLAT

010900 PERFORM 20000-BWP—-OP—-XLAT
011000 ELSE

011100 PERFORM 30000-BWP-OP-TEST
011200 END-IF

011300 END-IF

011400 GOBACK

011500 .

011600 10000-VALIDATE.

011700 SET BWP-NO-ERRORS TO TRUE
011800 IF NOT BWP-OP-VALID

31.21. 6.21 BITWISE

497

OpenCOBOL FAQ, Release 1.1

011900 SET BWP-OP-ERROR TO TRUE

012000 END-IF

012100 IF NOT BWP-FMT-UNARY-VALID

012200 SET BWP-FMT-UNARY-ERROR TO TRUE

012300 END-IF

012400 IF BWP-FMT-UNARY-PTRN

012500 MOVE BWP-UNARY-PTN TO WBF-CHK-PTN
012600 PERFORM 11000-CHK-PTN

012700 IF WBF-CHK-PTN-ERR

012800 SET BWP-PTN-UNARY-ERROR

012900 TO TRUE

013000 END-IF

013100 END-IF

013200 IF BWP-FMT-UNARY-BNRY

013300 MOVE BWP-UNARY-BIN TO WBEF-CHK-BIN
013400 IF NOT WBF-CHK-BIN-OK

013500 SET BWP-UNARY-OVF-ERROR

013600 TO TRUE

013700 END-IF

013800 END-IF

013900 IF BWP-OP-BINARY

014000 IF NOT BWP-FMT-BINARY-VALID

014100 SET BWP-FMT-BINARY-ERROR

014200 TO TRUE

014300 END-IF

014400 IF BWP-FMT-BINARY-PTRN

014500 MOVE BWP-BINARY-PTN TO WBEF-CHK-PTN
014600 PERFORM 11000-CHK-PTN

014700 IF WBEF-CHK-PTN-ERR

014800 SET BWP-PTN-BINARY-ERROR

014900 TO TRUE

015000 END-IF

015100 END-IF

015200 IF BWP-FMT-BINARY-BNRY

015300 MOVE BWP-BINARY-BIN TO WBF-CHK-BIN
015400 IF NOT WBE-CHK-BIN-OK

015500 SET BWP-BINARY-OVF-ERROR

015600 TO TRUE
015700 END-IF

015800 END-IF

015900 END-IF

016000 IF NOT BWP-FMT-RESULT-VALID

016100 SET BWP-FMT-RESULT-ERROR TO TRUE

016200 END-IF

016300 .

016400 11000-CHK-PTN.

016500 MOVE ZERO TO WBF-CHK-PTN-CNT
016600 INSPECT WBF-CHK-PTN

016700 TALLYING WBF-CHK-PTN-CNT FOR ALL "0’
016800 INSPECT WBE-CHK-PTN

016900 TALLYING WBE-CHK-PTN-CNT FOR ALL ’1’
017000 .

017100 20000-BWP-OP-XLAT.

017200 MOVE BWP-FMT-UNARY TO WBEF-PACK-FMT
017300 EVALUATE TRUE

017400 WHEN BWP-FMT-UNARY-BNRY

017500 MOVE BWP-UNARY-BIN TO WBF-PACK-BIN
017600 WHEN BWP-FMT-UNARY-CHAR

017700 MOVE BWP-UNARY-CHR TO WBF-PACK-CHR
498 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

017800 WHEN OTHER

017900 MOVE BWP-UNARY TO WBF-PACK
018000 END-EVALUATE

018100 PERFORM 40000-PACK

018200 PERFORM 50000-TRANSLATE

018300 IF BWP-FMT-RESULT-BNRY

018400 OR BWP-FMT-RESULT-CHAR

018500 MOVE BWP-RESULT TO WBF-PACK
018600 MOVE ’'P’ TO WBF-PACK-FMT
018700 PERFORM 40000-PACK

018800 IF BWP-FMT-RESULT-BNRY

018900 MOVE SPACES TO BWP-RESULT
019000 MOVE WBE-PACK-BIN TO BWP-RESULT-BIN
019100 ELSE

019200 MOVE SPACES TO BWP-RESULT
019300 MOVE WBE-PACK-CHR TO BWP-RESULT-CHR
019400 END-IF

019500 END-IF

019600 .

019700 30000-BWP-OP-TEST.

019800 MOVE BWP-UNARY TO WBF-PACK
019900 EVALUATE TRUE

020000 WHEN BWP-FMT-UNARY-BNRY

020100 MOVE BWP-UNARY-BIN TO WBF-PACK-BIN
020200 WHEN BWP-FMT-UNARY-CHAR

020300 MOVE BWP-UNARY-CHR TO WBF-PACK-CHR
020400 WHEN OTHER

020500 MOVE BWP-UNARY TO WBF-PACK
020600 END-EVALUATE

020700 MOVE BWP-FMT-UNARY TO WBF-PACK-FMT
020800 PERFORM 40000-PACK

020900 PERFORM 50000-TRANSLATE

021000 MOVE BWP-RESULT TO WBF-UNARY
021100 MOVE BWP-BINARY TO WBF-PACK
021200 MOVE BWP-FMT-BINARY TO WBF-PACK-FMT
021300 EVALUATE TRUE

021400 WHEN BWP-FMT-BINARY-BNRY

021500 MOVE BWP-BINARY-BIN TO WBF-PACK-BIN
021600 WHEN BWP-FMT-BINARY-CHAR

021700 MOVE BWP-BINARY-CHR TO WBF-PACK-CHR
021800 WHEN OTHER

021900 MOVE BWP-BINARY TO WBF-PACK
022000 END-EVALUATE

022100 PERFORM 40000-PACK

022200 PERFORM 50000-TRANSLATE

022300 MOVE BWP-RESULT TO WBEF-BINARY
022400 MOVE ZEROES TO BWP-RESULT
022500 EVALUATE TRUE

022600 WHEN BWP-OP-AND

022700 PERFORM VARYING WBE-CURRENT-BIT FROM 1 BY 1
022800 UNTIL WBE-CURRENT-BIT > 8

022900 IF WBF-BINARY (WBF-CURRENT-BIT:1) = "1’
023000 AND WBE-UNARY (WBF-CURRENT-BIT:1) = "1’
023100 MOVE "1’ TO BWP-RESULT
023200 (WBF-CURRENT-BIT:1)
023300 END-IF

023400 END-PERFORM

023500 WHEN BWP-OP-OR

023600 PERFORM VARYING WBE-CURRENT-BIT FROM 1 BY 1

31.21. 6.21 BITWISE 499

OpenCOBOL FAQ, Release 1.1

023700 UNTIL WBF-CURRENT-BIT > 8

023800 IF WBF-BINARY (WBF-CURRENT-BIT:1) = "1’
023900 OR WBEF-UNARY (WBF-CURRENT-BIT:1) = "1’
024000 MOVE ' 17 TO BWP-RESULT
024100 (WBF—-CURRENT-BIT:1)
024200 END-IF

024300 END-PERFORM

024400 WHEN BWP-OP-XOR

024500 PERFORM VARYING WBEF-CURRENT-BIT FROM 1 BY 1
024600 UNTIL WBF-CURRENT-BIT > 8

024700 IF WBF-UNARY (WBF—~CURRENT-BIT:1) NOT EQUAL
024800 WBF-BINARY (WBE-CURRENT-BIT:1)

024900 MOVE ' 17 TO BWP-RESULT
025000 (WBF—-CURRENT-BIT:1)
025100 END-IF

025200 END-PERFORM

025300 WHEN BWP-OP-NOT

025400 PERFORM VARYING WBEF-CURRENT-BIT FROM 1 BY 1
025500 UNTIL WBF-CURRENT-BIT > 8

025600 IF WBF-UNARY (WBF-CURRENT-BIT:1) = "0’
025700 MOVE ' 1’ TO BWP-RESULT
025800 (WBF-CURRENT-BIT:1)
025900 END-IF

026000 END-PERFORM

026100 END-EVALUATE

026200 IF BWP-FMT-RESULT-BNRY

026300 OR BWP-FMT-RESULT-CHAR

026400 MOVE BWP-RESULT TO WBF-PACK

026500 MOVE ’'P’ TO WBF-PACK-FMT
026600 PERFORM 40000-PACK

026700 IF BWP-FMT-RESULT-BNRY

026800 MOVE SPACES TO BWP-RESULT
026900 MOVE WRBE-PACK-BIN TO BWP-RESULT-BIN
027000 ELSE

027100 MOVE SPACES TO BWP-RESULT
027200 MOVE WBF-PACK-CHR TO BWP-RESULT-CHR
027300 END-IF

027400 END-IF

027500 .

027600 40000-PACK.

027700 EVALUATE TRUE

027800 WHEN WBF-PACK-FMT-BNRY

027900 MOVE WBF-PACK-BIN TO WBF-INPT-VAL-BIN
028000 WHEN WBF-PACK-FMT-CHAR

028100 MOVE WBF-PACK-CHR TO WBF-INPT-VAL-CHR
028200 WHEN OTHER

028300 MOVE 0 TO WBF-INPT-VAL-BIN
028400 MOVE WBF-STARTING-WEIGHT TO WBF-SCALE

028500 PERFORM VARYING WRE-CURRENT-BIT FROM 1 BY 1
028600 UNTIL WBF-CURRENT-BIT > 8

028700 IF WBF-PACK (WBF-CURRENT-BIT:1) = "1’
028800 ADD WRBF-SCALE

028900 TO WBF-INPT-VAL-BIN
029000 END-IF

029100 COMPUTE WBEF-SCALE = WBF-SCALE / 2

029200 END-PERFORM

029300 MOVE SPACES TO WBF-PACK

029400 MOVE WBF-INPT-VAL-BIN TO WBF-PACK-BIN
029500 END-EVALUATE

500 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

029600
029700
029800
029900
030000
030100
030200
030300
030400
030500
030600
030700
030800
030900
031000
031100

50000-TRANSLATE.
MOVE WBF-STARTING-WEIGHT TO WBF-SCALE
MOVE ALL ZEROES TO BWP-RESULT
MOVE 1 TO WBF-CURRENT-BIT
PERFORM VARYING WRF-CURRENT-BIT FROM 1 BY 1
UNTIL WBF-CURRENT-BIT > 8
IF WBF-INPT-VAL-BIN >= WBF-SCALE
MOVE ' 1’ TO BWP-RESULT
(WBF-CURRENT-BIT:1)
COMPUTE WRBF-INPT-VAL-BIN =
WBF-INPT-VAL-BIN — WBF-SCALE
END-IF
COMPUTE WRF-SCALE WBF-SCALE / 2
END-PERFORM

031200 END PROGRAM BITWISE.
and BWPARMS.cbl

Q00010 * %% * sk sk %k 5k 5k 5 5 & * K sk sk ok ok 5k 5 5 5 & & Kk Kk ok ok ok 5k 5k 5 5 & & K Kk ok ok ok ok 5k ok o ok & & ok ok ok ok ok ok ok ok & ok Ak ok ok ok ok ok ok

000020+ CALLING AREA FOR THE ’'BITWISE’ SUBPROGRAM *
000021 % WRITTEN BY.....: PAUL CHANDLER. *
000022+ INITIAL VERSION: JULY 1974. *
000023+ LAST MODIFIED..: APRIL 2013. *
D00 D30 # o # 5 # 5 ok 5k ok 5k o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok
000100 01 BITWISE-PARMS. 00010000
000200 05 BWP-UNARY PIC X(08).

000210 05 BWP-UNARY-RDF-PTN REDEFINES BWP-UNARY .

000220 10 BWP-UNARY-PTN PIC X(08).

000300 05 BWP-UNARY-RDF-BIN REDEFINES BWP-UNARY.

000400 10 BWP-UNARY-BIN PIC 9(04) BINARY.

000500 10 FILLER PIC X(06).

000600 05 BWP-UNARY-RDF-CHR REDEFINES BWP-UNARY.

000700 10 BWP-UNARY-CHR PIC X(01).

000800 10 FILLER PIC X(07).

000900 05 BWP-BINARY PIC X(08).

000910 05 BWP-BINARY-RDF-PTN REDEFINES BWP-BINARY.

000920 10 BWP-BINARY-PTN PIC X(08).

001000 05 BWP-BINARY-RDF-BIN REDEFINES BWP-BINARY.

001100 10 BWP-BINARY-BIN PIC 9(04) BINARY.

001200 10 FILLER PIC X(06).

001300 05 BWP-BINARY-RDF-CHR REDEFINES BWP-BINARY.

001400 10 BWP-BINARY-CHR PIC X(01).

001500 10 FILLER PIC X(07).

001600 05 BWP-RESULT PIC X(08).

001610 05 BWP-RESULT-RDF-PTN REDEFINES BWP-RESULT.

001620 10 BWP-RESULT-PTN PIC X(08).

001700 05 BWP-RESULT-RDF-BIN REDEFINES BWP-RESULT.

001800 10 BWP-RESULT-BIN PIC 9(04) BINARY.

001900 10 FILLER PIC X (06).

002000 05 BWP-RESULT-RDF-CHR REDEFINES BWP-RESULT.

002100 10 BWP-RESULT-CHR PIC X(01).

002200 10 FILLER PIC X(07).

002300 05 BWP-OP PIC X (04).

002500 88 BWP-OP-XLAT VALUE ' XLAT'.

002600 88 BWP-OP-AND VALUE ’'AND '.

002700 88 BWP-OP-OR VALUE "OR .

002800 88 BWP-OP-XOR VALUE ’'XOR '.

002900 88 BWP-OP-NOT VALUE ’'NOT '.

31.21. 6.21 BITWISE

501

OpenCOBOL FAQ, Release 1.1

003000
003100
003200
003300
003400
003500
003600
003700
003800
003900
004000 05
004100
004300
004400
004500
004600
004700
004800
005000
005200
005300
005400
005500
005600
005700
005800
006000
006100
006200
006300
006400
006500
006600
006800
006900
007000
007100
007200
007300
007400
007500
007600

and a small demo program,

88 BWP-OP-UNARY

88 BWP-OP-BINARY

88 BWP—-OP-VALID

BWP-FMTS.
10 BWP-FMT-UNARY

88
88
88
88

BWP-FMT-UNARY-PTRN
BWP-FMT-UNARY-BNRY
BWP-FMT-UNARY—-CHAR
BWP-FMT-UNARY-VALID

10 BWP-FMT-BINARY

88
88
88
88

BWP-FMT-BINARY-PTRN
BWP-FMT-BINARY-BNRY
BWP-FMT-BINARY-CHAR
BWP-FMT-BINARY-VALID

10 BWP-FMT-RESULT

88
88
88
88

BWP-FMT-RESULT-PTRN
BWP-FMT-RESULT-BNRY
BWP-FMT-RESULT-CHAR
BWP-FMT-RESULT-VALID

10 BWP-RETURN-CODE

88
88
88
88
88
88
88
88
88

BWP-NO—-ERRORS
BWP-OP-ERROR
BWP-FMT-UNARY-ERROR
BWP-FMT-BINARY-ERROR
BWP-FMT-RESULT-ERROR
BWP-PTN-UNARY-ERROR
BWP-PTN-BINARY-ERROR
BWP-UNARY-OVEF-ERROR
BWP-BINARY-OVF-ERROR

with intentional errors.

VALUE

VALUE

VALUE

PIC X(01).

VALUE
VALUE
VALUE
VALUE

PIC X(01).

VALUE
VALUE

VALUE

PIC X(01).

VALUE

VALUE
VALUE

PIC 9(01).
0.

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

"NOT ',
" XLAT' .
"AND ',
"OR ',
"XOR ' .
"NOT ',
" XLAT',
"AND ’,
"OR ',
"XOR ' .

P’
"B’ .
e
IBI
ICI
P

"P’.
B’
VALUE ’C’.
=Y
rcr
rpro,

"P’.
VALUE '"B’.
rcr.
IBI
ICI
"P’.

O J oy U W N

000100 IDENTIFICATION DIVISION. 00010000
000200 PROGRAM-ID. DEMO. 00020016
000300 AUTHOR. PAUL CHANDLER, APRIL 2013. 00030014
D004 D0 * # * # * 5 ok 5 & K 5 ok 5k ok K 5k ok 5k ok Kk & ok 5k ok Ak & ok ok ok ok &k ok ok ok & ok ok ok ok ok ok ok ok ok ok A ok ok ok ok Ak A A 00040000
000500#++ THIS PROGRAM DEMO’S THE BITWISE TOOLBOX 00050036
QOO G0 0 * # 5, % ok 5k Kk ok 5k 5k ok ok 5k ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kA 00060000
000700 ENVIRONMENT DIVISION. 00070000
000800 DATA DIVISION. 00080000
000900 FILE SECTION. 00090000
001000 WORKING-STORAGE SECTION. 00100000
001100 01 WS-BITWISE PIC X(08) 00110036
001200 VALUE ’'BITWISE '/ 00120037
001300 COPY BWPARMS. 00130036
001400 PROCEDURE DIVISION. 00140000
001500 % % === ===xx% 00150039
502 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

001600 #*+=== TEST #1 ===
001700 4+=== A SIMPLE CONVERSION. GET A DISPLAYABLE =#x%%*
001800+ 4+=== BIT BATTERN FOR THE CHARACTER ’'A’ =k ok ok
001900 * #+=== ——— kA
002000 DISPLAY ' * ’

002100 DISPLAY

002200 "xx% CASE 1 - TRANSLATE ’’'A’’, RETURN PATTERN x#*x’
002300 DISPLAY ' * ’

002400 MOVE '’ XLAT' TO BWP-OP

002500 MOVE ’'A’ TO BWP-UNARY-CHR
002600 MOVE ’'C’ TO BWP-FMT-UNARY
002700 MOVE SPACES TO BWP-BINARY
002800 BWP-FMT-BINARY
002900 MOVE ’'P’ TO BWP-FMT-RESULT
003000 PERFORM DISPLAY-INPUT

003100 CALL WS-BITWISE USING BITWISE-PARMS
003200 PERFORM DISPLAY-RETURN

003300 *

003400 * # +=== ===
003500 * # #=== TEST #2 ===t %
003600+ 4+=== CONVERT THE PATTERN GENERATED IN CASE I1=#x%%*
003700#++=== TO ITS NUMERIC EQUIVALENT. =k ok
003800 %+ x=== ===k ok
003900 DISPLAY ' * ’

004000 DISPLAY

004100 "xx% CASE 2 - TAKE THE PATTERN WE JUST GENERATED * !
004200 T %ok x AND DISPLAY ITS NUMERIC VALUE * 7!
004300 DISPLAY ' * ’

004400 MOVE BWP-RESULT-PTN TO BWP-UNARY

004500 MOVE ’'P’ TO BWP-FMT-UNARY
004600 MOVE ’'B’ TO BWP-FMT-RESULT
004700 PERFORM DISPLAY-INPUT

004800 CALL WS-BITWISE USING BITWISE-PARMS
004900 PERFORM DISPLAY-RETURN

005000

005100 *

005200 # + x=== N
005300 * + x=== TEST #3 ===k A
005400+ 4+=== CONVERT THE NUMERIC GENERATED IN CASE 2=#x%%*
005500#++=== TO ITS CHARACTER EQUIVALENT, BRINGING =#%*%*
005600#++=== US BACK TO THE ’'A’ INPUT OF CASE 1 =k
005700 # + x=== ===k
005800 DISPLAY ' * ’

005900 DISPLAY

006000 "xx% CASE 3 - TRANSLATE NUMERIC, RETURN CHAR x#%x'
006100 DISPLAY ' * ’

006200 MOVE BWP-RESULT-BIN TO BWP-UNARY-BIN
006300 MOVE ’'B’ TO BWP-FMT-UNARY
006400 MOVE ' C’ TO BWP-FMT-RESULT
006500 PERFORM DISPLAY-INPUT

006600 CALL WS-BITWISE USING BITWISE-PARMS
006700 PERFORM DISPLAY-RETURN

006800 *

006810

006820 # + A=== [
006830 *# === TEST #4 ===t %
006840#*++=== "OR’ 2 NUMERICS TOGETHER AND RETURN ===x%%#%*
006850+ ++=== THE RESULTING BINARY PATTERN =k ok ok
006870 **+=== ===k Ak

00160039
00170039
00180039
00190039
00200029
00210028
00220028
00230029
00240039
00250039
00260036
00270036
00280036
00290036
00300023
00310036
00320024
00330030
00340039
00350039
00360039
00370039
00380039
00390029
00400029
00410039
00420039
00430029
00440039
00450036
00460036
00470029
00480036
00490029
00500030
00510039
00520039
00530039
00540039
00550039
00560039
00570039
00580030
00590030
00600030
00610030
00620039
00630036
00640036
00650030
00660036
00670030
00680030
00681039
00682039
00683039
00684039
00685039
00687039

31.21. 6.21 BITWISE

503

OpenCOBOL FAQ, Release 1.1

006900 DISPLAY ' * ’ 00690031
007000 DISPLAY 00700031
007100 "xx% CASE 4 - "’OR’’ 15 & 240, RETURN PATTERN=*=*’ 00710031
007200 DISPLAY ' * ’ 00720031
007300 MOVE ’'OR '/ TO BWP-OP 00730036
007400 MOVE 15 TO BWP-UNARY-BIN 00740036
007500 MOVE 240 TO BWP-BINARY-BIN 00750036
007600 MOVE ’'B’ TO BWP-FMT-UNARY 00760036
007700 BWP-FMT-BINARY 00770036
007800 MOVE ’'P’ TO BWP-FMT-RESULT 00780036
007900 PERFORM DISPLAY-INPUT 00790031
008000 CALL WS-BITWISE USING BITWISE-PARMS 00800036
008100 PERFORM DISPLAY-RETURN 00810031
008200 00820031
008220 # + x=== ===k ok 00822039
008230 * + +=== TEST #5 === % 00823039
008240 # + === "AND’ 2 NUMERICS TOGETHER AND RETURN ===#%*% 00824039
008250+ ++=== THE RESULTING BINARY PATTERN =k 00825039
008260+ + x=== ===k A 00826039
008270 % 00827039
008300 DISPLAY ' * ’ 00830032
008400 DISPLAY 00840032
008500 "xx% CASE 5 — '’/AND’’ 255 & 70, RETURN PATTERN=*x' 00850032
008600 DISPLAY ' * ’ 00860032
008700 MOVE ’'AND ' TO BWP-OP 00870036
008800 MOVE 255 TO BWP-UNARY-BIN 00880036
008900 MOVE 70 TO BWP-BINARY-BIN 00890036
009000 MOVE ’'B’ TO BWP-FMT-UNARY 00900036
009100 BWP-FMT-BINARY 00910036
009200 MOVE ’'P’ TO BWP-FMT-RESULT 00920036
009300 PERFORM DISPLAY-INPUT 00930032
009400 CALL WS-BITWISE USING BITWISE-PARMS 00940036
009500 PERFORM DISPLAY-RETURN 00950032
009510 % 00951039
009520 % % === ===xx% 00952039
009530 # # x=== TEST #6 ===k A 00953039
009540 # + A=== "NOT’” A RANDOM PATTERN. WE’LL RETURN ===x%#*% 00954039
009550+ ++=== THE RSULT AS A PATTERN SO THAT THE BIT =#x*#* 00955039
009551 #++=== INVERSION IS EASIER TO SEE. =k A 00955139
009560 % * === ===k A 00956039
009570 % 00957039
009700 DISPLAY ' * ’ 00970033
009800 DISPLAY 00980033
009900 "xx+x CASE 6 — ’"’/NOT’’ A RANDOM PATTERN=x=x’ 00990033
010000 DISPLAY ' * ’ 01000033
010100 MOVE ’'NOT ' TO BWP-OP 01010036
010200 MOVE ’10110101" TO BWP-UNARY 01020036
010300 MOVE ’'P’ TO BWP-FMT-UNARY 01030036
010400 PERFORM DISPLAY-INPUT 01040033
010500 CALL WS-BITWISE USING BITWISE-PARMS 01050036
010600 PERFORM DISPLAY-RETURN 01060033
010610% 01061039
010620 *#4=== ===k k 01062039
010630+ +=== TEST #7 ===k A 01063039
010640 *#A=== "XOR’” 2 PATTERNS. AGAIN, WE’LL RETURN===x%#*%* 01064039
010650+ 4+=== THE RSULT AS A PATTERN SO THAT THE BIT =#x*#* 01065039
010660#++=== INTERACTIONS EASIER TO SEE. =k ok ok 01066039
010670 %**+=== === % 01067039
010680#* 01068039
504 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

010800 DISPLAY ' « ’

010900 DISPLAY

011000 "xx% CASE 7 - '’XOR’’ PATTERN VS PATTERN’
011100 DISPLAY ' « ’

011200 MOVE '’ XOR ' TO BWP-OP

011300 MOVE ’10110101" TO BWP-UNARY
011400 MOVE ’01101100" TO BWP-BINARY
011500 MOVE ’'P’ TO BWP-FMT-UNARY
011600 BWP-FMT-BINARY
011700 PERFORM DISPLAY-INPUT

011800 CALL WS-BITWISE USING BITWISE-PARMS
011900 PERFORM DISPLAY-RETURN

011910+

011920 # #+4=== ———
011930+ #+=== TESTS #8 AND #9 ===k ok Ak
011940+++=== A COUPLE OF ERROR CASES. #8 TRIES TO ===##*%
011950+ #+=== TRANSLATE A PATTERN NOT CORRECTLY SET =#%#*
011960#++=== TO ONES AND ZEROES, #9 TRIES TO CONVERT=*%*x*
011961 +4+=== A NUMERIC VALUE TOO LARGE TO FIT WITHIN=#*x%%*
011970+4+=== ONE BYTE. ===k
011971 ##4=== ===k
011980+

012100 DISPLAY ' « ’

012200 DISPLAY

012300 "xx% CASE 8 — BAD PATTERN INPUT’

012400 DISPLAY ' « ’

012500 MOVE '’ XLAT’ TO BWP-OP

012600 MOVE ' 1 ! TO BWP-UNARY
012700 MOVE ’'P’ TO BWP-FMT-UNARY
012800 PERFORM DISPLAY-INPUT

012900 CALL WS-BITWISE USING BITWISE-PARMS
013000 PERFORM DISPLAY-RETURN

013100#

013200 DISPLAY ’ « ’

013300 DISPLAY

013400 "xx% CASE 9 - BAD BINARY INPUT’

013500 DISPLAY ’ « ’

013600 MOVE 256 TO BWP-UNARY-BIN
013700 MOVE ’'B’ TO BWP-FMT-UNARY
013800 PERFORM DISPLAY-INPUT

013900 CALL WS-BITWISE USING BITWISE-PARMS
014000 PERFORM DISPLAY-RETURN

014100+

014200 GOBACK

014300 .

014400 DISPLAY-INPUT.

014500 DISPLAY ' « ’

014600 DISPLAY ' x%*xx% INPUT #*xxx*’

014700 DISPLAY ’ « ’

014800 DISPLAY 'OP.........: ! BWP-OP

014900 IF BWP-FMT-UNARY-BNRY

015000 DISPLAY 'UNARY......: ’ BWP-UNARY-BIN
015100 ELSE

015200 DISPLAY 'UNARY......: ’ BWP-UNARY

015300 END-IF

015400 DISPLAY ’'UNARY FMT..: ' BWP-FMT-UNARY

015500 IF BWP-OP-BINARY

015600 IF BWP-FMT-BINARY-BNRY

015700 DISPLAY ’'BINARY.....: ’ BWP-BINARY-BIN

01080035
01090035
01100035
01110035
01120036
01130036
01140036
01150036
01160036
01170035
01180036
01190035
01191039
01192039
01193039
01194039
01195039
01196039
01196139
01197039
01197139
01198039
01210038
01220038
01230039
01240038
01250038
01260038
01270038
01280038
01290038
01300038
01310038
01320038
01330038
01340039
01350038
01360038
01370038
01380038
01390038
01400038
01410038
01420038
01430004
01440023
01450029
01460027
01470029
01480036
01490036
01500036
01510027
01520036
01530027
01540036
01550036
01560036
01570036

31.21. 6.21 BITWISE

505

OpenCOBOL FAQ, Release 1.1

015800
015900
016000
016100
016200
016300
016400
016500 DISP
016600
016700
016800
016900
017000
017100
017200
017300
017400
017500
017600
017700
017800
017900
018000 END

Giving:

*

**x%x CASE 1
*

*

*xxx*x INPUT

UNARY FMT..
RESULT FMT.
* % *x

%x% RETURN
* Kk k

RESULT =
*

*

*%% CASE 2

* x

*

*

*x*x*x*% INPUT

ELSE
DISPLAY ’'BINARY.....: ’ BWP-BINARY
END-IF
DISPLAY ’'BINARY FMT.: ' BWP-FMT-BINARY
END-IF
DISPLAY ’'RESULT FMT.: ' BWP-FMT-RESULT

LAY-RETURN.

DISPLAY / %#*%* ’
DISPLAY ' x#x% RETURN %*x%*'
DISPLAY '/ %#*x* ’

IF BWP-NO-ERRORS
IF BWP-FMT-RESULT-BNRY
DISPLAY ’'RESULT = ' BWP-RESULT-BIN
ELSE
DISPLAY ’'RESULT
END-IF

" BWP-RESULT
ELSE

DISPLAY ’'ERROR ’ BWP-RETURN-CODE
END-IF
DISPLAY ' * !

PROGRAM DEMO.

— TRANSLATE ’'A’, RETURN PATTERN *x*x*

* Kk k kK

: C
: P

* kK ok

01000001

— TAKE THE PATTERN WE JUST GENERATED * *
AND DISPLAY ITS NUMERIC VALUE

* Kk ok kK

01580027
01590036
01600027
01610036
01620023
01630036
01640025
01650023
01660027
01670027
01680027
01690036
01700036
01710036
01720023
01730036
01740023
01750023
01760036
01770023
01780031
01790025
01800016

OP.........: XLAT

UNARY......: 01000001

UNARY FMT..: P

RESULT FMT.: B

* kK

***+* RETURN * % Kk x

* KK

RESULT = 0065

*

*

*%% CASE 3 - TRANSLATE NUMERIC, RETURN CHAR *xx%
*

506 Chapter 31. 6 Notes

OpenCOBOL FAQ, Release 1.1

*
**,kkx*x INPUT **x*x*%*

OP.........: XLAT
UNARY......: 0065
UNARY FMT..: B
RESULT FMT.: C
** K

**x+ RETURN * %k x
* kK

RESULT = A

*
*

*%% CASE 4 - 'OR’ 15 & 240, RETURN PATTERN=*x*
*

*

**,k*xk*x*x INPUT *x*x*x*x*

OP.........: OR
UNARY......: 0015
UNARY FMT..: B
BINARY.....: 0240

BINARY FMT.: B
RESULT FMT.: P

* kK
* %%+ RETURN * % Kk *

* kK

RESULT = 11111111

*
*
*%x% CASE 5 — "AND’ 255 & 70, RETURN PATTERNx*x*
*
*

*kxkk INPUT ***xx*

OP.........: AND
UNARY......: 0255
UNARY FMT..: B

BINARY.....: 0070

BINARY FMT.: B
RESULT FMT.: P

* kK
*% %% RETURN * % Kk Kk

* kK

RESULT = 01000110

*
*
x% CASE 6 — 'NOT’ A RANDOM PATTERNx
*
*

kxx INPUT *xx%*x*

OP.........: NOT
UNARY......: 10110101
UNARY FMT..: P

RESULT FMT.: P

* kK

* %%+ RETURN * % Kk *

* kK

31.21. 6.21 BITWISE 507

OpenCOBOL FAQ, Release 1.1

RESULT = 01001010

*

*

*xx CASE 7 - "XOR’ PATTERN VS PATTERN
*

*

x K%k INPUT *%*%*

OP.........: XOR
UNARY......: 10110101
UNARY FMT..: P
BINARY.....: 01101100

BINARY FMT.: P
RESULT FMT.: P

* Kk k

** %% RETURN * kKK

* %k

RESULT = 11011001
*

*

*x%x CASE 8 - BAD PATTERN INPUT
*

*

*4,*kx* INPUT ***x%%

OP.........: XLAT
UNARY......: 1
UNARY FMT..: P

RESULT FMT.: P

* Kk k

**%*x%x RETURN *%xx*

* * *

ERROR 5

*

*

*x%x CASE 9 - BAD BINARY INPUT
*

*

kxx INPUT *xx%*x%

OP.........: XLAT
UNARY......: 0256
UNARY FMT..: B

RESULT FMT.: P

* kK
* %%+ RETURN * % Kk *

* K Kx

ERROR 7

*

This code has been in producion use for a lot of years now, thanks to Paul for sharing.

508

Chapter 31. 6 Notes

CHAPTER
THIRTYTWO

7 AUTHORS

509

OpenCOBOL FAQ, Release 1.1

510 Chapter 32. 7 Authors

CHAPTER
THIRTYTHREE

8 MAINTAINERS AND CONTRIBUTORS

511

OpenCOBOL FAQ, Release 1.1

512 Chapter 33. 8 Maintainers and Contributors

CHAPTER

THIRTYFOUR

9 GNU FREE DOCUMENTATION
LICENSE

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation,
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.

Inc.

Secondarily, this License preserves for the author and publisher a way

to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a

513

OpenCOBOL FAQ, Release 1.1

licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in

514 Chapter 34. 9 GNU Free Documentation License

OpenCOBOL FAQ, Release 1.1

formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following

text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"

of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering

515

OpenCOBOL FAQ, Release 1.1

more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. 1In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.
Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. 1If
there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.

516 Chapter 34. 9 GNU Free Documentation License

OpenCOBOL FAQ, Release 1.1

You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,

unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section

may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by wvarious
parties——for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.

517

OpenCOBOL FAQ, Release 1.1

Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document .

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. 1In case of a disagreement between
the translation and the original version of this License or a notice

518 Chapter 34. 9 GNU Free Documentation License

OpenCOBOL FAQ, Release 1.1

or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is wvoid, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, i1if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the

GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See

http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the

Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document

specifies that a proxy can decide which future versions of this
License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

519

OpenCOBOL FAQ, Release 1.1

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,

to permit their use in free software.

520 Chapter 34. 9 GNU Free Documentation License

CHAPTER
THIRTYFIVE

10 CHANGELOG

17-Oct-2013 Finalized. GNU Cobol FAQ will get all the attention now. Licensed as GFDL 1.3 or later.
25-Aug-2013, 27-Aug Updated the EXEC SQL entry. Filled out FILLER, FILE, FILE-ID and FALSE.

03-Jul-2013, 19-Jul-2013 Added Pure embedding sample. Cleaned up some sourcecode types, got rid of warnings.
Wim’s stickleback project.

08-Jun-2013, 11-Jun-2013 Added the missing tests blurb for NIST, some corrections. Added more open source
COBOL project links. Added SMCUP, RMCUP terminfo blurb. Fixes.

15-May-2013, 29-May Added BITWISE from Paul Chandler. Started list of open source projects. Tweaked the
development history, fixed Fossil image placement.

30-Mar-2013 Added another haiku (using cbrain).

08-Feb-2013, 09-Feb, 25-Feb, 26-Feb Moving to Sphinx, started documenting new SourceForge project site. Fixed
cobxref listing, no truncated lines. Added ‘nosidebar’ to the sphinx-doc theme settings in conf.py. Added some
Computus, and Latin. Updating current version information. Added Python embedding. Added ficl Forth notes.
Added Shakespeare. Touched on ocsort. Reversed the ChangeLog order with tac -r -s “*$”. Moved the Sphinx
output to main. Added Ruby.

03-Jun-2012 Added site favicon.ico from Silk/help.png, credited Mark James. Fleshed out telco benchmark entry.
27-May-2012 Added LLVM and clang reference.

22-Apr-2012 Typos. Added the size listing for hello.

07-Mar-2012, 19-Mar Added carpe diem farberistic joke.

05-Feb-2012, 29-Feb Added to DIVIDE, put in some lists in the RESERVED words. Added Public Accounting.

12-Jan-2012, 14-Jan, 15-Jan, 20-Jan Added a criticism of easter.cob. Updated CURSOR and FOREVER entries.
Version to 1.1rcOl. FOREVER thread listing moved. cupsPrintFile documented. Rid of the >< comment
output. LOCALE-DATE update. Removed Organization from attributions, there is no official group.

06-Dec-2011, 26-Dec-2011 Added Gambas interface link. Fixed INDEXED entry. Added INITIAL source sample.

03-Sep-2011, 25-Sep, 28-Sep Fixed the ocgtk.c files, getting rid of void returns. Updated list of platforms with
1.1pre-rel running. Added COBOLUnit.

26-Aug-2011 Finished the last FUNCTION.

01-Aug-2011, 05-Aug, 06-Aug, 07-Aug, 08-Aug, 09-Aug, 13-Aug, 14-Aug, 22-Aug Done M, N. Done O. Fixed the
colours after a Pygments update. P’s in. Q, R done. Doing S. Just passed 750000 bytes of FAQ. Done S to Z.
Started documenting the GNU build tool options available. Fixed a DSO misnomer.

01-Jul-2011, 02-Jul, 10-Jul, 11-Jul, 12-Jul, 20-Jul, 23-Jul Updated CALL reserved word entry to show off ON EX-
CEPTION CONTINUE. Updated a few more reserved words; DATE, DAY, DEBUGGING. D’s are done.

521

OpenCOBOL FAQ, Release 1.1

Fleshed out a few reserved words, E’s done. Added links to the Doxygen API passes. Started on some fu-
ture 2.0 entries with the Directives. Added blurb about LD_RUN_PATH. Added initial entry on APL/J linkage.
Into the Fs. Done A thru K. Done L.

25-Jun-2011, 26-Jun-2011 Added sourceforge link. Updated shortest program entries. Updated a few reserved
words.

07-May-2011 Added gfortran sample.

13-Feb-2011 Fixed an unnecessary css import, small corrections. Added REPOSITORY, CYCLE and FOREVER
entries.

02-Jan-2011, 23-Jan-2011 Added errorproc.cob sample. Added some vim and Fossil info.

12-Dec-2010, 31-Dec-2010 Added libsoup HTTP server sample. Changed EOP file status 52 copy sample. Updated
Falcon entry.

01-Nov-2010, 06-Nov-2010, 18-Nov-2010, 20-Nov-2010, 27-Nov-2010 Added a Genie sample. Some small touch-
ups. Restored borked colouring. Added DECLARATIVES entry and a few small tweaks. Added a few RE-
SERVED words entries. Added ROOT/CINT info. Expanded install instructions.

18-0Oct-2010, 19-Oct-2010, 24-Oct-2010, 30-Oct-2010, 31-Oct-2010 Added some working Vala code samples.
Added DamonH’s AJAX code to the CGI section. Updated the CBL_OC_DUMP listings. Added a few minor
reserved word entries. Added translation help request note. Added mkfifo sample. Added call Genie sample.
Added CBL_OC_GTKHTML sample. Updated the PI and PRESENT-VALUE entries. Updated CHARAC-
TERS entry.

13-Jun-2010 Reorganized table of contents boxes. Split SEARCH sample source code.
05-May-2010, 06-May-2010 Added the SEARCH and SORT sample. Updated Rexx. Image for GNAT GPS.

04-Apr-2010, 05-Apr-2010, 11-Apr-2010, 15-Apr-2010 Fixed up the source code listings. Added telco benchmark.
Added print to PDF. Added COB_LIBRARY_PATH info. Expanded the Tcl/Tk entry. Added Mac install
instructions from Ganymede. Rexx.

01-Mar-2010, 28-Mar-2010 Added Oracle procob news. Added FILE STATUS codes to ISAM note. Mention TP-
COBOL-DEBUGGER. Updated INSPECT sample and COB_SCREEN_ESC entry. Added ocgtk.c

15-Feb-2010, 20-Feb-2010, 25-Feb-2010, 27-Feb-2010, 28-Feb-2010 Added advocacy, and a few tweaks. Added
Jim’s PRTCBL. Added Angus’ ocsort. Added cobol.vim and Easter Day programs. Updated CBL_OC_DUMP
source code listing. Added a REPLACE text preprocessor sample. Added pgcob.cob PostgreSQL sample.

12-Oct-2009 Added some links, credits.
13-Sep-2009 Some printing information.
29-Jul-2009 more human assisted corrections.

01-Jun-2009, 03-Jun-2009, 05-Jun-2009, 28-Jun-2009 Added errno, makefile, a few samples and some reserved
word explanations. Added filter.cob the stdin stdout sample. Added some reserved word blurbs and the message
queue sample. human assisted corrections. Many thanks to human.

01-May-2009, 09-May-2009, 28-May-2009, 31-May-2009 Started a structural and TOC reorg. Mention S-Lang.
Continue re-org. Added some FUNCTION samples. Getting close to a complete Intrinsic list.

17-Apr-2009, 18-Apr-2009, 19-Apr-2009 Clarified -fsource-location option. Added a production use posting. Added
START and ISAM sample.

09-Mar-2009, 31-Mar-2009 Added Vala and a few more RESERVED word entries. Added -ext clarification.

16-Feb-2009, 18-Feb-2009 Added JavaScript, Lua, Guile embedding samples and mention Tcl/Tk, GTK. Added
CBL_OC_DUMP sample by Asger Kjelstrup and human

522 Chapter 35. 10 ChangelLog

OpenCOBOL FAQ, Release 1.1

02-Feb-2009, 06-Feb-2009, 09-Feb-2009, 11-Feb-2009 Coloured Source codes. Added info on COB_PRE_LOAD,
added LINAGE sample, fixed colours (kinda). Added Haiku, disclaimer about no claim to Standards confor-
mance. Updated look.

01-Jan-2009, 10-Jan-2009, 12-Jan-2009, 22-Jan-2009 Lame attempt at clarifying (excusing) poor use of Standards
references. Small corrections and additions to SQL entry. Added a few RESERVED entries and Vincent’s
STOCK library expansion. Typos.

28-Dec-2008, 29-Dec-2008, 30-Dec-2008 Added info on CobXRef, some debugging tricks and an entry on recursion.

12-Dec-2008, 16-Dec-2008, 21-Dec-2008 Added new links to OpenCOBOL 1.1 binary builds by Sergey. Updated
header templates. Added a few keywords.

28-Nov-2008 OpenCOBOL passes the NIST test suite.

13-Oct-2008, 15-Oct-2008,19-Oct-2008, 22-Oct-2008, 29-Oct-2008 Added a few samples. Added TABLE SORT
sample. Added configure script information. Added dialect configuration information.

23-Sep-2008 Adds and a trial skin

10-Aug-2008, 21-Aug-2008, 28-Aug-2008, 29-Aug-2008, 30-Aug-2008 Started in on the intrinsic functions.
Dropped the pre from the alpha designation. Still some Look into this entries. Move to add1tocobol.com
Publish link to 1.0rc Skeleton of the reserved words list Let the tweaking begin

17-Jul-2008, 20-Jul-2008, 24-Jul-2008, 28-Jul-2008 Last-last-last 0.0 pre-alpha. Second DIFF. Corrections pass.
Expanded the SCREEN SECTION questions. Another correction pass, with clarifications from Roger While

02-Jul-2008, 06-Jul-2008, 07-Jul-2008, 11-Jul-2008, 13-Jul-2008 Experimental version for comment. First 0.0 pre-
alpha release. Second 0.0 pre-alpha. Last 0.0 pre-alpha. Checked in for diffs. Last-last 0.0 pre-alpha. Verify
DIFF functionality.

523

OpenCOBOL FAQ, Release 1.1

524 Chapter 35. 10 Changelog

BIBLIOGRAPHY

[Keisuke] Keisuke Nishida

Initial developer and creator of OpenCOBOL. From the 1990s through 2004 and still active was the primary
developer and OpenCOBOL project lead. His efforts are greatly appreciated by the userbase of OpenCOBOL.

[Roger] Roger While

OpenCOBOL 1.1 is currently (February 2013) in development, and Roger is the lead programmer. From early
2004 up till today, and tomorrow, Roger has been very active on the opencobol.org website, and is open to feature
requests and clarifications to the implementation. Roger has, since January 2008, actively monitored an Open-
COBOL 1.1 wishlist on the opencobol.org OpenCOBOL forum.

[btiffin] Brian Tiffin
Initial FAQ. sample programs for OpenCOBOL 1.1.
[aoirthoir] Joseph James Frantz
Hosting, support.
[jrls;wla] John Ellis
Samples and how-to’s and ...
[human] human
Samples and style
[wmklein] Bill Klein
Keeper of the COBOL FAQ and all round COBOL myth buster.

525

http://opencobol.org/
http://opencobol.org/
http://home.comcast.net/~wmklein/FAQ/COBOLFAQ.htm

	1.1 What is OpenCOBOL?
	1.2 What is COBOL?
	1.3 How is OpenCOBOL licensed?
	1.4 What platforms are supported by OpenCOBOL?
	1.5 Are there pre-built OpenCOBOL packages
	1.5.1 kiska.net repository
	1.5.2 sourceforge

	1.6 What is the most recent version of OpenCOBOL?
	1.7 How complete is OpenCOBOL?
	1.8 Will I be amazed by OpenCOBOL?
	1.9 Who do I thank for OpenCOBOL?
	1.10 Does OpenCOBOL include a Test Suite?
	1.11 Does OpenCOBOL pass the NIST Test Suite?
	1.11.1 What's missing?

	1.12 What about OpenCOBOL and benchmarks?
	1.12.1 telco billing

	1.13 Can OpenCOBOL be used for CGI?
	1.14 Does OpenCOBOL support a GUI?
	1.14.1 GTK
	1.14.2 Tcl/Tk
	1.14.3 Vala, WebKit

	1.15 Does OpenCOBOL have an IDE?
	1.16 Can OpenCOBOL be used for production applications?
	1.16.1 Nagasaki Prefecture
	1.16.2 Stories from Currey Adkins
	1.16.3 Public Accounting

	1.17 Where can I get more information about COBOL?
	1.18 Where can I get more information about OpenCOBOL?
	1.18.1 The OpenCOBOL Programmer's Guide

	1.19 Can I help out with the OpenCOBOL project?
	1.19.1 Translation Efforts

	1.20 Is there an OpenCOBOL mailing list?
	1.21 Where can I find more information about COBOL standards?
	1.22 Can I see the OpenCOBOL source codes?
	1.22.1 A ROBODoc experiment
	1.22.2 A Doxygen pass across the compiler source code
	1.22.3 A Doxygen pass, application with compiler suite
	1.22.4 What was used to color the source code listings?

	1.23 What happened to opencobol.org?
	1.24 What is COBOL in Latin?
	1.25 Where can I find open COBOL source code?
	1.25.1 on SourceForge
	1.25.2 add1tocobol
	1.25.3 Stickleback
	1.25.4 other places

	1.26 Do you know any good jokes?
	1.26.1 Really?
	1.26.2 A 5-7-5 haiku?

	2 History
	2.1 What is the history of COBOL?
	2.2 What are the Official COBOL Standards?
	2.3 What is the development history of OpenCOBOL?
	2.4 What is the current version of OpenCOBOL?

	3 Using OpenCOBOL
	3.1 How do I install OpenCOBOL?
	3.2 What are the configure options available for building OpenCOBOL?
	3.3 Does OpenCOBOL have any other dependencies?
	3.4 How does the OpenCOBOL compiler work?
	3.5 What is cobc?
	3.6 What is cobcrun?
	3.7 What is cob-config?
	3.8 What compiler options are supported?
	3.9 What dialects are supported by OpenCOBOL?
	3.10 What extensions are used if cobc is called with/without ``-ext'' for COPY
	3.11 What are the OpenCOBOL compile time configuration files?
	3.12 Does OpenCOBOL work with make?
	3.13 Do you have a reasonable source code skeleton for OpenCOBOL?
	3.14 Can OpenCOBOL be used to write command line stdin, stdout filters?
	3.15 How do you print to printers with OpenCOBOL?
	3.16 Can I run background processes using OpenCOBOL?
	3.17 Is there OpenCOBOL API documentation?
	3.18 How do I use LD_RUN_PATH with OpenCOBOL?
	3.19 What GNU build tool options are available when building OpenCOBOL?
	3.20 Why don't I see any output from my OpenCOBOL program?

	4 Reserved Words
	4.1 What are the OpenCOBOL RESERVED WORDS?
	4.2 Does OpenCOBOL implement any Intrinsic FUNCTIONs?
	4.3 Can you clarify the use of FUNCTION in OpenCOBOL?
	4.4 What is the difference between the LENGTH verb and FUNCTION LENGTH?
	4.5 What STOCK CALL LIBRARY does OpenCOBOL offer?
	4.6 What are the XF4, XF5, and X91 routines?
	4.7 What is CBL_OC_NANOSLEEP OpenCOBOL library routine?
	4.8 How do you use C$JUSTIFY?
	4.9 What preprocessor directives are supported by OpenCOBOL?

	5 Features and extensions
	5.1 How do I use OpenCOBOL for CGI?
	5.2 What is ocdoc?
	5.3 What is CBL_OC_DUMP?
	5.4 Does OpenCOBOL support any SQL databases?
	5.5 Does OpenCOBOL support ISAM?
	5.6 Does OpenCOBOL support modules?
	5.7 What is COB_PRE_LOAD?
	5.8 What is the OpenCOBOL LINKAGE SECTION for?
	5.9 What does the -fstatic-linkage OpenCOBOL compiler option do?
	5.10 Does OpenCOBOL support Message Queues?
	5.11 Can OpenCOBOL interface with Lua?
	5.12 Can OpenCOBOL use ECMAScript?
	5.13 Can OpenCOBOL use JavaScript?
	5.14 Can OpenCOBOL interface with Scheme?
	5.15 Can OpenCOBOL interface with Tcl/Tk?
	5.16 Can OpenCOBOL interface with Falcon PL?
	5.17 Can OpenCOBOL interface with Ada?
	5.18 Can OpenCOBOL interface with Vala?
	5.19 Can OpenCOBOL interface with S-Lang?
	5.20 Can the GNAT Programming Studio be used with OpenCOBOL?
	5.21 Does OpenCOBOL support SCREEN SECTION?
	5.22 What are the OpenCOBOL SCREEN SECTION colour values?
	5.23 Does OpenCOBOL support CRT STATUS?
	5.24 What is CobCurses?
	5.25 What is CobXRef?
	5.26 Does OpenCOBOL implement Report Writer?
	5.27 Does OpenCOBOL implement LINAGE?
	5.28 Can I use ctags with OpenCOBOL?
	5.29 What about debugging OpenCOBOL programs?
	5.30 Is there a C interface to OpenCOBOL?
	5.31 What are some idioms for dealing with C char * data from OpenCOBOL?
	5.32 Does OpenCOBOL support COPY includes?
	5.33 Does OpenCOBOL support WHEN-COMPILED?
	5.34 What is PI in OpenCOBOL?
	5.35 Does OpenCOBOL support the Object features of the 2002 standard?
	5.36 Does OpenCOBOL implement PICTURE 78?
	5.37 Does OpenCOBOL implement CONSTANT?
	5.38 What source formats are accepted by OpenCOBOL?
	5.39 Does OpenCOBOL support continuation lines?
	5.40 Does OpenCOBOL support string concatenation?
	5.41 Does OpenCOBOL support D indicator debug lines?
	5.42 Does OpenCOBOL support mixed case source code?
	5.43 What is the shortest OpenCOBOL program?
	5.44 What is the shortest Hello World program in OpenCOBOL?
	5.45 How do I get those nifty sequential sequence numbers in a source file?
	5.46 Is there a way to count trailing spaces in data fields using OpenCOBOL?
	5.47 Is there a way to left justify an edited numeric field?
	5.48 Is there a way to detemermine when OpenCOBOL is running ASCII or EBCDIC?
	5.49 Is there a way to determine when OpenCOBOL is running on 32 or 64 bits?
	5.50 Does OpenCOBOL support recursion?
	5.51 Does OpenCOBOL capture arithmetic overflow?
	5.52 Can OpenCOBOL be used for plotting?
	5.53 Does OpenCOBOL support the GIMP ToolKit, GTK+?
	5.54 What is ocsort?
	5.55 When is Easter?
	5.56 Does Vim support OpenCOBOL?
	5.57 What is w3m?
	5.58 What is COB_LIBRARY_PATH?
	5.59 Can OpenCOBOL interface with Rexx?
	5.60 Does OpenCOBOL support table SEARCH and SORT?
	5.61 Can OpenCOBOL handle named pipes?
	5.62 Can OpenCOBOL interface with ROOT/CINT?
	5.63 Can OpenCOBOL be used to serve HTTP?
	5.64 Is there a good SCM tool for OpenCOBOL?
	5.65 Does OpenCOBOL interface with FORTRAN?
	5.66 Does OpenCOBOL interface with APL?
	5.67 Does OpenCOBOL interface with J?
	5.68 What is COBOLUnit?
	5.69 Can OpenCOBOL interface with Gambas?
	5.70 Does OpenCOBOL work with LLVM?
	5.71 Does OpenCOBOL interface with Python?
	5.72 Can OpenCOBOL interface with Forth?
	5.73 Can OpenCOBOL interface with Shakespeare?
	5.74 Can OpenCOBOL interface with Ruby?
	5.75 Can OpenCOBOL interface with Pure?

	6 Notes
	6.1 big-endian
	6.2 little-endian
	6.3 ASCII
	6.4 currency symbol
	6.5 DSO
	6.6 errno
	6.7 gdb
	6.8 GMP
	6.9 ISAM
	6.10 line sequential
	6.11 APT
	6.12 ROBODoc Support
	6.13 cobol.vim
	6.14 make check listing
	6.15 ABI
	6.16 Tectonics
	6.17 Setting Locale
	6.18 GNU
	6.19 Performing FOREVER?
	6.20 POSIX
	6.21 BITWISE

	7 Authors
	8 Maintainers and Contributors
	9 GNU Free Documentation License
	10 ChangeLog
	Bibliography

